Skip to main content
Log in

Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Understanding the genetic basis of micronutrient concentration in wheat grain may provide useful information to breed for biofortified varieties through marker assisted selection (MAS). One hundred and thirty eight doubled haploid progeny of a cross between the wheat cultivars ‘Berkut’ and ‘Krichauff’ were evaluated for 2 years at two locations on the eastern Gangetic plains of India under timely (November) sown conditions. Grains were evaluated for Zn and Fe concentrations by energy-dispersive X-ray fluorescence. Using composite interval mapping, three QTLs were identified; two for Zn (1B and 2B) with a QTL (2B) co-located for Fe and the third (1A), for protein. The QTL located on chromosome 1B (flanked by wmc036cfa2129) and 2B (flanked by gwm120wpt2430) for Zn explained up to 23.1 and 35.9 % of mean phenotypic variation respectively, whereas up to 22.2 % was explained by the Fe QTL co-located with the Zn QTL on chromosome 2B. A QTL for grain protein was detected on chromosome 1A and flanked by the markers, wpt9592 and GBM1153 which explained up to 17.7 % of the total phenotypic variation. With their detection over consecutive seasons, the detected QTLs appeared robust and useful for MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bauer P, Thiel T, Klatte M, Bereczky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blanco A, Pasqualone A, Troccoli A, Di Fonzo N, Simeone R (2002) Detection of grain protein content QTLs across environments in tetraploid wheats. Plant Mol Biol 48:615–623

    Article  PubMed  CAS  Google Scholar 

  • Bouis HE (2007) The potential of genetically modified food crops to improve human nutrition in developing countries. J Develop Stud 43:79–96

    Article  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol Nevo E, Braun HJ, Ozkan HA (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Genc Y, Verbyla AP, Torun AA, Cakmak I, Willsmore K, Wallwork H, McDonald GK (2009) Quantitative trait loci analysis of zinc efficiency and grain concentration in wheat using whole genome average interval mapping. Plant Soil 314:49–66

    Article  CAS  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121(5):877–894

    Article  PubMed  CAS  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Monasterio OI, Bouis HE, Bonierbale M, De Haan SD, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    Article  CAS  Google Scholar 

  • Gupta P, Langridge P, Mir R (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161. doi:10.1007/s11032-009-9359-7

    Article  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    Article  CAS  Google Scholar 

  • Hao Y, Velu G, Pena RJ, Singh S, Singh RP (2014) Genetic Loci in wheat association with high grain zinc content in PBW 343/Kenya Swara Recombinant Inbred Lines. Plant and Animal Genome XXII. The Largest Ag-Genomics Meetings in the World, San Diego, USA

  • Huynh BL, Wallwork H, Stangoulis JCR, Graham RD, Willsmore KL, Olson S, Mather DE (2008) Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Genet 117:701–709

    Article  PubMed  CAS  Google Scholar 

  • Joshi AK, Crossa J, Arun B, Chand R, Trethowan R, Vargas M, Monasterio OI (2010) Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Res 116:268–277

    Article  Google Scholar 

  • Manly KF, Cudmore RHJ, Meer JM (2001) Map Manager QTX cross Platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McDonald GK, Genc Y, Graham RD (2008) A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil 306:49–55

    Article  CAS  Google Scholar 

  • Morgounov A, Gomez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Nguyen VL, Huynh BL, Wallwork H, Stangoulis J (2011) Identification of quantitative trait loci for grain arabinoxylan concentration in bread wheat. Crop Sci 51:1143–1150

    Article  Google Scholar 

  • Nyquist WE, Baker RJ (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • Ortiz-Monasterio JI, Palacios Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    Article  CAS  Google Scholar 

  • Os Van, Stam H, Visser P, Van RGF, Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • Ozkan H, Altintas S, Brandolini A, Buck HT, Nisi JE, Salomon N, Cakmak I, Eker S, Kilian B, Salamini F, Torun A, Braun HJ (2007) Natural variation and identification of microelements content in seeds of einkorn wheat (Triticum monococcum). Dev Plant Breed 12:455–462

    Article  Google Scholar 

  • Paltridge NG, Palmer LJ, Milham PJ, Guild GE, Stangoulis J (2012) Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grain. Plant Soil 361:251–260

    Article  CAS  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  PubMed  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Shi R, Li H, Tong Y, Jing R, Zhang F, Zou C (2008) Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 306:95–104

    Article  CAS  Google Scholar 

  • Simmonds NW (2006) The relation between yield and protein in cereal grain. J Sci Food Agric 67(3):309–315

    Article  Google Scholar 

  • Srinivasa J, Balasubramaniam A, Mishra VK, Singh GP, Velu G, Babu R, Vasistha NK, Joshi AK (2014) Zinc and iron concentration QTL mapped in a Triticum spelta × T. aestivum cross. Theor Appl Genet 127:1643–1651. doi:10.1007/s00122-014-2327-6

    Article  PubMed  CAS  Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100:771–776

    Article  PubMed  CAS  Google Scholar 

  • Tiwari C, Wallwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in bread wheat adapted to the eastern Gangetic Plain of India. Field Crop Res 154:201–210

    Article  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Pena RJ, Balasubramanium A, Mahendru-Singh A, Mujahid MY, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267

    Article  Google Scholar 

  • Velu G, Singh RP, Hao Y, Huerta-Espino J, Autrique E, Pena J (2013) Breeding Advances in Development of Biofortified Wheat. Water, Food, Energy and Innovation for a sustainable World, ASA, CSSA& SSSA International Annual Meetings, Tampa, Florida. Poster abstract No. 406

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Program in Statistical Genetics, North Carolina State University. Available from: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  CAS  Google Scholar 

  • Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Yasmin Z, Paltridge R, Graham R, Huynh BL, Stangoulis J (2013) Measuring genotypic variation in wheat seed iron first requires stringent protocols to minimize soil iron contamination. Crop Sci 54:255–264

    Article  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for constructive suggestions made by Wolfgang Pfeifer (HarvestPlus) and Ravi P. Singh and Hans J. Braun (CIMMYT, Mexico) in the course of this study. Part of this work was possible due to facilities provided under HarvestPlus project at Banaras Hindu University. Authors offer sincere thanks to the HarvestPlus for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Kumar Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, C., Wallwork, H., Arun, B. et al. Molecular mapping of quantitative trait loci for zinc, iron and protein content in the grains of hexaploid wheat. Euphytica 207, 563–570 (2016). https://doi.org/10.1007/s10681-015-1544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1544-7

Keywords

Navigation