Skip to main content
Log in

Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic improvement of sugar content in sugarcane would benefit from the availability of sufficient DNA markers and a genetic map. Genetic linkage maps were constructed to identify quantitative trait loci (QTLs) for seedling brix (SB), brix (B), sucrose percent in juice (SUC), stalk number (SN), stalk length (SL), stalk diameter (SD), internodes (INT), number of green leaves (NGL), at three crop cycles across seven environments in a segregating population with 207 individuals derived from a bi-parental cross of sugarcane elite cultivars. Linkage analysis led to the construction of eight linkage groups (LGs) for Co86011 and sixteen LGs for CoH70. The combined length of the two linkage maps was 2606.77 cM distributed over 24 LGs. 31 QTLs were identified: 2 for SB, 7 for B, 6 for SUC, 4 for SN, 1 for SL, 3 for SD, 6 for INT and 2 for NGL at LOD scores ranging from 2.69 to 4.75. 7 QTLs (22 %) had stable effect across crop year and locations. Markers from parents were found to be associated with both positive and negative effect on all of the traits analyzed. The most important QTLs intervals identified in this study using single-dose marker, were qB2, qSUC2, qINT2 and qB2, qSUC2, qSL2, qINT2 located between SSR markers UGSM31548 and UGSM31649. These QTLs could be put into use in marker assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA (2008) Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet 117:1191–1203

    Article  PubMed  CAS  Google Scholar 

  • Aljanabi SM, Honeycutt RJ, McClelland M, Sobral BWS (1993) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260

    CAS  Google Scholar 

  • Aljanabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, Autrey LJC, Dookun-Saumtally A (2007) Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed 19:1–14

    Google Scholar 

  • Alwala S, Collins A, Kimbeng J, Veremis C, Gravois KA (2008) Linkage mapping and genome analysis in a Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Alwala S, Collins A, Kimbeng J, Veremis C, Gravois KA (2009) Identification of molecular markers associated with sugar-related traits in a Saccharum interspecific cross. Euphytica 167:127–142

    Article  CAS  Google Scholar 

  • Andru S, Pan YB, Thongthawee S, Burner DM, Kimbeng CA (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85–384’.I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123:77–93

    Article  PubMed  Google Scholar 

  • Arencibia A (1998) Gene transfer in sugarcane. In: Biotechnology of food crops in developing countries. Springer, New York, pp 79–104

  • Asins MJ (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Beavis W (1998) QTL analyses: power, precision and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits.CRC Press, Boca Raton

  • Chang KY, Lo HF, Lai CY, Yao PJ, Lin KH, Hwang SY (2009) Identification of quantitative trait loci associated with yield-related traits in sweet potato (Ipomoea batatas). Botanical Stud 50:43–55

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp) ESTs cross transferable to Erianthus and Sorghum. Plant Sci 160:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Da Silva JA, Bressiani JA (2005) Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Bio l 28:294–298

    Article  Google Scholar 

  • Da Silva JAG, Sorrells ME, Burnquist W, Tanksley SD (1993) RFLP linkage map and genome analysis of Saccharum spontaneum. Genome 36:782–791

    Article  PubMed  CAS  Google Scholar 

  • Da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, Sobral BWS (1995) Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP- and PCR-based markers. Mol Breed 1:165–179

    Article  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszimann JC, Hont AD (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivar R 570. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • Decroocq V, Fave M, Hagen L, Bordenhave L, Decroocq S (2003) Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor Appl Genet 106:912–922

    PubMed  CAS  Google Scholar 

  • Edme SJ, Miller JD, Glaz B, Tai PYP, Comstock JC (2005) Genetic contribution to yield gains in the Florida sugarcane industry across 33 years. Crop Sci. 45:92–97

    Google Scholar 

  • Edme SJ, Glynn NG, Comstock JC (2006) Genetic segregation of microsatellite markers in Saccharum officinarum and S. spontaneum. Heredity 97:366–375

    Article  PubMed  CAS  Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  CAS  Google Scholar 

  • Gravois KA, Milligan SB (1992) Genetic relationship between fiber and sugarcane yield components. Crop Sci 32:62–67

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploids interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Guimaraes CT, Honeycutt RJ, Sills GR, Sobral BWS (1999) Genetic maps of Saccharum officinarum L. and Saccharum robustum Brandes & Jew. Ex Grassl. Genet Mol Biol 22:125–132

    Article  CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflat JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Hoisington D, Khairallah M, González-de-León D (1994) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 2nd edn. CIMMYT, México DF

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Jackson PA, Hogarth DM (1992) Genotype environment interactions in sugarcane I. Patterns of response across locations and crop-years in North Queensland. Aust J Agric Re 43:1447–1459

    Article  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(11):11–1127

    Google Scholar 

  • Kang MS, Miller JD, Tai PYP, Dean JL, Glaz B (1987) Implications of confounding genotype × year and genotype × crop effects in sugarcane. Field Crops Res 15:349–355

    Article  Google Scholar 

  • Kimbeng CA, Rattey AR, Hetherington M (2002) Interpretation and implications of genotype by environment interactions in advanced stage sugarcane selection trails in central Queensland. Aust J Agric Res 53:1035–1045

    Article  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet x grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kriegner A, Cervantes JC, Burg K, Mwanga ROM, Zhang D (2003) A genetic linkage map of sweet potato [Ipomoea batatas (L.) Lam.] based on AFLP markers. Mol Breed 11:169–185

    Article  CAS  Google Scholar 

  • Lander ES, Botstein D (1994) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 36:705

    Google Scholar 

  • Lingle SE, Viator RP, Johnson RM, Tew TL, Boykin DL (2009) Recurrent selection for sucrose content has altered growth and sugar accumulation in sugarcane. Field Crop Res 113:306–311

    Article  Google Scholar 

  • Liu BH (1998) Statistical genomics. CRC Press, New York 611 pp

    Google Scholar 

  • McCouch SR, Chen X, Panaud O, Temnyk S, Xu Y (1997) Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Bio 35:89–99

    Article  CAS  Google Scholar 

  • Mester D, Robin Y, Minkov D, Nevo E, Korol A (2003) Construction large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, van Deynze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosome: comparative organization of closely related diploid and polyploidy genome. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genomic Res 11:2075–2084

    Article  CAS  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra T, Singh KS, Swain S, Sharma RK, Singh NK (2003) STMS-based DNA fingerprints of the new plant type wheat lines. Curr Sci 84:1125–1129

    CAS  Google Scholar 

  • Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182

    Article  PubMed  CAS  Google Scholar 

  • Mudge J, Andersen WR, Kehrer RL, Fairbanks DJ (1996) A RAPD genetic map of Saccharum officinarum. Crop Sci 36:1362–1366

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AM, Ulian EC, Garcia AAF, Souza AP (2007) Functional genetic linkage map on EST markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:89–208

    Article  Google Scholar 

  • Parh DK, Jordan DR, Aitken EAB, Mace ES, Jun-ai P, McIntyre CL, Godwin ID (2008) QTL analysis of ergot resistance in sorghum. Theor Appl Genet 117:369–382

    Article  PubMed  CAS  Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemaprabh G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping applications in sugarcane. Theor Appl Genet 118:327–338

    Article  PubMed  CAS  Google Scholar 

  • Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10:251

    Article  PubMed  Google Scholar 

  • Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GRA, Oliveira KM, Pinto LR, Souza AP, van Eeuwijk FA, Garcia AAF (2012) A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet 124:835–849

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH (1996) Making genetic maps. In: Paterson AH (ed) Genome mapping in plants. R. G. Landes Company, San Diego, pp 23–39

  • Paterson AH (1998) Molecular dissection of complex traits. CRC Press, Boca Raton

    Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Bidoia MAP, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172:313–327

    Article  CAS  Google Scholar 

  • Piperidis G, D’Hont A (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Int Soc Sugar Cane Technol Congress, vol 11, p 565

  • Piperidis N, Jackson PA, Hont AD, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247

    Article  Google Scholar 

  • Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in the high polyploid sugarcane using a bi-parental progeny; identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381

    Article  CAS  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID, Mace ES, McIntyre CL (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Google Scholar 

  • Schön C, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Singh RK, Singh S (1994) Early evaluation of sucrose for varietal improvement in sugarcane. Sugar Cane 3:17–21

    Google Scholar 

  • Singh RK, Singh GP (1998) Effect of sampling time on efficacy of selection for quality traits in sugarcane. Sugar Cane 3:3–17

    Google Scholar 

  • Singh RK, Singh GP (2000) Early evaluation of sugarcane for quality improvement as an effective approach for varietal selection in subtropical climate. Indian J Agric Sci 70:8–12

    Google Scholar 

  • Singh RK, Singh RB, Singh SP, Sharma ML (2011) Identification and transferability of sugarcane microsatellite to other cereal genome. Euphytica 182:335–354

    Article  CAS  Google Scholar 

  • Smith AB, Stringer JK, Wei X, Cullis BR (2007) Varietal selection for perennial crops where data relate to multiple harvests from a series of field trials. Euphytica 157:253–266

    Article  Google Scholar 

  • Tiwari DK, Pandey P, Singh RK, Singh SP, Singh SB (2011) Genotype × environment interaction and stability analysis in elite clones of sugarcane (Saccharum officianarum L.). Int J Plant Breed Genet 5:93–99

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Wang S, Basten C, Gaffney P, Zeng ZB (2004) Window QTL cartographer version 2.0. Bioinformatics Research Center, North Carolina State University, Raleigh, US

  • Woram RA, McGowan C, Stout JA, Gharbi K, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexraod C, Danzmann (2004) A genetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome 47:304–315

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Burnquist W, Sorrels M, Tew T, Moore P, Tanksley S (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  Google Scholar 

  • Wu R, Maa CX, Painter I, Zeng ZB (2002) Simultaneous maximum liklyhood estimation of linkage and linkage phases in out crossing species. Theor Popul Biol 61:349–363

    Article  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang L, Yang G, Liu P, Hong D, Li S, He Q (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors want to thank the anonymous reviewers for their valuable suggestions. We are also thankful to Department of Biotechnology (DBT), Government of India for funding this research project. We acknowledge the help of Mr. Sudhir Pratap Singh, Miss. Parul Singh, Pradeep Kumar and Miss. Nidhi Subhanand in field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Kushal Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Singh, S.P., Tiwari, D.K. et al. Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica 191, 333–353 (2013). https://doi.org/10.1007/s10681-012-0841-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-012-0841-7

Keywords

Navigation