Skip to main content

Advertisement

Log in

Inhomogeneity detection in the precipitation series: case of arid province of Pakistan

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Reliable precipitation data are often required for conducting hydro-climatological assessments. Therefore, the study aims to detect the inhomogeneity in each calendar month, mean annual and monthly time series precipitation data of Balochistan, an arid province of Pakistan. The inhomogeneity was assessed using standard normal homogeneity test, Buishand range test, Pettitt test and von Neumann ratio test at 95% confidence level. The tests were applied over the precipitation data obtained from 14 meteorological stations for the period 1961–2009. The results of the different tests were classified as ‘useful’, ‘doubtful’ and ‘suspect’ based on the null hypothesis. The result of calendar months and annual series indicates that most of the data were ‘useful’. The output of monthly time series precipitation indicates that the data at Jiwani, Lasbela, Nokkunddi, Ormara, Pasni, Turbat and Zhob stations were ‘useful’ and others are classified into ‘doubtful’ and ‘suspect’ class. It was also observed that von Neumann ratio test is sensitive to minor changes in the precipitation data, and standard normal homogeneity test was found less sensitive to changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal, P., Pal, L., & Alam, M. A. (2019). Regional Scale analysis of hydro-meteorological variables in Kesinga sub-catchment of Mahanadi Basin, India. Environmental Earth Sciences, 78, 453.

    Article  Google Scholar 

  • Ahammed, S. J., et al. (2019). Assessment of changing pattern of crop water stress in Bangladesh. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00400-w.

    Article  Google Scholar 

  • Ahmad, N. H., & Deni, S. M. (2013). Homogeneity test on daily rainfall series for Malaysia. MATEMATIKA: Malaysian Journal of Industrial and Applied Mathematics, 29, 141–150.

    Google Scholar 

  • Ahmed, K., Shahid, S., Ali, R. O., Harun, S. B., & Wang, X-j. (2017a). Evaluation of the performance of gridded precipitation products over Balochistan Province, Pakistan. Desalination, 79, 73–86.

    Google Scholar 

  • Ahmed, K., Shahid, S., bin Harun, S., Ismail, T., Nawaz, N., & Shamsudin, S. (2015a). Assessment of groundwater potential zones in an arid region based on catastrophe theory. Earth Science Information, 8, 539–549. https://doi.org/10.1007/s12145-014-0173-3.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Chung, E.-S., Ismail, T., & Wang, X.-J. (2017b). Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Climate Research, 74, 95–107.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Chung, E.-S., Wang, X-j, & Harun, S. B. (2019a). Climate change uncertainties in seasonal drought severity-area-frequency curves: Case of arid region of Pakistan. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.01.019.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Demirel, M. C., Nawaz, N., & Khan, N. (2019b). The changing characteristics of groundwater sustainability in Pakistan from 2002 to 2016. Hydrogeology Journal. https://doi.org/10.1007/s10040-019-02023-x.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Sb, H., & Wang, X-j. (2015b). Characterization of seasonal droughts in Balochistan Province, Pakistan. Stoch Environ Res Risk Assess, 30, 747–762. https://doi.org/10.1007/s00477-015-1117-2.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Ismail, T., Nawaz, N., & Wang, X-j. (2018). Absolute homogeneity assessment of precipitation time series in an arid region of Pakistan. Atmósfera, 31, 301–316.

    Article  Google Scholar 

  • Ahmed, K., Shahid, S., Wang, X., Nawaz, N., & Khan, N. (2019c). Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrology and Earth System Sciences, 23, 3081–3096. https://doi.org/10.5194/hess-23-3081-2019.

    Article  Google Scholar 

  • AL-Salihi, A. M., AL-Timimi, Y. K., & AL-Lami, A. M. (2014). The homogeneity analysis of rainfall time series for selected meteorological stations in Iraq. Diyala Journal For Pure Science, 10, 60–77.

    Google Scholar 

  • Alamgir, M., Shahid, S., Hazarika, M. K., Nashrrullah, S., Harun, S. B., & Shamsudin, S. (2015). Analysis of meteorological drought pattern during different climatic and cropping seasons in Bangladesh. JAWRA Journal of the American Water Resources Association, 51, 794–806.

    Article  Google Scholar 

  • Alexandersson, H. (1986). A homogeneity test applied to precipitation data. Journal of climatology, 6, 661–675.

    Article  Google Scholar 

  • Ashraf, M., & Routray, J. K. (2013). Perception and understanding of drought and coping strategies of farming households in north-west Balochistan. International Journal of Disaster Risk Reduction, 5, 49–60.

    Article  Google Scholar 

  • Ashraf, M., & Routray, J. K. (2015). Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Natural Hazards, 77, 229–254.

    Article  Google Scholar 

  • Auer, I., et al. (2005). A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002. International Journal of Climatology, 25, 139–166.

    Article  Google Scholar 

  • Bandopadhyay, S. (2016). Does elevation impact local level climate change? An analysis based on fifteen years of daily diurnal data and time series forecasts. Pacific Science Review A: Natural Science and Engineering, 18, 241–253.

    Google Scholar 

  • Beaulieu, C., Seidou, O., Ouarda, T. B. M. J., & Zhang, X. (2009). Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models. Water Resources Research, 45, W08410. https://doi.org/10.1029/2008wr007501.

    Article  Google Scholar 

  • Bližňák, V., Valente, M. A., & Bethke, J. (2015). Homogenization of time series from Portugal and its former colonies for the period from the late 19th to the early 21st century. International Journal of Climatology, 35, 2400–2418.

    Article  Google Scholar 

  • Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58, 11–27. https://doi.org/10.1016/0022-1694(82)90066-x.

    Article  Google Scholar 

  • Che Ros, F., Tosaka, H., Sidek, L. M., & Basri, H. (2016). Homogeneity and trends in long-term rainfall data, Kelantan River Basin, Malaysia. International Journal of River Basin Management, 14, 151–163.

    Article  Google Scholar 

  • Chuan, Z.L., Deni, S.M., Fam, S.-F., Ismail, N. (2019). The Effectiveness of a probabilistic principal component analysis model and expectation maximisation algorithm in treating missing daily rainfall data. Asia-Pacific Journal of Atmospheric Sciences, pp. 1–11.

  • Costa, A. C., & Soares, A. (2009). Homogenization of climate data: Review and new perspectives using geostatistics. Mathematical Geosciences, 41, 291–305.

    Article  Google Scholar 

  • de Lima, M., Carvalho, S., & de Lima, J. (2010). Investigating annual and monthly trends in precipitation structure: an overview across Portugal. Natural Hazards and Earth System Science, 10, 2429–2440.

    Article  Google Scholar 

  • Domonkos, P. (2013). Efficiencies of inhomogeneity-detection algorithms: comparison of different detection methods and efficiency measures. Journal of Climatology 2013.

  • Domonkos, P. (2014). Homogenization of precipitation time series with ACMANT. Theoretical and Applied Climatology, 122, 303–314. https://doi.org/10.1007/s00704-014-1298-5.

    Article  Google Scholar 

  • Firat, M., Dikbas, F., Koç, A. C., & Gungor, M. (2010). Missing data analysis and homogeneity test for Turkish precipitation series. Sadhana, 35, 707–720.

    Article  Google Scholar 

  • Freitas, L., Pereira, M. G., Caramelo, L., Mendes, M., & Nunes, L. F. (2013). Homogeneity of monthly air temperature in Portugal with HOMER and MASH. Idojaras, 117, 69–90.

    Google Scholar 

  • Hänsel, S., Medeiros, D. M., Matschullat, J., Petta, R. A., & de Mendonça, S. I. (2016). Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of north-eastern Brazil. Frontiers in Earth Science, 4, 29.

    Article  Google Scholar 

  • Iqbal, Z., Shahid, S., Ahmed, K., Ismail, T., & Nawaz, N. (2019). Spatial distribution of the trends in precipitation and precipitation extremes in the sub-Himalayan region of Pakistan. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-019-02773-4.

    Article  Google Scholar 

  • Jahan, F., Sinha, N. C., Rahman, M. M., Rahman, M. M., Mondal, M. S. H., & Islam, M. A. (2019). Comparison of missing value estimation techniques in rainfall data of Bangladesh. Theoretical and Applied Climatology, 136, 1115–1131. https://doi.org/10.1007/s00704-018-2537-y.

    Article  Google Scholar 

  • Jaiswal, R., Lohani, A., & Tiwari, H. (2015). Statistical analysis for change detection and trend assessment in climatological parameters. Environmental Processes, 2, 729–749.

    Article  Google Scholar 

  • Kajornrit, J., Wong, K. W., & Fung, C. C. (2012). Estimation of missing precipitation records using modular artificial neural networks. Neural Information Processing (pp. 52–59). Berlin: Springer.

    Chapter  Google Scholar 

  • Kang, H. M., & Yusof, F. (2012). Homogeneity tests on daily rainfall series. International Journal of Contemporary Mathematical Sciences, 7, 9–22.

    Google Scholar 

  • Khan, N., Shahid, S., Ismail, T., Ahmed, K., & Nawaz, N. (2018). Trends in heat wave related indices in Pakistan. Stochastic Environmental Research and Risk Assessment, 33, 287–302. https://doi.org/10.1007/s00477-018-1605-2.

    Article  Google Scholar 

  • Khan, N., Shahid, S., Juneng, L., Ahmed, K., Ismail, T., & Nawaz, N. (2019). Prediction of heat waves in Pakistan using quantile regression forests. Atmospheric Research, 221, 1–11. https://doi.org/10.1016/j.atmosres.2019.01.024.

    Article  Google Scholar 

  • Mamara, A., Argiriou, A., & Anadranistakis, M. (2014). Detection and correction of inhomogeneities in Greek climate temperature series. International Journal of Climatology, 34, 3024–3043.

    Article  Google Scholar 

  • McLachlan, G., & Krishnan, T. (2007). The EM algorithm and extensions (Vol. 382). New Jersey: Wiley.

    Google Scholar 

  • Menne, M. J., Williams, C. N., Jr., & Vose, R. S. (2009). The US Historical Climatology Network monthly temperature data, version 2. Bulletin of the American Meteorological Society, 90, 993–1007.

    Article  Google Scholar 

  • Morozova, A., & Valente, M. (2012). Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto. Earth System Science Data, 4, 187–213.

    Article  Google Scholar 

  • Noor, M., bin Ismail, T., Shahid, S., Ahmed, K., Chung, E.-S., & Nawaz, N. (2019). Selection of CMIP5 multi-model ensemble for the projection of spatial and temporal variability of rainfall in peninsular Malaysia. Theoretical and Applied Climatology, pp. 1–14.

  • Peterson, T. C., et al. (1998). Homogeneity adjustments of in situ atmospheric climate data: a review. International Journal of Climatology, 18, 1493–1517. https://doi.org/10.1002/(sici)1097-0088(19981115)18:13<1493:aid-joc329>3.0.co;2-t.

    Article  Google Scholar 

  • Pettitt, A. (1979), A non-parametric approach to the change-point problem. Applied statistics, pp. 126–135.

  • Sahin, S., & Cigizoglu, H. K. (2010). Homogeneity analysis of Turkish meteorological data set. Hydrol Processes, 24, 981–992. https://doi.org/10.1002/hyp.7534.

    Article  Google Scholar 

  • Salman, S. A., Shahid, S., Ismail, T., Al-Abadi, A. M., Wang, X-j, & Chung, E.-S. (2018). Selection of gridded precipitation data for Iraq using compromise programming. Measurement, 132, 87–98.

    Article  Google Scholar 

  • Santos, M., & Fragoso, M. (2013). Precipitation variability in Northern Portugal: Data homogeneity assessment and trends in extreme precipitation indices. Atmospheric Research, 131, 34–45. https://doi.org/10.1016/j.atmosres.2013.04.008.

    Article  Google Scholar 

  • Shiru, M. S., Shahid, S., Alias, N., & Chung, E.-S. (2018). Trend Analysis of Droughts during Crop Growing Seasons of Nigeria. Sustainability, 10, 871.

    Article  Google Scholar 

  • Talaee, P. H., Kouchakzadeh, M., & Some’e, B. S. (2014). Homogeneity analysis of precipitation series in Iran. Theoretical and Applied Climatology, 118, 297–305. https://doi.org/10.1007/s00704-013-1074-y.

    Article  Google Scholar 

  • Tayanç, M., Nüzhet Dalfes, H., Karaca, M., & Yenigün, O. (1998). A comparative assessment of different methods for detecting inhomogeneities in Turkish temperature data set. International Journal of Climatology, 18, 561–578. https://doi.org/10.1002/(sici)1097-0088(199804)18:5<561:aid-joc249>3.0.co;2-y.

    Article  Google Scholar 

  • Teegavarapu, R. S. (2012). Floods in a changing climate: Extreme precipitation. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Toreti, A., Kuglitsch, F. G., Xoplaki, E., Della-Marta, P. M., Aguilar, E., Prohom, M., et al. (2011). A note on the use of the standard normal homogeneity test to detect inhomogeneities in climatic time series. International Journal of Climatology, 31, 630–632. https://doi.org/10.1002/joc.2088.

    Article  Google Scholar 

  • UNESCO (1979) Map of the world distribution of arid regions. UNESCO Paris.

  • Venema VK et al. Benchmarking homogenization algorithms for monthly data. In: AIP Conference Proceedings, 2013. vol 1. AIP, pp, 1060–1065.

  • Von Neumann, J. (1941). Distribution of the ratio of the mean square successive difference to the variance. The Annals of Mathematical Statistics, 12, 367–395.

    Article  Google Scholar 

  • Wijngaard, J., Klein Tank, A., & Können, G. (2003). Homogeneity of 20th century European daily temperature and precipitation series. International Journal of Climatology, 23, 679–692.

    Article  Google Scholar 

  • Yang, S., Wang, X. L., & Wild, M. (2018). Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in China. Journal of Climate, 31, 4529–4541.

    Article  Google Scholar 

  • Yozgatligil, C., & Yazici, C. (2016). Comparison of homogeneity tests for temperature using a simulation study. International Journal of Climatology, 36, 62–81.

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the International Foundation for Science (IFS) and the Organization of Islamic Cooperation’s Standing Committee on Scientific and Technological Cooperation (COMSTECH) via Grant No. I-2-W-6266-1. This work is also supported by Higher Education Commission of Pakistan via Grant No. 9568/Balochistan/NRPU/R&D/HEC/ 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, K., Nawaz, N., Khan, N. et al. Inhomogeneity detection in the precipitation series: case of arid province of Pakistan. Environ Dev Sustain 23, 7176–7192 (2021). https://doi.org/10.1007/s10668-020-00910-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00910-y

Keywords

Navigation