Skip to main content

Advertisement

Log in

How Cost-Effective is a Mixed Policy Targeting the Management of Three Agricultural N-pollutants?

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper assesses the cost-effectiveness of a mixed policy in attempts to reduce the presence of three nitrogen pollutants: NO 3, N 2O, and NH 3. The policy under study combines a tax on nitrogen input and incentives promoting perennial crops assumed to require low input. We show that the mixed policy improves the cost-effectiveness of regulation with regard to nitrates, whereas no improvement occurs, except for a very low level of subsidy in some cases, for gas pollutants. A quantitative analysis provides an assessment of impacts in terms of land use, farmers’ income, and nitrogen losses throughout France and at river-basin scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. According to the latest greenhouse gas inventories by the European Environment Agency (2010), agricultural emissions represent about 10 % of the total EU emissions.

  2. 1074 for the EU-15 and 157 for France

  3. Following [13], we assume in our central set of simulations that livestock numbers are allowed to vary within +/- 15 % of the values reported in the FADN database.

  4. Miscanthus x giganteus is a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus.

References

  1. Addiscott, T. (1996). Fertilizers and nitrate leaching. Issues in Environmental Science and Technology, 5, 1–26.

    Article  CAS  Google Scholar 

  2. Aftab, A., Hanley, N., Baiocchi, G. (2010). Integrated regulation of nonpoint pollution: combining managerial controls and economic instruments under multiple environmental targets. Ecological Economics, 70(1), 24–33.

    Article  Google Scholar 

  3. Aftab, A., Hanley, N., Kampas, A. (2007). Co-ordinated environmental regulation: controlling non-point nitrate pollution while maintaining river flows. Environmental and Resource Economics, 38(4), 573–593.

    Article  Google Scholar 

  4. Balana, B. B., Vinten, A., Slee, B. (2011). A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications. Ecological Economics, 70(6), 1021–1031.

    Article  Google Scholar 

  5. Beale, C. V., & Long, S. P. (1995). Can perennial c4 grasses attain high efficiencies of radiant energy conversion in cool climates?Plant Cell & Environment, 18, 641–650.

    Article  Google Scholar 

  6. Berntsen, J., Petersen, B. M., Jacobsen, B. H., Olesen, J. E., Hutchings, N. (2003). Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 76(3), 817–839.

    Article  Google Scholar 

  7. Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., et al. (2003). An overview of the crop model. European Journal of agronomy, 18(3–4), 309–332.

    Article  Google Scholar 

  8. Brisson, N., Mary, B., Ripoche, D., Jeuffroy, M., Ruget, F., Nicoullaud, B., Gate, P., Devienne-Barret, F., Antonioletti, R., Durr, C., et al. (1998). Stics: a generic model for the simulation of crops and their water and nitrogen balances. i. theory and parameterization applied to wheat and corn. Agronomie, 18(5–6), 311–346.

    Article  Google Scholar 

  9. Cantelaube, P., Jayet, P.-A., Carré, F., Zakharov, P., Bamps, C. (2012). Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level. Land Use Policy, 29, 35–44.

    Article  Google Scholar 

  10. Chakir, R. (2009). Spatial downscaling of agricultural land-use data: an econometric approach using cross entropy. Land Economics, 85(2), 238.

    Google Scholar 

  11. Christian, D. G., Riche, A. B., Yates, N. E. (2008). Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Industrial Crops and Products, 28, 320–327.

    Article  Google Scholar 

  12. Clifton-Brown, J. C., Breuer, J., Jones, M. B. (2007). Carbon mitigation by the energy crop, miscanthus. Global Change Biology, 13, 2296–2307.

    Article  Google Scholar 

  13. De Cara, S., Houzé, M., Jayet, P. A. (2005). Methane and nitrous oxide emissions from agriculture in the EU: a spatial assessment of sources and abatement costs. Environmental and Resource Economics, 32, 551–583.

    Article  Google Scholar 

  14. De Cara, S., & Jayet, P.-A. (2000). Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France. European Review of Agricultural Economics, 27(3), 281–303.

    Article  Google Scholar 

  15. European Commission (2000). Water framework directive 60/2000/EC. Technical report, the European parliament and the council.

  16. European Union (2009). Decision on the effort of member states to reduce their greenhouse gas emissions to meet the community’s greenhouse gas emission reduction commitments up to 2020. Technical report, council of the European union 406/2009/EC,official journal of the European union, Brussels, Belgium, L140.

  17. Galko, E., & Jayet, P. (2011). Economic and environmental effects of decoupled agricultural support in the EU. Agricultural Economics, 42(5), 605–618.

    Article  Google Scholar 

  18. Godard, C., Roger-Estrade, J., Jayet, P., Brisson, N., Le Bas, C. (2008). Use of available information at a European level to construct crop nitrogen response curves for the regions of the EU. Agricultural Systems, 97(1–2), 68–82.

    Article  Google Scholar 

  19. Goetz, R. U., Schmid, H., Lehmann, B. (2006). Determining the economic gains from regulation at the extensive and intensive margins. European Review of Agricultural Economics, 33(1), 1–30.

    Article  Google Scholar 

  20. Helfand, G. W., & House, B. W. (1995). Regulating nonpoint source pollution under heterogeneous conditions. American Journal of Agricultural Economics, 77(4), 1024–1032.

    Article  Google Scholar 

  21. Jayet, P., & Petsakos, A. (2013). Evaluating the efficiency of a uniform n-input tax under different policy scenarios at different scales. Environmental Modeling and Assessment, 18(1), 57–72.

    Article  Google Scholar 

  22. Jorgensen, U. (1997). Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass & Bioenergy, 12, 155–169.

    Article  CAS  Google Scholar 

  23. Kahle, P., Beuch, S., Boelcke, B., Leinweber, P., Schulten, H. (2001). Cropping of miscanthus in Central Europe: biomass production and influence on nutrients and soil organic matter. European Journal of Agronomy, 15(3), 171–184.

    Article  CAS  Google Scholar 

  24. Lacroix, A., Beaudoin, N., Makowski, D. (2005). Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53(1), 115–127.

    Article  Google Scholar 

  25. Lankoski, J., & Ollikainen, M. (2008). Bioenergy crop production and climate policies: a von Thunen model and the case of reed canary grass in Finland. European Review of Agricultural Economics, 35(4), 519.

    Article  Google Scholar 

  26. Lankoski, J., & Ollikainen, M. (2011). Biofuel policies and the environment: do climate benefits warrant increased production from biofuel feedstocks?Ecological Economics, 70(4), 676–687.

    Article  Google Scholar 

  27. Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass & Bioenergy, 19(4), 209–227.

    Article  CAS  Google Scholar 

  28. Lewandowski, I., & Heinz, A. (2003). Delayed harvest of miscanthus influences of biomass quantity and environmental impacts of energy production. European Journal of Agronomy, 19(1), 45–63.

    Article  Google Scholar 

  29. Lewandowski, I., & Schmidt, U. (2006). Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agriculture Ecosystems & Environment, 112(4), 335–346.

    Article  Google Scholar 

  30. Mantineo, M., DAgosta, G., Copani, V., Patane, C., Cosentino, S. (2009). Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crops Research, 114(2), 204–213.

    Article  Google Scholar 

  31. Miguez, F. E., Villamil, M. B., Long, S. P., Bollero, G. A. (2008). Meta-analysis of the effects of management factors on Miscanthus x giganteus growth and biomass production. Agricultural and Forest Meteorology, 148, 1280–1292.

    Article  Google Scholar 

  32. Schou, J. S., Skop, E., Jensen, J. D. (2000). Integrated agri-environmental modelling: a cost-effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. Journal of Environmental Management, 58(3), 199–212.

    Article  Google Scholar 

  33. Shortle, J., & Horan, R. (2001). The economics of nonpoint pollution control. Journal of Economic Surveys, 15(3), 255–289.

    Article  Google Scholar 

  34. Shortle, J. S., Horan, R. D., Abler, D. G. (1998). Research issues in nonpoint pollution control. Environmental and Resource Economics, 11(3–4), 571–585.

    Article  Google Scholar 

  35. Tayot, X., Chartier, M., Varlet-Grancher, C., Lemaire, G. (1995). Potential above-ground dry matter production of miscanthusin north-central France compared to sweet sorghum. In Biomass for energy, environment, agriculture and industry (pp. 556–564). Oxford: Elsevier.

  36. Vleeshouwers, L. (1998). Potential yield of Miscanthus x giganteus in the netherlands. In: H. Kopetz, T. Weber, W. Palz, P. Chartier, G. Ferrero (Eds.), Proceedings of the 10th European conference and technology exhibition: biomass for energy and industry (pp. 1017–1019). Germany: Wurzburg.

Download references

Acknowledgments

This paper is based on research activities funded by PIREN-Seine, an interdisciplinary research programme dedicated to the study of the environment in the Seine river basin in France. We also kindly thank Susan Becker for editorial advice on English language use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Bourgeois.

Appendix: Map of French River Basins

Appendix: Map of French River Basins

Fig. 27
figure 27

French river basin map

5.1 N-loss emission functions regarding crops in France

Table 1 Nloss emission functions for each crop, j: [e i ] j (N)=[α i ] j N+[β i ] j ;i={N O 3,N 2 O,N H 3}

5.2 N-losses at the river-basin scale

Table 2 N loss emission functions for each crop, j: [e i ] j (N)=[α i ] j N+[β i ] j ;i={N O 3,N 2 O,N H 3}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourgeois, C., Fradj, N.B. & Jayet, PA. How Cost-Effective is a Mixed Policy Targeting the Management of Three Agricultural N-pollutants?. Environ Model Assess 19, 389–405 (2014). https://doi.org/10.1007/s10666-014-9401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9401-y

Keywords

Navigation