Skip to main content
Log in

Distribution and accumulation ability of heavy metals in bivalve shells and associated sediment from Red Sea coast, Egypt

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Concentrations of Fe, Mn, Cu, Zn, Pb, Ni, Cd, and Co in molluscan shells and associated surface sediments from four sites on the Gulf of Aqaba and Red Sea coasts, Egypt, were measured by using atomic absorption spectrophotometer. The results revealed an apparent difference in the ability of each species regarding accumulating heavy metals in its shell. These results showed that Tridacna squamosa has the highest accumulation ability for Pb, Ni, and Zn, and Chama pacifica has the highest accumulation capability for Co and Cd, whereas Periglypta reticulata has the highest accumulation ability for Cu. The results also showed that there is a positive correlation between the concentration of Cu, Zn, Pb, and Ni and the size of shell. Simultaneously, there is a negative correlation with Fe, Mn, Co, and Cd. The results of bio-accumulation of molluscan species were consistent with the enrichment factors for sediments, where the Hurghada site was extremely enriched with Pb and very enriched with Cu, Zn, and Ni. Moreover, the Quseir site was extremely enriched with Cd and very enriched with Pb. The Um al-Sid site was severe enriched with Cd and Pb. Meanwhile, the Ras Mohamed site was severe enriched with Pb and nearly unpolluted with other metals. Heavy metals can enter the studied ecosystem by terrigenous and anthropogenic sources as a weathering process of the nearby beaches and mountains, ship maintenance, industrial activities, wastewater, and traffic exhaust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acevedo-Figueroa, D., Jimenez, B., & Rodrigues-Sierra, C. (2006). Trace metals in sediments of two estuarine lagoons from Puerto Rico. Environmental Pollution, 141, 336–342.

    CAS  Google Scholar 

  • Amiard, J., Amiard-Triquet, C., Berthet, B., & Metayer, C. (1986). Contribution to the exotoxecological study of cadmium, lead, copper and zinc in the mussel Mytilus edulis. Marine Biology, 90, 425–431.

    CAS  Google Scholar 

  • Ananthan, G., Sampathkumar, P., Palpandi, C., & Kannan, L. (2006). Distribution of heavy metals in velar estuary, southeast coast of India. Journal of Ecotoxicology and Environmental Monitoring, 16(2), 185–191.

    CAS  Google Scholar 

  • Antit, M., Daoulatli, A., Rueda, J., & Salas, C. (2013). Temporal variation of the algae-associated molluscan assemblage of artificial substrata in Bay of Tunis. Mediterranean Marine Science, 14(2), 390–402.

    Google Scholar 

  • Boehme, S., & Panero, M. (2003). Pollution prevention and management strategies for cadmium in the New York. New Jersey Harbor.

  • Borja, A., Franco, J., & Landa, V. (2000). A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 40(12), 1100–1114.

    CAS  Google Scholar 

  • Bosch, D., Dance, S., Moolenbeek, R., & Oliver, P. (1995). Seashells of Eastern Arabia. Motivate Publ., 296p.

  • Brown, B., Tudhope, A., Le Tissier, M., & Scoffin, T. (1991). A novel mechanism for iron incorporation into coral skeletons. Coral Reefs, 10, 211–215.

    Google Scholar 

  • Cameron, R.E. (1992). Guide to site and soil description for hazardous waste site characterization. Metals, vol. 1. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Las Vegas, NV.

  • Chow, T., Snyder, H., & Snyder, C. (1976). Mussels (Mytilus sp.) as an indicator of lead pollution. Science of total Environment, 6, 55–63.

    CAS  Google Scholar 

  • Dar, M., Belal, A., & Madkour, A. (2018). The differential abilities of some molluscs to accumulate heavy metals within their shells in the Timsah and the Great Bitter lakes, Suez Canal, Egypt. Egyptian Journal of Aquatic Research, 44, 291–298.

    Google Scholar 

  • de Mora, S., Fowler, S., Wyse, E., & Azemard, S. (2004). Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Marine Pollution Bulletin, 49, 410–424.

    Google Scholar 

  • El-Sorogy, A., El Kammar, A., Ziko, A., Aly, M., & Nour, H. (2013). Gastropod shells as pollution indicators, Red Sea coast, Egypt. Journal of African Earth Science, 87, 93–99.

    CAS  Google Scholar 

  • Forstner, U., Ahlf, W., & Calmano, W. (1993). Sediment quality objectives and criteria development in Germany. Water Science Technology, 28, 307–316.

    Google Scholar 

  • Giusti, L., Williamson, A., & Mistry, A. (1999). Biologically available trace metals in Mytilus edulis from the coast of Northeast England. Environmental International, 25(8), 969–981.

    CAS  Google Scholar 

  • Gobas, F., & Morrison, H. (2000). Bioconcentration and biomagnification in the aquatic environment. In R. S. Boethling & D. Mackay (Eds.), Handbook of property estimation methods for chemicals: environmental and health sciences (p. 491P). Boca Raton: CRC Press.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. a sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  • Hamed, M., & Emara, A. (2006). Marine molluscs as biomonitors for heavy metal levels in the Gulf of Suez, Red Sea. Journal of Marine Systems, 60, 220–234.

    Google Scholar 

  • Huanxin, W., Lejun, Z., & Presley, B. J. (2000). Bioaccumulation of heavy metals in oyster (Crassostrea virginica) tissue and shell. Environmental Geology, 39(11), 1216–1226.

    CAS  Google Scholar 

  • Irwin, R., Mouwerik, M., Stevens, L., Seese, M., & Basham, W. (1997). Environmental contaminants encyclopedia: zinc entry. Fort Collins: National Park Service, Water Resources Division http://www.Nature.nps.gov/hazardssafety/toxic/zinc.pdf.

    Google Scholar 

  • Joiris, C. R., & Azokwu, M. I. (1999). Heavy metals in the bivalve Anadara (Senilia) senilis from Nigeria. Marine Pollution Bulletin, 38(7), 618–622.

    CAS  Google Scholar 

  • Kesavan, K., Murugan, A., Venkatesan, & Vijay Kumar, B. (2013). Heavy metal accumulation in molluscs and sediment from Uppanar Estuary, Southeast coast of India. An International Journal of Marine Sciences, 29(2), 15–21.

    Google Scholar 

  • Koulouri, P., Dounas, C., Arvanitidis, C., & Koutsoubas, D. (2006). Molluscan diversity along a Mediterranean soft-bottom sublittoral Ecotone. Scientia Marina, 70(4), 573–583.

    CAS  Google Scholar 

  • Lau, S., Mohamed, M., Tan Chi Yen, A., & Su’ut, S. (1998). Accumulation of heavy metals in freshwater molluscs. The Science of the Total Environment, 214, 113–121.

    CAS  Google Scholar 

  • Lin, Y., Chang-Chien, G., Chiang, P., Chen, W., & Lin, Y. (2013). Multivariate analysis of heavy metal contaminations in seawater and sediments from a heavily industrialized harbor in Southern Taiwan. Marine Pollution Bulltein, 76, 266–275.

    CAS  Google Scholar 

  • Luoma, S., & Jenne, E. (1976). Factors affecting the availability of sediment-bound cadmium to the estuarine, deposit-feeding clam, Macoma balttn'ca. In: Proceedings, Fourth National Symposium on Radioecology. Ed by C. E. Cushing. Ecol. Soc. Am., Stroudsburg, Pa, 283–290.

  • Madkour, H. A. (2005). Distribution and relationships of heavy metals in the giant clam (Tridacna maxima) and associated sediments from different sites in the Egyptian Red Sea coast. Egyptian Journal of Aquatic Research, 31(2), 45–59.

    CAS  Google Scholar 

  • Mansour, A., Nawar, A., & Mohamed, A. (2000). Geochemistry of coastal marine sediments and their contaminant metals, Red Sea, Egypt: a legacy for the future and a tracer to modern sediment dynamics. Sedimentology of Egypt, 13, 171–185.

    Google Scholar 

  • Mansour, A., Nawar, A., & Madkour, H. (2011). Metal pollution in marine sediments of selected harbours and industrial areas along the Red Sea coast of Egypt. Ann. Naturhist. Mus. Wien Ser. A, 113, 225–244.

    Google Scholar 

  • Martincie, D., Nurnberg, H., Stoeppler, M., & Branica, M. (1984). Bioaccumulation of heavy metals by bivalves from lim fjord (North Adriatic Sea). Marine Biology, 81, 177–188.

    Google Scholar 

  • Miner, R.W. (1950) Field book of seashore life, New York.

  • Moore, R. C. (Ed.), (1969). Treatise on invertebrate paleontology. Part N. (Bivalvia). Geol. Soc. Amer., Univ. Kansas Press. 480p.

  • Muller, G. (1981). Die schwermetallbelastung der sedimenten des neckars und seiner nebenflusse. Chemiker-Zeitung, 6, 157–164.

    Google Scholar 

  • Mulligan, C., Yong, R., & Gibbs, B. (2001). Remediation technologies for metal contaminated soils and groundwater: an evaluation. Engineering Geology, 60, 193–207.

    Google Scholar 

  • Nour, H. E. (2019a). Assessment of heavy metals contamination in surface sediments of Sabratha, Northwest Libya. Arabian Journal of Geosciences, 12, 177–186.

    Google Scholar 

  • Nour, H. E. (2019b). Distribution, ecological risk, and source analysis of heavy metals in recent beach sediments of Sharm El-sheikh, Egypt. Environmental Monitoring and Assessment, 191, 546. https://doi.org/10.1007/s10661-019-7728-1.

    Article  CAS  Google Scholar 

  • Nour, H. E., & El-Naggar, W. (2007). Heavy metals distribution in molluscan shells in northern Safaga bay, Red Sea coast, Egypt: a tool for environmental monitoring. MERC, Earth Science Series, 21, 99–114.

    Google Scholar 

  • Nour, H. E., & Nouh, E. (2020). Using coral skeletons for monitoring of heavy metals pollution in the Red Sea coast, Egypt. Arabian Journal of Geosciences (accepted). https://doi.org/10.1007/s12517-020-05308-8.

  • Nour, H. E., El-Sorogy, A., Abdel-Wahab, M., Almadani, S., Al Faifi, H., & Youssef, M. (2018). Assessment of sediment quality using different pollution indicators and statistical analysis, Hurghada area, Red Sea Coast, Egypt. Marine Pollution Bulletin, 133, 808–813.

    CAS  Google Scholar 

  • Nour, H. E., El-Sorogy, A., Abd El-Wahab, M., Nouh, E., Mohamaden, M., & Al-Kahtany, K. (2019). Contamination and ecological risk assessment of heavy metals pollution from the Shalateen coastal sediments, Red Sea, Egypt. Marine Pollution Bulletin, 144, 167–172.

    CAS  Google Scholar 

  • Oliver, P. G. (1992). Bivalved Seashells of the Red Sea.- Verlag Christa Hemmen, Wiesbaden, F.R.G. and National Museum of Wales, Wales, U.K., 320 pp.

  • Oregioni, B., & Astone, S. (1984). The determination of selected trace metals in marine sediments by flameless/flame atomic absorption spectrophotometer; IAEA, Monaco laboratory (Internal report). (cited from reference methods on pollution studies N. 38, UNEP. 1986).

  • Perez-Lopez, M., Alonso, J., Novoa-Valinas, M., & Melgar, M. (2003). Assessment of heavy metal contamination of seawater and marine limpet, Patella vulgata L., from Northwest Spain. Journal of Environmental Science and Health, A38(12), 2845–2856.

    CAS  Google Scholar 

  • Phillips, D., & Rainbow, P. (1994). Biomonitoring of trace aquatic contaminants (2nd ed.pp. 79–132). London: Chapman & Hall.

    Google Scholar 

  • Ponnusamy, K., Sivaperumal, P., Suresh, M., Arularasan, S., Munilkumar, S., & Pal, A. (2014). Heavy metal concentration from biologically important edible species of bivalves (Perna viridis and Modiolus metcalfei) from Vellar Estuary, South East Coast of India. Journal of Aquaculture Research & Development, 5, 5. https://doi.org/10.4172/2155-9546.1000258.

    Article  CAS  Google Scholar 

  • Ramadan, S., & Shata, A. (1993). Biogeochemical studies on the mollusk bivalve Anadara diluvii (Lamarck, 1805) (Pteriomorpha Arcidae). Bulletin of National Institute of Oceanography and Fishers, 19, 145–157.

    Google Scholar 

  • Reimann, C., & de Caritat, P. (1998). Chemical elements in the environment. Fact sheets for the geochemist and environmental scientist. Ix-398 pp. Berlin, Heidelberg, New York, London, Paris.

  • Sarkar, S., Cabral, H., Chatterjee, M., Cardoso, I., Bhattacharya, A., Satpathy, K., & Alam, M. (2008). Biomonitoring of heavy metals using the bivalve molluscs in Sunderban Mangrove Wetland, Northeast Coast of Bay of Bengal (India): possible risks to human health. Clean, 36(2), 187–194.

    CAS  Google Scholar 

  • Shata, A., & Hassan, A. (2000). Geochemical and environmental studies on some bivalves inhabiting the intertidal zone surrounding the Eastern Harbor of Alexandria, Egypt. Journal Aquatic of Biology & Fishers, 4(3), 147–171.

    Google Scholar 

  • Simex, S., & Helz, G. (1981). Regional geochemistry of trace elements in Checapeake Bay. Environmental Geology, 3, 315–323.

    Google Scholar 

  • Spaargaren, D., & Ceccaldi, H. (1984). Some relations between the elementary chemical composition of marine organisms and that of sea water. Oceanologica Acta, 7, 63–76.

    CAS  Google Scholar 

  • Szefer, P., Glasby, G., Pempkowiak, J., & Kaliszan, R. (1995). Extraction studies of heavy metal pollutants in surficial sediments from the southern Baltic Sea of Poland. Chemical Geology, 120, 111–126.

    CAS  Google Scholar 

  • Szefer, P., Ikuta, K., Kushiyama, S., Frelek, K., & Geldon, J. (1997). Distribution and association of trace metals in soft tissue and byssus of Mytilus edulis from the east coast of Kyushu Island, Japan. Archives of Environmental Contamination and Toxicology, 32, 184–190.

    CAS  Google Scholar 

  • Underwood, E. J. (1977). Trace elements in human and animal nutrition (4th ed.p. 543). New York: Academic Press.

    Google Scholar 

  • Usero, J., Gonzalez-Regaldo, I., & Gracia. (1997). Trace metals in bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic coast of Southern Spain. Environmental International, 23, 291–298.

    CAS  Google Scholar 

  • Wedepohl, K. K. (1978). Handbook of geochemistry. Vol.2, part 5. 266 figs., 576 tables, 1546 pages. Berlin, Heridelberg, New York: springer-Verlag, ISBN3 540 090223.

  • WHO. (2004). Guidelines for drinking water quality (3rd ed.), ISBN: 92–4–154638-7,516.

  • Yang, Z., Lu, W., Long, Y., Bao, X., & Yang, Q. (2011). Assessment of heavy metals contamination in urban topsoil from Changchun City, China. Journal of Geochemical Exploration, 108, 27–38.

    CAS  Google Scholar 

  • Ziko, A., El-Sorogy, A., Aly, M., & Nour, H. E. (2001). Shells as pollution indicators, Red Sea coast, Egypt. Egyptian Journal of Paleontology, 1, 97–113.

    Google Scholar 

Download references

Acknowledgments

I would like to extend my sincere thanks to Dr. E. Nouh, Dr. A. Attya, Mr. M. Aljilani, and South Sinai Protectorates of Egyptian Environmental Affairs Agency for their generosity and help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdy El Sayed Nour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nour, H.E.S. Distribution and accumulation ability of heavy metals in bivalve shells and associated sediment from Red Sea coast, Egypt. Environ Monit Assess 192, 353 (2020). https://doi.org/10.1007/s10661-020-08285-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08285-3

Keywords

Navigation