Skip to main content
Log in

Monitoring chlorine residual and trihalomethanes in the chlorinated seawater effluent of a nuclear power plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Periodic sampling of the discharged seawater effluent from Madras Atomic Power Station (Kalpakkam, Tamil Nadu, India) was carried out during 2013–2017 to assess the residual chlorine and trihalomethanes content in the outfall discharge water. The variations in dissolved oxygen, temperature, and pH were correlated with the residual chlorine and trihalomethanes content in the discharged effluent. The difference in temperature (ΔT) between influent and effluent seawater samples ranged from 1.95 to 11.0 °C (6.47 ± 1.87). More than 95% of the ΔT values were within the guideline value of 7 °C. The discharge water was associated with a marginal reduction in dissolved oxygen and a marginal increase in conductivity values. The total residual chlorine content in the discharged seawater at outfall ranged from 0.06 to 0.42 (0.16 ± 0.08) mg/L, which was within the stipulated values of 0.5 mg/L. Trihalomethanes values ranged from 0.04 to 65.03 (13.06 ± 14.38) μg/L. In addition to bromoform as the major constituent, occurrence of significant amount chloroform of was occasionally observed in the discharge water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Wahab, A. (2010). Formation of trihalomethanes during seawater chlorination. Journal of Environmental Protection, 01(04), 456–465. https://doi.org/10.4236/jep.2010.14053.

    Article  CAS  Google Scholar 

  • Agus, E., & Sedlak, D. L. (2010). Formation and fate of chlorination by-products in reverse osmosis desalination systems. Water Research, 44(5), 1616–1626. https://doi.org/10.1016/j.watres.2009.11.015.

    Article  CAS  Google Scholar 

  • Al-Bloushi, M., Saththasivam, J., Jeong, S., Amy, G. L., & Leiknes, T. O. (2017). Effect of organic on chemical oxidation for biofouling control in pilot-scale seawater cooling towers. Journal of Water Process Engineering, 20(September), 1–7. https://doi.org/10.1016/j.jwpe.2017.09.002.

    Article  Google Scholar 

  • Batterman, S., Zhang, L., Wang, S., & Franzblau, A. (2002). Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Science of the Total Environment, 284(1–3), 237–247. https://doi.org/10.1016/S0048-9697(01)00890-7.

    Article  CAS  Google Scholar 

  • Boudjellaba, D., Dron, J., Revenko, G., Démelas, C., & Boudenne, J. L. (2016). Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents. Science of the Total Environment, 541, 391–399. https://doi.org/10.1016/j.scitotenv.2015.09.046.

    Article  CAS  Google Scholar 

  • Chavan, P., Kumar, R., Kirubagaran, R., & Venugopalan, V. P. (2017). Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: damage and post-exposure recovery. Ecotoxicology and Environmental Safety, 144(June), 97–106. https://doi.org/10.1016/j.ecoenv.2017.06.001.

    Article  CAS  Google Scholar 

  • Connell, D. W., & Miller, G. J. (1984). Chemistry and ecotoxicology of pollution. New Jersey, United States:Wiley.

  • Cortés, C., & Marcos, R. (2018). Genotoxicity of disinfection byproducts and disinfected waters: a review of recent literature. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 831, 1–12. https://doi.org/10.1016/j.mrgentox.2018.04.005.

    Article  CAS  Google Scholar 

  • Dalvi, A. G. I., Al-Rasheed, R., & Javeed, M. A. (2000). Haloacetic acids (HAAs) formation in desalination processes from disinfectants. Desalination, 129(3), 261–271. https://doi.org/10.1016/S0011-9164(00)00066-7.

    Article  CAS  Google Scholar 

  • Ebenezer, V., Nancharaiah, Y. V., & Venugopalan, V. P. (2012). Chlorination-induced cellular damage and recovery in marine microalga, Chlorella salina. Chemosphere, 89(9), 1042–1047. https://doi.org/10.1016/j.chemosphere.2012.05.067.

    Article  CAS  Google Scholar 

  • Fabbricino, M., & Korshin, G. V. (2005). Formation of disinfection by-products and applicability of differential absorbance spectroscopy to monitor halogenation in chlorinated coastal and deep ocean seawater. Desalination, 176(1–3 SPEC. ISS), 57–69. https://doi.org/10.1016/j.desal.2004.10.026.

    Article  CAS  Google Scholar 

  • Fam, S., & Stenstrom, M. K. (1987). Precursors of non-volatile chlorination by-products. Journal (Water Pollution Control Federation). Water Environment Federation. https://doi.org/10.2307/25043416.

  • Gang, D., Clevenger, T. E., & Banerji, S. K. (2003). Relationship of chlorine decay and THMs formation to NOM size. Journal of Hazardous Materials, 96(1), 1–12. https://doi.org/10.1016/S0304-3894(02)00164-4.

    Article  CAS  Google Scholar 

  • Golfinopoulos, S. K., & Arhonditsis, G. B. (2002). Quantitative assessment of trihalomethane formation using simulations of reaction kinetics. Water Research, 36(11), 2856–2868.

    Article  CAS  Google Scholar 

  • Hansen, K. M. S., Willach, S., Antoniou, M. G., Mosbæk, H., Albrechtsen, H.-J., & Andersen, H. R. (2012). Effect of pH on the formation of disinfection byproducts in swimming pool water - is less THM better? Water Research, 46(19), 6399–6409. https://doi.org/10.1016/J.WATRES.2012.09.008.

    Article  CAS  Google Scholar 

  • Hong, H., Yan, X., Song, X., Qin, Y., Sun, H., Lin, H., Chen, J., & Liang, Y. (2017). Bromine incorporation into five DBP classes upon chlorination of water with extremely low SUVA values. Science of the Total Environment, 590–591, 720–728. https://doi.org/10.1016/j.scitotenv.2017.03.032.

    Article  CAS  Google Scholar 

  • Hung, Y.-C., Waters, B. W., Yemmireddy, V. K., & Huang, C.-H. (2017). pH effect on the formation of THM and HAA disinfection byproducts and potential control strategies for food processing. Journal of Integrative Agriculture, 16(12), 2914–2923. https://doi.org/10.1016/S2095-3119(17)61798-2.

    Article  CAS  Google Scholar 

  • Jenner, H. A., Taylor, C. J. L., Van Donk, M., & Khalanski, M. (1997). Chlorination by-products in chlorinated cooling water of some European coastal power stations. Marine Environmental Research, 43(4), 279–293. https://doi.org/10.1016/S0141-1136(96)00091-8.

    Article  CAS  Google Scholar 

  • Khalanski, M., & Jenner, H. A. (2012). Chlorination chemistry and ecotoxicology of the marine cooling water systems. In Operational and Environmental Consequences of Large Industrial Cooling Water Systems (Vol. 9781461416) (pp. 183–226). Boston: Springer US. https://doi.org/10.1007/978-1-4614-1698-2_9.

    Chapter  Google Scholar 

  • Lee, S., Guo, H., Lam, S. M., & Lau, S. L. (2004). Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research, 94(1), 47–56. https://doi.org/10.1016/S0013-9351(03)00067-7.

    Article  CAS  Google Scholar 

  • Liu, R., Tian, C., Hu, C., Qi, Z., Liu, H., & Qu, J. (2018). Effects of bromide on the formation and transformation of disinfection by-products during chlorination and chloramination. Science of the Total Environment, 625, 252–261. https://doi.org/10.1016/j.scitotenv.2017.12.253.

    Article  CAS  Google Scholar 

  • Masilamoni, J. G., Jesudoss, K. S., Nandakumar, K., Satpathy, K. K., Nair, K. V. K., & Azariah, J. (2000). Jellyfish ingress: a threat to the smooth operation of coastal power plants. Current Science, 79(5), 567–569. https://doi.org/10.2307/24105071.

    Article  Google Scholar 

  • Mohanty, A.K.; Prasad M.V.R.; and Satpathy, K. K. (2008). Alteration in physico-chemical properties of the cooling water by the macrofouling community in the intake tunnel of a coastal power plant. In Proceedings of OPENWAC (pp. 324–328), Kalpakkam, India.

  • Nair, K. V. K. (1999). Marine biofouling and its control with particular reference to condenser-cooling circuits of power plants - an overview. Journal of the Indian Institute of Science, 79(6), 497–511.

    CAS  Google Scholar 

  • Nikolaou, A. D., Golfinopoulos, S. K., Lekkas, T. D., & Arhonditsis, G. B. (2004). Factors affecting the formation of organic by-products during water chlorination: a bench-scale study. Water, Air, and Soil Pollution, 159(1), 357–371. https://doi.org/10.1023/B:WATE.0000049189.61762.61.

    Article  CAS  Google Scholar 

  • Padhi, R. K., Sowmya, M., Mohanty, A. K., Bramha, S. N., & Satpathy, K. K. (2012). Formation and speciation characteristics of brominated trihalomethanes in seawater chlorination. Water Environment Research, 84, 2003–2009. https://doi.org/10.2175/106143012X13415215906735.

    Article  CAS  Google Scholar 

  • Padhi, R. K., Subramanian, S., & Satpathy, K. K. (2019). Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2- and ClO3-) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540–550. https://doi.org/10.1016/j.chemosphere.2018.11.100.

    Article  CAS  Google Scholar 

  • Pan, Y., Zhang, X., & Li, Y. (2016). Identification, toxicity and control of iodinated disinfection byproducts in cooking with simulated chlor(am)inated tap water and iodized table salt. Water Research, 88, 60–68. https://doi.org/10.1016/J.WATRES.2015.10.002.

    Article  CAS  Google Scholar 

  • Parinet, J., Tabaries, S., Coulomb, B., Vassalo, L., & Boudenne, J.-L. (2012). Exposure levels to brominated compounds in seawater swimming pools treated with chlorine. Water Research, 46(3), 828–836. https://doi.org/10.1016/j.watres.2011.11.060.

    Article  CAS  Google Scholar 

  • Plewa, M. J., Kargalioglu, Y., Vankerk, D., Minear, R. A., & Wagner, E. D. (2002). Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environmental and Molecular Mutagenesis, 40(2), 134–142. https://doi.org/10.1002/em.10092.

    Article  CAS  Google Scholar 

  • Poornima, E. H., Rajadurai, M., Rao, V. N. R., Narasimhan, S. V., & Venugopalan, V. P. (2006). Use of coastal waters as condenser coolant in electric power plants: Impact on phytoplankton and primary productivity. Journal of Thermal Biology, 31(7), 556–564. https://doi.org/10.1016/J.JTHERBIO.2006.05.009.

    Article  CAS  Google Scholar 

  • Rajagopal, S., Jenner, H. A., & Venugopalan, V. P. (2012). In S. Rajagopal, H. A. Jenner, & V. P. Venugopalan (Eds.), Operational and environmental consequences of large industrial cooling water systems. Boston: Springer. https://doi.org/10.1007/978-1-4614-1698-2.

    Chapter  Google Scholar 

  • Rajamohan, R., Vinnitha, E., Venugopalan, V. P., & Narasimhan, S. V. (2007). Chlorination by-products and their discharge from the cooling water system of a coastal electric plant. Current Science, 93(11), 1608–1612.

    CAS  Google Scholar 

  • Rice, E. W., Baird, R. B., Eaton, A. D., Clesceri, L. S., (2012). Standard methods for the examination of water and wastewater, 22nd Edition. Denver, USA: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Ristoiu, D., von Gunten, U., Mocan, A., Chira, R., Siegfried, B., Haydee Kovacs, M., & Vancea, S. (2009). Trihalomethane formation during water disinfection in four water supplies in the Somes river basin in Romania. Environmental Science and Pollution Research International, 16(Suppl 1), S55–S65. https://doi.org/10.1007/s11356-009-0100-1.

    Article  CAS  Google Scholar 

  • Sahu, G., Satpathy, K. K., Mohanty, A. K., & Sarkar, S. K. (2012). Variations in community structure of phytoplankton in relation to physicochemical properties of coastal waters, southeast coast of India. Indian Journal of Marine Sciences, 41(3), 223–241.

    CAS  Google Scholar 

  • Saravanane, N., Satpathy, K. K., Nair, K. V. K., & Durairaj, G. (1998). Preliminary observations on the recovery of tropical phytoplankton after entrainment. Journal of Thermal Biology, 23(2), 91–97. https://doi.org/10.1016/S0306-4565(98)00010-2.

    Article  Google Scholar 

  • Satpathy, K. K. (1999). Effect of biofouling on the cooling water quality of a nuclear power plant. Bulletin of Electrochemistry, (15), 143–147.

  • Satpathy, K. K., Mohanty, A. K., Sahu, G., Biswas, S., Prasad, M. V. R., & Slvanayagam, M. (2010a). Biofouling and its control in seawater cooled power plant cooling water system - a review. In P. Isvetkov (Ed.), Nuclear power (pp. 191–243). Rijeka: IntechOpen.

    Google Scholar 

  • Satpathy, K. K., Mohanty, A. K., Sahu, G., Sarkar, S. K., Natesan, U., Venkatesan, R., & Prasad, M. V. R. (2010b). Variations of physicochemical properties in Kalpakkam coastal waters, east coast of India, during southwest to northeast monsoon transition period. Environmental Monitoring and Assessment, 171(1–4), 411–424. https://doi.org/10.1007/s10661-009-1287-9.

    Article  CAS  Google Scholar 

  • Stemmler, I., Hense, I., & Quack, B. (2015). Marine sources of bromoform in the global open ocean-global patterns and emissions. Biogeosciences, 12, 1967–1981. https://doi.org/10.5194/bg-12-1967-2015.

    Article  CAS  Google Scholar 

  • Sun, Y. X., Wu, Q. Y., Hu, H. Y., & Tian, J. (2009). Effect of bromide on the formation of disinfection by-products during wastewater chlorination. Water Research, 43(9), 2391–2398. https://doi.org/10.1016/j.watres.2009.02.033.

    Article  CAS  Google Scholar 

  • Talley, L. D., Pickard, G. L., Emery, W. J., & Swift, J. H. (2011). Descriptive physical oceanography. Cambridge, United States: Academic Press.

  • Taylor, C. J. L. L. (2006). The effects of biological fouling control at coastal and estuarine power stations. Marine Pollution Bulletin, 53(1), 30–48. https://doi.org/10.1016/j.marpolbul.2006.01.004.

    Article  CAS  Google Scholar 

  • Valiela, I. (1995). Marine ecological processes. New York: Springer.

  • Venkatnarayanan, S., Sriyutha Murthy, P., Nancharaiah, Y. V., Kirubagaran, R., & Venugopalan, V. P. (2017). Chlorination induced damage and recovery in marine diatoms: Assay by SYTOX® Green staining. Marine Pollution Bulletin, 124(2), 819–826. https://doi.org/10.1016/j.marpolbul.2016.12.059.

    Article  CAS  Google Scholar 

  • Venugopalan, V. P., & Nair, K. V. K. (1990). Effect of biofouling community on cooling water characteristics of a coastal power plant. Indian Journal of Marine Science, 19, 294–296.

    Google Scholar 

  • Venugopalan, V. P., Rajagopal, S., & Jenner, H. A. (2012). Operational and environmental issues relating to industrial cooling water systems: an overview. In Operational and environmental consequences of large industrial cooling water systems (pp. 1–12). Boston: Springer US. https://doi.org/10.1007/978-1-4614-1698-2_1.

    Chapter  Google Scholar 

  • White, G. C. (1986). The handbook of chlorination. New York: Van Nostrand Reinhold Company.

  • WHO (2011). WHO guidelines for drinking-water quality-4th edition. , WHO chronicle 1–564. doi:https://doi.org/10.1016/S1462-0758(00)00006-6.

    Google Scholar 

  • Yang, X., Shang, C., & Huang, J. C. (2005). DBP formation in breakpoint chlorination of wastewater. Water Research, 39(19), 4755–4767. https://doi.org/10.1016/j.watres.2005.08.033.

    Article  CAS  Google Scholar 

  • Ye, B., Wang, W., Yang, L., & Wei, J. (2009). Factors influencing disinfection by-products formation in drinking water of six cities in China. Journal of Hazardous Materials, 171(1–3), 147–152. https://doi.org/10.1016/j.jhazmat.2009.05.117.

    Article  CAS  Google Scholar 

  • Zhang, X. l., Yang, H. w., Wang, X. m., Karanfil, T., & Xie, Y. F. (2015). Trihalomethane hydrolysis in drinking water at elevated temperatures. Water Research, 78, 18–27. https://doi.org/10.1016/j.watres.2015.03.027.

    Article  CAS  Google Scholar 

  • Zhao, R. S., Wang, X. T., Wei, A. X., & Xu, X. B. (2004). Determination of trihalomethanes in drinking water from Beijing, People’s Republic of China. Bulletin of Environmental Contamination and Toxicology, 73, 111–116. https://doi.org/10.1007/s00128-004-0401-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Director, SQRMG, IGCAR, and Director, IGCAR, Kalpakkam for their constant inspiration and support in the pursuit of environmental research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Padhi or K. K. Satpathy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padhi, R.K., Subramanian, S., Mohanty, A.K. et al. Monitoring chlorine residual and trihalomethanes in the chlorinated seawater effluent of a nuclear power plant. Environ Monit Assess 191, 471 (2019). https://doi.org/10.1007/s10661-019-7611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7611-0

Keywords

Navigation