Skip to main content

Advertisement

Log in

Soil nutrients status affected by simple and enriched biochar application under salinity conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In order to study the effect of biochar application as simple and enriched, on the soil nutrients status in the salinity conditions, a research was conducted as a factorial arrangement based on completely randomized design (CRD) with three replicates. The biochar (grape pruning residues) was applied in three levels (0, 2% biochar, and 2% enriched biochar by rock phosphate and cow manure). Also, the salinity treatment was considered in three levels (2, 4.5, and 9 dSm−1). After treating the soil, it was incubated in polyethylene containers for a 70-day period at 25 °C and 70% field capacity moisture regime. The results showed that salinity significantly affected the soil pH, electrical conductivity (EC), calcium, magnesium, sodium, basal respiration, and nitrifying bacteria frequency (P < 0.001) and chloride concentration (P < 0.01). Also, the biochar significantly affected the pH, organic carbon, concentration of total nitrogen, phosphorous, solution potassium, sodium, iron, zinc, copper, basal respiration, and nitrifying bacteria frequency (P < 0.001) of the soil. The interaction effect of biochar and salinity levels was significant on soil sodium concentration (P < 0.01) and pH (P < 0.05). In comparison with the control treatment, the enriched biochar, decreased soil pH (about 1.4%) and increased the phosphorous, iron, and zinc up to 36%, 29%, and 36%, respectively and simple biochar increased the Nitrogen and Potassium up to 46% and 48%, respectively. In general, it was concluded that both types of the biochars lowered the sodium concentration of the soil in different salinity levels due to high potential of biochar for sodium absorption which this ability may be considered in saline soils remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, T., Rizwan, M., Ali, S., Adrees, M., Zia-ur-Rehman, M., Qayyum, M. F., Ok, Y. S., & Murtaza, G. (2017). Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research, 25(26), 25668–25680.

    Google Scholar 

  • Akhtar, M., Hussain, F., Ashraf, M. Y., Qureshi, T. M., Akhter, J., & Awan, A. R. (2012). Influence of salinity on nitrogen transformations in soil. Communications in Soil Science and Plant Analysis, 43(12), 1674–1683.

    CAS  Google Scholar 

  • Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61–68.

    Google Scholar 

  • Amini, S. (2015). Carbon dynamics in salt-affected soils (Doctoral dissertation). Retrieved from https://www120.secure.griffith.edu.au/rch/file/c684fcd1-4977-4a51-b6d8-0f0a030c9f45/1/Amini_2015_02Thesis.pdf.

  • Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils, reclamation, carbon dynamics, and biochar: a review. Journal of Soils and Sediments, 16(3), 939–953.

    CAS  Google Scholar 

  • Anderson, J. P. E. (1982). Soil respiration. In A. L. Page & R. H. Miller (Eds.), Methods of soil analysis. Part 2, Chemical and microbiological properties (pp. 831–871). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Beesley, L., Moreno-Jiménez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.

    CAS  Google Scholar 

  • Bhaduri, D., Saha, A., Desai, D., & Meena, H. N. (2016). Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere, 148, 86–98.

    CAS  Google Scholar 

  • Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 1085–1121). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Bridle, T. R., & Pritchard, D. (2004). Energy and nutrient recovery from sewage sludge via pyrolysis. Water Science and Technology, 50(9), 169–175.

    CAS  Google Scholar 

  • Chaganti, V. N., Crohn, D. M., & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158, 255–265.

    Google Scholar 

  • Chan, K. Y., & Xu, Z. H. (2009). Biochar-nutrient properties and their enhancement (chapter 5). In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management Science, Technology and Implementation (p. 67). London, UK: Earthscan.

    Google Scholar 

  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46(5), 437–444.

    Google Scholar 

  • Chao-Yin, D., Yao-Hu, K., Shu-Qin, W., & Wei, H. (2011). Soil salinity changes under cropping with Lycium barbarum L. and irrigation with saline-sodic water. Pedosphere, 21(4), 539–548.

    Google Scholar 

  • Chen, B., Zhou, D., & Zhu, L. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    CAS  Google Scholar 

  • Chen, M., Kang, Y. H., Wan, S. Q., & Liu, S. P. (2009). Drip irrigation with saline water for oleic sunflower (Helianthus annuus L.). Agricultural Water Management, 96, 1766–1772.

    Google Scholar 

  • Cheng, Y., Cai, Z. C., Chang, S. X., Wang, J., & Zhang, J. B. (2012). Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils, 48(8), 941–946.

    CAS  Google Scholar 

  • Chia, C. H., Singh, B. P., Joseph, S., Graber, E. R., & Munroe, P. (2014). Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108, 26–34.

    CAS  Google Scholar 

  • Clapp, C. E., Hayes, M. H. B., & Claudio, C. (2007). Organic wastes in soils: biogeochemical and environmental aspects. Soil Biology and Biochemistry, 39(6), 1239–1243.

    CAS  Google Scholar 

  • Clough, T. J., & Condron, L. M. (2010). Biochar and the nitrogen cycle. Journal of Environmental Quality, 41(39), 1218–1223.

    Google Scholar 

  • Clough, T. J., Condron, L. M., Kammann, C., & Muller, C. (2013). A review of biochar and soil nitrogen dynamics. Agronomy, 3, 275–293.

    CAS  Google Scholar 

  • Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification-a critical review. Science of the Total Environment, 581-582, 601–611.

    CAS  Google Scholar 

  • Drake, P. L., McCormick, C. A., & Smith, M. J. (2014). Controls of soil respiration in a salinity-affected ephemeral wetland. Geoderma, 221-222, 96–102.

    Google Scholar 

  • Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. B., Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100, 913–921.

    Google Scholar 

  • Elad, Y., Cytryn, E., Harel, Y. M., Lew, B., & Graber, E. R. (2011). The biochar effect, plant resistance to biotic stresses. Phytopathologia Mediterranea, 50, 335–349.

    Google Scholar 

  • El-Naggar, A. H., Usman, A. R. A., Al-Omran, A., Ok, Y. S., Ahmad, M., & Al-Wabel, M. I. (2015). Carbon mineralization and nutrient availability in calcareous sandy soils amended with woody waste biochar. Chemosphere, 138, 67–73.

    CAS  Google Scholar 

  • Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, 114, 644–653.

    CAS  Google Scholar 

  • FAO. (2010). Extent and causes of salt-affected soils in participating countries. Available on URL, http://www.fao.org/ag/AGL/agll/spuch/topic4.htm

  • Fellet, G., Marchiol, L., Delle Vedove, G., & Peressotti, A. (2011). Application of biochar on mine tailings, effects and perspectives for land reclamation. Chemosphere, 83(9), 1262–1267.

    CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (pp. 383–410). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. Biology and Fertility of Soils, 35(4), 219–230.

    CAS  Google Scholar 

  • Graber, E. R., & Elad, Y. (2013). Biochar impact on plant resistance to disease. In N. Ladygina & F. Rineau (Eds.), Biochar and soil biota (pp. 41–67). Boca Raton: CRC Press.

    Google Scholar 

  • ICARDA. (2002). International cooperation highlands regional program. Available on: URL, www.icarda.cgiar.Org

  • Ippolito, J. A., Spokas, K. A., Novak, J. M., Lentz, R. D., & Cantrell, K. B. (2015). Biochar elemental composition and factors influencing nutrient retention. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science, technology and implementation (pp. 137–161). London, UK: Earthscan.

    Google Scholar 

  • Jalali, M., & Ranjbar, F. (2009). Effects of sodic water on soil sodicity and nutrient leaching in poultry and sheep manure amended soils. Geoderma, 153, 194–204.

    CAS  Google Scholar 

  • Jatav, H. S., Singh, S. K., Singh, Y., & Kumar, O. (2018). Biochar and sewage sludge application increases yield and micronutrient uptake in Rice (Oryza sativa L.). Communications in Soil Science and Plant Analysis, 49(13), 1617–1628.

    CAS  Google Scholar 

  • Jedrum, S., Thanachit, S., Anusontpornperm, S., & Wiriyakitnateekul, W. (2014). Soil amendments effect on yield and quality of jasmine rice grown on typic Natraqualfs, Northeast Thailand. International Journal of Soil Science, 9, 37–54.

    Google Scholar 

  • Jeong, D., Cho, K., Lee, C. H., Lee, S., & Bae, H. (2018). Effects of salinity on nitrification efficiency and bacterial community structure in a nitrifying osmotic membrane bioreactor. Process Biochemistry, 73, 132–141.

    CAS  Google Scholar 

  • Jones, D. L., Murphy, D. V., Khalid, M., Ahmad, W., Edwards-Jones, G., & DeLuca, T. H. (2011). Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43(8), 1723–1731.

    CAS  Google Scholar 

  • Joseph, S., Anawar, H. M., Storer, P., Blackwell, P., Chia, C., Lin, Y., Munroe, P., Donne, S., Horvat, J., Wang, J., & Solaiman, Z. M. (2015). Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonization, plant growth, nutrient uptake and soil quality improvement. Pedosphere, 25(5), 749–760.

    Google Scholar 

  • Kanwal, S., Ilyas, N., Shabir, S., Saeed, M., Gul, R., Zahoor, M., Batool, N., & Mazhar, R. (2018). Application of biochar in mitigation of negative effects of salinity stress in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 41(4), 526–538.

    CAS  Google Scholar 

  • Khalifa, N., & Yousef, L. F. (2015). A short report on changes of quality indicators for a sandy textured soil after treatment with biochar produced from fronds of date palm. Energy Procedia, 74, 960–965.

    Google Scholar 

  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153–159.

    CAS  Google Scholar 

  • Kissel, D. E., Sonon, L., Vendrell, P. F., & Isaac, R. A. (2009). Salt concentration and measurement of soil pH. Communications in Soil Science and Plant Analysis, 40(1–6), 179–187.

    CAS  Google Scholar 

  • Knudsen, D., Peterson, G. A., & Pratt, P. F. (1982). Lithium, sodium and potassium. In A. L. Page (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 225–246). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Kolb, S. E., Fermanich, K. J., & Dornbush, M. E. (2009). Effect of charcoal quantity on microbial biomass and activity in temperate soils. Soil Science Society of America Journal, 73, 1173–1181.

    CAS  Google Scholar 

  • Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil, agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112, 103–143.

    CAS  Google Scholar 

  • Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B., & Karlen, D. L. (2010). Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 158, 443–449.

    CAS  Google Scholar 

  • Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., Zheng, J., Zheng, J., Zhang, X., & Yu, X. (2013). Effects of amendment of biochar-manure compost in conjunction with pyroligneous solution on soil quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field Crops Research, 144, 113–118.

    Google Scholar 

  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., & Pan, G. (2014). Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from Central China: a 2-year field experiment. Journal of Science of Food and Agriculture, 95(6), 1321–1327.

    Google Scholar 

  • Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., Zheng, J., & Pan, G. (2015). Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from Central China: a 2-year field experiment. Journal of the Science of Food and Agriculture, 95, 1321–1327.

    CAS  Google Scholar 

  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and Environment., 5, 38–387.

    Google Scholar 

  • Lehmann, J., DaSilva, J. P., Steiner, C., Nehls, T., Zech, W., & Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin, fertilizer, manure and charcoal amendments. Plant and Soil, 249(2), 343–357.

    CAS  Google Scholar 

  • Lin, Y., Munroe, P., Joseph, S., Ziolkowski, A., Van Zwieten, L., Kimber, S., & Rust, J. (2013). Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere, 91, 35–40.

    CAS  Google Scholar 

  • Lin, X. W., Xie, Z. B., Zheng, J. Y., Liu, Q., Bei, Q. C., & Zhu, J. G. (2015). Effects of biochar application on greenhouse gas emissions, carbon sequestration and crop growth in coastal saline soil. European Journal of Soil Science, 66, 329–338.

    CAS  Google Scholar 

  • Lindsay, W. I., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–448.

    CAS  Google Scholar 

  • Liu, X. H., & Zhang, X. C. (2012). Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments. International Journal of Agriculture and Biology, 14, 745–750.

    CAS  Google Scholar 

  • Liu, S., Meng, J., Jiang, L., Yang, X., Lan, Y., Cheng, X., & Chen, W. (2017). Rice husk biochar impacts soil phosphorous availability, phosphatase activities and bacterial community characteristics in three different soil types. Applied Soil Ecology, 116, 12–22.

    Google Scholar 

  • Luo, Y., Durenkamp, M., De Nobili, M., Lin, Q., & Brookes, P. C. (2011). Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH. Soil Biology and Biochemistry, 43(11), 2304–2314.

    CAS  Google Scholar 

  • Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta, China. Journal of Soils and Sediments, 17, 780–789.

    CAS  Google Scholar 

  • Major, J., Steiner, C., Downie, A., & Lehmann, J. (2009). Biochar effects on nutrient leaching. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science, technology and implementation (pp. 271–287). London, UK: Earthscan.

    Google Scholar 

  • Matijevic, L., Romic, N., Maurovic, N., & Romic, M. (2012). Saline irrigation water affects element uptake by bean plant (Vicia faba L.). European Chemical Bulletin, 1(12), 498–502.

    CAS  Google Scholar 

  • Meng, S., Su, L., Li, Y., Wang, Y., Zhang, C., & Zhao, Z. (2016). Nitrate and ammonium contribute to the distinct nitrogen metabolism of Populus simonii during moderate salt stress. PLoS One, 11(3), e0150354.

    Google Scholar 

  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193-194, 122–130.

    CAS  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 961–1010). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Nguyen, T. T. N., Wallace, H. M., Xu, C. Y., Zwieten, L. V., Weng, Z. H., Xu, Z., Che, R., Tahmasbian, I., Huf, H. W., & Hosseini Bai, S. (2018). The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 636, 142–151.

    CAS  Google Scholar 

  • Peng, F., He, P. W., Luo, Y., Lu, X., Liang, Y., & Fu, J. (2012). Adsorption of phosphate by biomass char deriving from fast pyrolysis of biomass waste. Clean Soil, Air, Water, 40(5), 493–498.

    CAS  Google Scholar 

  • Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., & Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271–284.

    CAS  Google Scholar 

  • Rasouli-Sadaghiani, M. H., & Moradi, N. (2014). Effect of poultry, cattle, sheep manures and sewage sludge on N mineralization. Chemistry and Ecology, 30(7), 666–675.

    CAS  Google Scholar 

  • Rezapour, S. (2014). Effect of sulfur and composted manure on SO4-S, P and micronutrient availability in a calcareous saline-sodic soil. Chemistry and Ecology, 30(2), 147–155.

    CAS  Google Scholar 

  • Rhoades, J. D. (1996). Salinity, electrical conductivity and total dissolved solids. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 417–435). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Saifullah, Dahlawi, S., Naeemc, A., Rengeld, Z., & Naidue, R. (2018). Biochar application for the remediation of salt-affected soils: challenges and opportunities. Science of the Total Environment, 625, 320–335.

    CAS  Google Scholar 

  • Santoro, A. E., Francis, C. A., De Sieyes, N. R., & Boehm, A. B. (2008). Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology, 10, 1068–1079.

    CAS  Google Scholar 

  • Sarkhot, D. V., Berhe, A. A., & Ghezzehei, T. A. (2012). Impact of biochar enriched with dairy manure effluent on carbon and nitrogen dynamics. Journal of Environmental Quality, 41, 1107–1114.

    CAS  Google Scholar 

  • Serkalem, W. M. (2015). Effect of Prosopis juliflora biochar amendment on some soil properties: the case of Salic Fluvisols from Melkawerer Research Station, Ethiopia. Research Thesis. Addis Ababa University, Ethiopia

  • Setia, R., Marschner, P., Baldock, J., Chittleborough, D., Smith, P., & Smith, J. (2011). Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 43(9), 1908–1916.

    CAS  Google Scholar 

  • Shaygan, M., Reading, L. P., & Baumgartl, T. (2017). Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma, 292, 96–110.

    CAS  Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. In Advances in Agronomy. (pp. 47-82). Publisher Elsevier Academic Press Inc., ISSN 0065-2213, San Diego.

  • Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301–1310.

    CAS  Google Scholar 

  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., DeMacêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 291(1–2), 275–290.

    CAS  Google Scholar 

  • Steiner, C., Glaser, B., Teixeira, W. G., Lehmann, J., Blum, W. E. H., & Zech, W. (2008). Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Plant Nutrient Soil Science, 171(6), 893–899.

    CAS  Google Scholar 

  • Stevenson, F. J., & Cole, M. A. (1999). Cycles of the soil (2nd ed.). New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Streubel, J. D., Collins, H. P., Garcia-Perez, M., Tarara, J., Granatstein, D., & Kruger, C. E. (2011). Influence of contrasting biochar types on five soils at increasing rates of application. Soil Science Society of America Journal, 75, 1402–1413.

    CAS  Google Scholar 

  • Sun, J., He, F., Shao, H., Zhang, Z., & Xu, G. (2016). Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences, 75, 1–6.

    Google Scholar 

  • Sun, H., Lu, H., Chu, L., Shao, H., & Shi, W. (2017). Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 575, 820–825.

    CAS  Google Scholar 

  • Taghavimehr, J. (2015). Effect of biochar on soil microbial communities, nutrient availability, and greenhouse gases in short rotation coppice systems of Central Alberta (doctoral dissertation). Alberta: University of Alberta.

    Google Scholar 

  • Tagoe, S., Horiuchi, T., & Matsui, T. (2008). Effects of carbonized and dried chicken manures on the growth, yield, and N content of soybean. Plant and Soil, 306, 211–220.

    CAS  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 475–490). Madison, WI: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190, 432–441.

    CAS  Google Scholar 

  • Usman, A. R. A., Al-Wabel, M. I., Ok, Y. S., Al-Harbi, A., Wahb-Allah, M., El-Naggar, A. H., Ahmad, M., Al-Faraj, A., & Al-Omran, A. (2016). Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere, 26(1), 27–38.

    Google Scholar 

  • Walpola, B. C., & Arunakumara, K. K. I. U. (2010). Effect of salt stress on decomposition of organic matter and nitrogen mineralization in animal manure amended soils. Journal of Agricultural Sciences – Sri Lanka, 5(1), 9–18.

    Google Scholar 

  • Wang, S., Shan, J., Xia, Y., Tang, Q., Xia, L., Lin, J., & Yan, X. (2017). Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons. Science of the Total Environment, 593, 347–356.

    Google Scholar 

  • Watanabe, F. R., & Olson, S. R. (1965). Test of an ascorbic acid methods for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America, Proceedings, 29, 677–678.

    CAS  Google Scholar 

  • Wu, Y., Xu, G., & Shao, H. B. (2014). Furfural and its biochar improve the general properties of a saline soil. Solid Earth, 5(2), 665–671.

    Google Scholar 

  • Wu, M., Han, X., Zhong, T., & Yuan, M. (2016). Soil organic carbon content affects the stability of biochar in paddy soil. Agriculture Ecosystems and Environment, 223, 59–66.

    Google Scholar 

  • Yadav, A., Ansari, K. B., Simha, P., Gaikar, V. G., & Pandit, A. B. (2016). Vacuum pyrolysed biochar for soil amendment. Resource-Efficient Technologies, 2(1), S177–S185.

    Google Scholar 

  • Yuan, J. H., & Xu, R. K. (2011). The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27, 110–115.

    Google Scholar 

  • Zheng, H., Wang, Z., Deng, X., Herbert, S., & Xing, B. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, 32–39.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salahedin Moradi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S., Rasouli-Sadaghiani, M.H., Sepehr, E. et al. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environ Monit Assess 191, 257 (2019). https://doi.org/10.1007/s10661-019-7393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7393-4

Keywords

Navigation