Skip to main content
Log in

Adsorptive removal of phosphate from aqueous solutions by thermally modified copper tailings

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, thermally modified copper tailings (TMCT) were used to adsorb phosphate in aqueous solutions through experiments. The characterization of TMCT and unmodified copper tailings (UMCT) was done by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. The effects of pH, adsorbent dosage, contact time, and initial phosphate concentrations on phosphate adsorption were investigated. We studied the adsorption ability of TMCT and UMCT at 298 K, and the Langmuir isotherm model closely described the adsorption isotherm data, indicating that the maximum adsorption capacity (Qmax) of the TMCT and UMCT was 14.25 mg g−1 and 2.08 mg g−1, respectively. In addition, the adsorption isotherms of TMCT were analyzed at 288 K, 298 K, and 308 K, and the calculated Qmax of phosphate were 9.83 mg g−1 at 288 K, 14.25 mg g−1 at 298 K, and 11.55 mg g−1 at 308 K. Finally, the concentration of copper in the effluent was checked, and the content was 130 mg L−1. Then, the effluent was adsorbed by Eichhornia crassipes stem biochar; after adsorption, the concentration of the secondary effluent was 0.7 mg L−1, which is lower than the grade II classification (1.0 mg L−1) of the integrated wastewater discharge standard (GB8978-1996). The results suggest that the TMCT can be effectively and environmentally friendly used to adsorb phosphate from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acelas, N. Y., Martin, B. D., López, D., & Jefferson, B. (2015). Selective removal of phosphate from wastewater using hydrated metal oxides dispersed within anionic exchange media. Chemosphere, 119, 1353–1360.

    Article  CAS  Google Scholar 

  • Almasi, A., Omidi, M., Khodadadian, M., Khamutian, R., & Gholivand, M. B. (2012). Lead (II) and cadmium (II) removal from aqueous solution using processed walnut shell: kinetic and equilibrium study. Toxicological and Environmental Chemistry, 94(4), 660–671.

    Article  CAS  Google Scholar 

  • Alshameri, A., Yan, C., & Lei, X. (2014). Enhancement of phosphate removal from water by TiO2/Yemeni natural zeolite: preparation, characterization and thermodynamic. Microporous and Mesoporous Materials, 196, 145–157.

    Article  CAS  Google Scholar 

  • Biswas, B. K., Inoue, K., Ghimire, K. N., Harada, H., Ohto, K., & Kawakita, H. (2008). Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium. Bioresource Technology, 99, 8685–8690.

    Article  CAS  Google Scholar 

  • Choi, J. W., Hong, S. W., Kim, D. J., & Lee, S. H. (2012). Investigation of phosphate removal using sulphate-coated zeolite for ion exchange. Environmental Technology, 33, 2329–2335.

    Article  CAS  Google Scholar 

  • Dehass, D. W., Wentzel, M. C., & Ekama, G. A. (2000). The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal: part 1: literature review. Water SA, 26, 439–452.

    Google Scholar 

  • Di, Z. C., Cao, Y., Yang, F. L., Cheng, F. Q., & Zhang, K. (2018). Studies on steel slag as an oxygen carrier for chemical looping combustion. Fuel, 226(15), 618–626.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., & Thornbrugh, D. J. (2008). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43, 12–19.

    Article  Google Scholar 

  • Fang, H. W., Cui, Z. H., He, C. J., Huang, L., & Chen, M. H. (2017). Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Sci. Total Environ, 605-606, 357–367.

    Article  CAS  Google Scholar 

  • Franco, D., Lee, J., Arbelaez, S., Cohen, N., & Kim, J. Y. (2017). Removal of phosphate from surface and wastewater via electrocoagulation. Ecological Engineering, 108, 589–596.

    Article  Google Scholar 

  • Fu, P. F., Yang, T. W., Hui, J. F., & Yang, F. (2015). Synthesis of mesoporous silica MCM-41 using sodium silicate derived from copper ore tailings with an alkaline molted-salt method. Journal of Industrial and Engineering Chemistry, 29(25), 338–343.

    Article  CAS  Google Scholar 

  • Goscianska, J., Ptaszkowska-Koniarz, M., Frankowski, M., Franus, M., Panek, R., & Franus, W. (2018). Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. Journal of Colloid and Interface Science, 513, 72–81.

    Article  CAS  Google Scholar 

  • Guaya, D., Hermassi, M., Valderrama, C., Farran, A., & Cortina, J. L. (2016). Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as N-P-K fertilizer. Journal of Environmental Chemical Engineering, 4(3), 3519–3526.

    Article  CAS  Google Scholar 

  • Huang, W. Y., Li, D., Liu, Z. Q., Tao, Q., Zhu, Y., Yang, J., & Zhang, Y. M. (2016). Kinetics, isotherm, thermodynamic, and adsorption mechanism studies of La (OH)3-modified exfoliated vermiculites as highly efficient phosphate adsorbents. Chemical Engineering Journal, 236, 191–201.

    Article  Google Scholar 

  • Hussain, S., Aziz, H. A., Isa, M. H., Ahmad, A., Leeuwen, J. V., Zou, L., Beecham, S., & Umar, M. (2011). Orthophosphate removal from domestic wastewater using limestone and granular activated carbon. Desalination, 271(1–3), 265–272.

    Article  CAS  Google Scholar 

  • Jiang, F. J., Tan, J., Sun, Q. Y., Li, M., & Wang, W. (2008). Oxidized copper mine tailings and its adsorption on phosphate from aqueous solution. Environment and Chemistry, 27(5), 600–604.

    CAS  Google Scholar 

  • Jiang, L., Ling, T. C., Shi, C. J., & Pan, S. Y. (2018). Characteristics of steel slags and their use in cement and concrete—A review. Resources, Conservation and Recycling, 136, 187–197.

    Article  Google Scholar 

  • Koilraj, P., & Sasaki, K. (2017). Selective removal of phosphate using La-porous carbon composites from aqueous solutions: batch and column studies. Chemical Engineering Journal, 317, 1059–1068.

    Article  CAS  Google Scholar 

  • Kong, L. Z., Xue, F., Chen, L. L., Sun, Q. Y., & Yang, L. Z. (2008). Adsorption of phosphate on copper mine tailings samples. Environmental Pollution & Control, 30(5), 15–18.

    CAS  Google Scholar 

  • Lalley, J., Han, C., Li, X., Dionysiou, D. D., & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, 1386–1396.

    Article  CAS  Google Scholar 

  • Li, G., Gao, S., Zhang, G., & Zhang, X. W. (2014). Enhanced adsorption of phosphate from aqueous solution by nanostructured iron (III)-copper (II) binary oxides. Chemical Engineering Journal, 235, 124–131.

    Article  CAS  Google Scholar 

  • Li, F. H., Wu, W. H., Li, R. Y., & Fu, X. Y. (2016a). Adsorption of phosphate by acid-modified fly ash and palygorskite in aqueous solution: experimental and modeling. Applied Clay Science, 132-133, 343–352.

    Article  CAS  Google Scholar 

  • Li, Z. W., Huang, B., Huang, J. Q., Chen, G. Q., Xiong, W. P., Nie, X. D., Ma, W. M., & Zeng, G. M. (2016b). Influence of different phosphates on adsorption and leaching of Cu and Zn in red soil. Transactions of Nonferrous Metals Society of China, 26(2), 536–543.

    Article  CAS  Google Scholar 

  • Liu, T., Wu, K., & Zeng, L. (2012). Removal of phosphorous by a composite metal oxide adsorbent derived from manganese ore tailings. Journal of Hazardous Materials, 217-218, 29–35.

    Article  CAS  Google Scholar 

  • Liu, J. Y., Zhou, Q., Chen, J. H., Zhang, L., & Chang, N. (2013). Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chemical Engineering Journal, 215-216(0), 859–867.

    Article  CAS  Google Scholar 

  • Loganathan, P., Vigneswaran, S., Kandasmt, J., & Bolan, N. S. (2014). Removal and recovery of phosphate from water using sorption. Critical Reviews in Environmental Science and Technology, 44, 847–907.

    Article  CAS  Google Scholar 

  • Lu, J. B., Liu, H. J., Zhao, X., Jefferson, W., Cheng, F., & Qu, J. H. (2014). Phosphate removal from water using freshly formed Fe-Mn binary oxide: adsorption behaviors and mechanisms. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 455, 11–18.

    Article  CAS  Google Scholar 

  • Mateus, D. M. R., Vaz, M. M. N., & Pinho, H. J. O. (2012). Fragmented limestone wastes as a constructed wetland substrate for phosphorus removal. Ecological Engineering, 41, 65–59.

    Article  Google Scholar 

  • Mignardi, S., Corami, A., & Ferrini, V. (2012). Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere, 86(4), 354–360.

    Article  CAS  Google Scholar 

  • Mitrogiannis, D., Psychoyou, M., Baziotis, I., Inglezakis, V. J., Koukouzas, N., Tsoukalas, N., Palles, D., Kamitsos, E., Oikonomou, G., & Markou, G. (2017). Removal of phosphate from aqueous solutions by adsorption onto Ca(OH)2 treated natural clinoptilolite. Chemical Engineering Journal, 320, 510–522.

    Article  CAS  Google Scholar 

  • Mo, L. W., Zhang, F., Deng, M., Jin, F., Abir, A. T., & Wang, A. G. (2017). Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cement and Concrete Composites, 83, 138–145.

    Article  CAS  Google Scholar 

  • Mouiya, M., Abourriche, A., Bouazizi, A., Benhammou, A., Hafiane, Y. E., Abouliatim, Y., Nibou, L., Oumam, M., Ouammou, M., Smith, A., & Hannache, H. (2018). Flat ceramic microfiltration membrane based on natural clay and Moroccan phosphate for desalination and industrial wastewater treatment. Desalination, 427, 42–50.

    Article  CAS  Google Scholar 

  • Nguyen, T. A. H., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Lee, D. J., Nguyen, P. D., & Bui, X. T. (2014). Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresource Technology, 169, 750–762.

    Article  CAS  Google Scholar 

  • Panswad, T., Doungchai, A., & Anotai, J. (2003). Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 37, 409–415.

    Article  CAS  Google Scholar 

  • San, A., & Tüzen, M. (2013). Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous and Mesoporous Materials, 170(170), 155–163.

    Google Scholar 

  • Sevcenco, A. M., Paravidino, M., Vrouwenvelder, J. S., Wolterbeek, H. T., Loosdrecht, M. C. M. V., & Hagen, W. R. (2015). Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes. Water Research, 76, 181–186.

    Article  CAS  Google Scholar 

  • Sima, T. V., Letshwenyo, M. W., & Lebogang, L. (2018). Efficiency of waste clinker ash and iron oxide tailings for phosphorus removal from tertiary wastewater: batch studies. Environmental Technology and Innovation, 11, 49–63.

    Article  Google Scholar 

  • Song, L. Z., Huo, J. B., Wang, X. L., Yang, F. F., He, J., & Li, C. Y. (2016). Phosphate adsorption by a Cu (II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions. Chemical Engineering Journal, 284, 182–193.

    Article  CAS  Google Scholar 

  • Su, Y., Cui, H., Li, Q., Gao, S., & Shang, J. K. (2013). Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Research, 47, 5018–5026.

    Article  CAS  Google Scholar 

  • Sun, Z. H., Chen, D. Y., Chen, B. D., Kong, L. J., & Su, M. H. (2018). Enhanced uranium(VI) adsorption by chitosan modified phosphate rock. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 547, 141–147. https://doi.org/10.1016/j.colsurfa.2018.02.043.

    Article  CAS  Google Scholar 

  • Yang, S. J., Ding, D., Zhao, Y. X., Huang, W. L., Zhang, Z. Y., Lei, Z. F., & Yang, Y. N. (2013a). Investigation of phosphate adsorption from aqueous solution using Kanuma mud: behaviors and mechanisms. Journal of Environmental Chemical Engineering, 1, 355–362.

    Article  CAS  Google Scholar 

  • Yang, S. J., Zhao, Y. X., Chen, R. Z., Feng, C. P., Zhang, Z. Y., Lei, Z. F., & Yang, Y. N. (2013b). A novel tablet porous material developed as adsorbent for phosphate removal and recycling. Journal of Colloid and Interface Science, 396, 197–204.

    Article  CAS  Google Scholar 

  • Yang, Q., Wang, X. L., Luo, W., Sun, J., Xu, Q. X., Chen, F., Zhao, J. W., Wang, S. N., Yao, F. B., Wang, D. B., Li, X. M., & Zeng, G. M. (2018). Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge. Bioresource Technology, 247, 537–544.

    Article  CAS  Google Scholar 

  • Yu, J., Liang, W., Wang, L., Li, F., Zou, Y., & Wang, H. (2015) Phosphate removal from domestic wastewater using thermally modified steel slag. Journal of Environmental Sciences, 31, 81–88.

    Article  CAS  Google Scholar 

  • Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., & Zacharias, I. (2012). Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 62-63, 101–106.

    Article  CAS  Google Scholar 

  • Zeng, L., Li, X. M., & Liu, J. D. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318–1326.

    Article  CAS  Google Scholar 

  • Zhang, H., Chen, Z., Gao, Y., & Sun, Q. Y. (2010). Adsorption-desorption characteristics of dissolved phosphorus on surface of copper mine tailings. J Agro-Environ Sci, 29(8), 1542–1546.

    CAS  Google Scholar 

  • Zhang, L., Liu, J. Y., Wan, L. H., Zhou, Q., & Wang, X. Z. (2012a). Batch and fixed-bed column performance of phosphate adsorption by lanthanum-doped activated carbon fiber. Water, Air, & Soil Pollution, 223, 5893–5902.

    Article  CAS  Google Scholar 

  • Zhang, Y., Xia, S. B., He, F., Xu, D., Kong, L. W., & Wu, Z. B. (2012b). Phosphate removal of acid wastewater from high-phosphate hematite pickling process by in-situ self-formed dynamic membrane technology. Desalination and Water Treatment, 37, 77–83.

    Article  CAS  Google Scholar 

  • Zhang, C., Li, Y. Q., Wang, F. H., Yu, Z. G., Wei, J. J., Yang, Z. Z., Ma, C., Li, Z. H., Xu, Z. Y., & Zeng, G. M. (2017). Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution. Applied Surface Science, 396, 1783–1792.

    Article  CAS  Google Scholar 

  • Zhang B, Chen N, Feng CP, Zhang ZY (2018) Adsorption for phosphate by crosslinked/non-crosslinked-chitosan-Fe(III) complex sorbents: characteristic and mechanism, 353: 361–372.

  • Zhou, R. J., Wang, Y. B., Zhang, M., Li, J., Gui, Y. N., Tang, Y. Y., Yu, B. X., & Yang, Y. R. (2018). Effect of heating temperature and time on the phosphate adsorption capacity of thermally modified copper tailings. Water Science and Technology, 77(11), 2668–2676.

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Youth Foundation of China (Grant No. 51409001), Excellent Talents Supporting program of Higher Education of Anhui (Grant No. gxyqZD2016127), Anhui Provincial Natural Science Foundation (1808085QE146), Anhui Provincial Higher Education promotion program Humanities and Social Sciences General Project (TSSK2016B14), the College Natural Science Foundation of Major Project of Anhui, China (KJ2018ZD033), and the Foundation of Anhui Provincial Key Lab. of the Conservation and Exploitation of Biological Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runjuan Zhou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Wang, Y., Zhang, M. et al. Adsorptive removal of phosphate from aqueous solutions by thermally modified copper tailings. Environ Monit Assess 191, 198 (2019). https://doi.org/10.1007/s10661-019-7336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7336-0

Keywords

Navigation