Skip to main content
Log in

Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human pharmaceutical residues are a serious environmental concern. They have been reported to have eco, geno, and human toxic effects, and thus their importance as micropollutants cannot be ignored. These have been studied extensively in Europe and North America. However, African countries are still lagging behind in research on these micropollutants. In this study, the wastewaters of the University Teaching Hospital of Yaoundé (UTHY) were screened for the presence of active pharmaceutical ingredients and their metabolites. The screening was carried out using two methods: high-performance liquid chromatography coupled to a triple quadrupole analyzer (LC/QQQ) and high-performance coupled to a mass spectrometer with a time of flight analyzer (LC/Q-TOF). A total of 19 active pharmaceutical ingredients and metabolites were identified and quantified. The compounds identified include paracetamol (211.93 μg/L), ibuprofen (141 μg/L), tramadol (76 μg/L), O-demethyltramadol (141 μg/L), erythromycinanhydrate (7 μg/L), ciprofloxacin (24 μg/L), clarinthromycine (0.088 μg/L), azitromycine (0.39 μg/L), sulfamethoxazole 0.16 μg/L), trimetoprime (0.27 μg/L), caffeine (5.8 μg/L), carnamaeepine (0.94 μg/L), atenolol (0.43 μg/L), propranolol (0.3 μg/L), cimetidine (34 μg/L), hydroxy omeprazole (5 μg/L), diphenhydramine (0.38 μg/L), metformine (154 μg/L), and sucralose (13.07 μg/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Almeida, C. A. A., Brenner, C. G. B., Minetto, L., Mallmann, C. A., & Martins, A. F. (2013). Determination of pharmaceuticals, antianxiety and antiepileptics drugs in hospital effluent and a preliminary risk assessment. Chemosphere, 93, 2349–2355.

    Article  Google Scholar 

  • Andreozzi, R., Marotta, R., & Paxeus, N. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50(10), 1319–1330.

    Article  CAS  Google Scholar 

  • Ashton, D., Hilton, M., & Thomas, K. V. (2004). Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Science of the Total Environment, 333(1-3), 167–84.

  • Calamari, D., Zuccato, E., Castiglioni, S., Bagnati, R., & Fanelli, R. (2003). Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environmental Science & Technology, 37, 1241–1248.

  • Chang, X., Meyer, M. T., Liu, X., Zhao, Q., Chen, H. J. A., Qiu, Z., Chang, X., Meyer, M. T., Cao, J., & Shu, W. (2010). Determination of antibiotics in sewage treatement plant and source of Gorge reservoir pollution. Environmental Pollution, 158, 1444–1450.

    Article  CAS  Google Scholar 

  • Daughton, C. G. (2004). PPCPs in the environment: future research C beginning with the end always in mind. In K. Kümmerer (Ed.), Pharmaceuticals in the Environment (Vol. 33, 2nd ed., pp. 463–495). Berlin: Springer.

    Chapter  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1997). Pharmaceuticals and 426 personal care products in the environment: agents of subtle 427 change? Environmental Health Perspectives, 107(6), 907–938.

  • Ehlhardt, W. J., Woodland, J. M., Baughman, T. M., Vandenbranden, M., Wrighton, S. A., Kroin, J. S., Norman, B. H., & Maple, S. R. (1998). Liquid chromatography/nuclear magnetic resonance spectroscopy and liquid chromatography/mass spectrometry identification of novel metabolites of multidrug resistance modulator LY335979 in rat bile and human liver microsomal incubations. Drug Metabolism and Disposition, 26, 42–51.

    CAS  Google Scholar 

  • Farre, M., Petrovic, M., & Barcelo, D. (2007). Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples. Analytical and Bioanalytical Chemistry, 387, 1203–1214.

    Article  CAS  Google Scholar 

  • Ferrer, I., & Thurman, E. (2012). Analysis of 100 pharmaceuticals and their degradates in water samples by liquid chromatography /quadrupole time-of-flight mass spectrometry. Journal of Chromatography A., 1259, 148–157.

    Article  CAS  Google Scholar 

  • Ferrer, I., Zweigenbaum, J. A., & Thurman, M. E. (2010). Analysis of 70 Environmental Protection Agency priority pharmaceuticals in water by EPA method 1694. Journal of Chromatography A., 1217, 5674–5686.

    Article  CAS  Google Scholar 

  • Glassmeyer, S. T., Kolpin, D. W., Furlong, E. T., & Focazio, M. J. (2008). Environmental presence and persistence of pharmaceuticals: an overview. Fate of pharmaceuticals in the environment and in water treatment systems (pp. 3–51). Boca Raton: CRC Press.

    Google Scholar 

  • Gros, M., Petrović, M., & Barceló, D. (2006). Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters. Talanta, 70, 678–690.

    Article  CAS  Google Scholar 

  • Halling-Sorensen, B., Nors, N. S., Lanzky, P. F., Ingerslev, F., Holten, L. H. C., & Jorgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment - a review. Chemosphere, 36, 357–393.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent res. data. Toxicology Letters, 131(1–2), 5–17.

  • Heberer, T., Reddersen, K., & Mechlinski, A. (2002). From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Science and Technology, 46(3), 81–88.

  • Hirsch, R., Ternes, ThA., Haberer, K., Mehlich, A., Ballwanz, F., & Kratz, K. L. (1998) Determination of antibiotics in different water compartments via liquid chromatographyelectrospray tandemmassspectrometry. Journal of Chromatography A, 815, 213–223.

  • Hignite, C., & Azarnoff, D. (1997). Drugs and drug metabolites as environmental contaminants: Chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sciences, 20, 337–341.

    Article  Google Scholar 

  • Jones, O. A., Lester, J. N., & Voulvoulis, N. (2005). Pharmaceuticals: a threat to drinking water? Trends in Biotechnology, 23, 163–167.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. T., Barber, L. B., & Buxton, H. T. (2012). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national recon- naissance. Environmental Science & Technology, 36, 1202–1211.

  • Koutsouba, V., Heberer, T., Fuhrmann, B., Schmidt-Baumler, K., Tsipi, D., & Hiskia, A. (2003). Determination of polar pharmaceuticals in sewage water of Greece by gas chromatography-mass spectrometry. Chemosphere, 51(2), 69–75.

    Article  CAS  Google Scholar 

  • Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., & McArdell, C. S. (2012). Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science & Technology, 7, 46(3), 1536–1545.

  • Kummerer, K., Helmers, E., Hubner, P., Mascart, G., Milandri, M., Reinthaler, F., et al. (1999). European hospitals as a source for platinum in the environment in comparison with other sources. Science of the Total Environment, 225, 155–165.

    Article  CAS  Google Scholar 

  • Langford, K. H., & Thomas, K. V. (2009). Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environment International, 35, 766–770.

    Article  CAS  Google Scholar 

  • Larsson, D. G. J., Fredriksson, S., Sandblom, E., Paxeus, N., & Axelsson, M. (2006). Is heart rate in fish a sensitive indicator to evaluate acute effects of β-blockers in surface water? Environmental Toxicology and Pharmacology, 22, 338–340.

    Article  CAS  Google Scholar 

  • Mendoza, A., Aceña, J., Pérez, S., López de Alda, M., Barceló, G. A., & Valcárcel, Y. (2015). Pharmaceuticals and iodinated contrast media in a hospital waste- water: A case study to analyse their presence and characterize their environmental risk and hazard. Environmental Research, 140, 225–241.

    Article  CAS  Google Scholar 

  • Packer, J. L., Werner, J. J., Latch, D. E., McNeill, K., & Arnold, W. A. (2003). Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquatic Science., 65, 342–351.

    Article  CAS  Google Scholar 

  • Rua-Gomez, P. C., & Puttmann, W. (2012). Impact of waste water treatment plant discharge of lidocaine, tramadol, venlafaxine and their metabolites on the quality of surface waters and ground water. Journal of Environmental Monitoring, 14(5), 1391–1399.

    Article  CAS  Google Scholar 

  • Santos, L. H. ,Gros, M., Rodrigues-Mozaz, S., Delerue-Matos, C., Pena, A., Barcelo, D., et al. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461–462, 302–316.

  • Stumpf, M., Ternes, T. A., Wilken, R. D., Silvana, V. R., & Baumann, W. (1999). Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 225, 135–141.

    Article  Google Scholar 

  • Sumpter, J. P., & Johnson, A. C. (2005). Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment. Environmental Science & Technology, 39, 4321–4332.

    Article  CAS  Google Scholar 

  • Tchadji Mayoudom Vanessa Edwige. (2015). Présence des résidus de médicaments dans les eaux uses du Centre Hospitalier et Universitaire de Yaoundé. Doctorat en Pharmacie. Faculté de Médecine et de Sciences Biomédicales: Université de Yaoundé I, 150 p. (this is a thesis).

  • Thomas, K. V., Dye, C., Schlabach, M., & Langford, K. H. (2007). Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. Journal of Environmental Monitoring, 9, 1410–1418.

  • Trautwein, C., Berset, J. D., Wolschke, H., & Kümmerer, K. (2014). Occurrence of the antidiabetic drug metformin and its ultimate transformation product Guanylurea in several compartments of the aquatic cycle. Environment International, 70, 203–212.

    Article  CAS  Google Scholar 

  • Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118.

    Article  CAS  Google Scholar 

  • Waed, A. R., & Mahmoud, A. A. (2012). HPLC / UV/ fluorescence detection of several pharmaceuticals in hospital effluents using HPLC with UV and fluorescence detectors. Journal of Pharmaceutical Sciences, 5, 22–29.

    Google Scholar 

  • Webb, S., Ternes, T., Gibert, M., & Olejniczak, K. (2003). Indirect human exposure to pharmaceuticals via drinking water. Toxicology Letters, 142, 157–167.

  • Zhou JL, Zhang ZL, Banks E, Grover D, & Jiang JQ. (2009). Pharmaceutical residues in wastewater 683 treatment works effluents and their impact on receiving river water. Journal of Hazardous Materials, 684(166), 655–661.

  • Zuccato, E., Castiglioni, S., Bagnati, R., Melis, M., & Fanelli, R. (2010). Source, occurrence and fate of antibiotics in the Italian aquatic environment. Journal of Hazardous Materials, 179, 1042–1048.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chimezie Anyakora.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayoudom, E.V.T., Nguidjoe, E., Mballa, R.N. et al. Identification and quantification of 19 pharmaceutical active compounds and metabolites in hospital wastewater in Cameroon using LC/QQQ and LC/Q-TOF. Environ Monit Assess 190, 723 (2018). https://doi.org/10.1007/s10661-018-7097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7097-1

Keywords

Navigation