Skip to main content
Log in

A multi-year study following BACI design reveals no short-term impact of Bti on chironomids (Diptera) in a floodplain in Eastern Austria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Short-term impacts of aerial application of Bacillus thuringiensis israelensis (Bti) on Culicidae and Chironomidae were investigated over several years in temporary waters of the Dyje and Morava floodplains in Eastern Austria. The sampling followed a Before-After-Control-Impact (BACI) approach with sampling dates immediately before and shortly after the application and was repeated for 3 years. To test for effects of the Bti treatment on the two Diptera families, linear mixed-effects models were used. Data analysis included the factors Before-After and Control-Impact as fixed effects, while general temporal and spatial variables were random effects. One hundred sixteen taxa of chironomids were identified. Abundance varied between 2 and 1125 larvae per m2, while culicid densities reached values of several 100 ind. per liter. Total culicid abundance significantly decreased after the Bti treatment, whereas no significant effects were found on the abundance of total chironomids and dominant chironomid subfamilies, tribes, and genera, on relative proportions of chironomid feeding guilds, diversity, and species composition. Further studies from this area are needed to extend the investigation over a period of several weeks in order to reveal possible delayed effects of the larvicide application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen, T., Cranston, P. S., & Epler, J. H. (2013). Chironomidae of the Holarctic region. Keys and diagnoses—part 1: Larvae. Insect Systematics & Evolution, Suppl. 66, 1–573.

  • Armitage, P., & Cranston, P. S. (1997). The Chironomidae. The biology and ecology of non-biting midges. London: Chapman & Hall.

    Google Scholar 

  • Balcer, M. D., Schmude, K. L., & Snitgen, J. (1999). Long-term effects of the mosquito control agents Bti (Bacillus thuringiensis israelensis) and methoprene on non-target macroinvertebrates in wetlands in Wright County, Minnesota (1997–1998). Wisconsin: LSRI.

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B. M., & Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.

    Article  Google Scholar 

  • Baum, C. F. (2008). Modelling proportions. Stata Journal, 8, 299–303.

    Article  Google Scholar 

  • Becker, N. (2003). Ice granules containing endotoxins of microbial agents for the control of mosquito larvae—a new application technique. Journal of the American Mosquito Control Association, 19(1), 63–66.

    Google Scholar 

  • Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquito and their control. Heidelberg: Springer.

    Book  Google Scholar 

  • Becker, N., & Zgomba, M. (2007). Mosquito control in Europe. In W. Takken & B. G. J. Knols (Eds.), Emerging pests and vector-borne diseases in Europe (pp. 369–388). Wageningen: Wageningen Academic Publ..

    Google Scholar 

  • Ben-Dov, E. (2014). Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins, 6, 1222–1243.

    Article  Google Scholar 

  • Boisvert, M., & Boisvert, J. (2000). Effects of Bacillus thuringiensis var. israelensis on target and nontarget organisms: a review of laboratory and field experiments. Biocontrol Science and Technology, 10, 517–561.

    Article  Google Scholar 

  • Buchanan, G. M., Grant, M. C., Sanderson, R. A., & Pearce-Higgins, J. W. (2006). The contribution of invertebrate taxa to moorland bird diets and the potential implications of land-use management. Ibis, 148, 615–628.

    Article  Google Scholar 

  • Chaparro, G., Horváth, Z., O’Farrell, I., Ptacnik, R., & Hein, T. (2018). Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology, 63(4), 380–391.

    Article  CAS  Google Scholar 

  • Cicort-Lucaciu, A.-S., Cupsa, D., Ghira, I., Bogdan, H., & Pop, A. (2005). Food consumption of some Triturus dobrogicus Kir 1903 population from North-Wester Romania. Analele Univ. Oradea, Fasc. Biologie, XII, 71–76.

  • Conner, M. M., Saunders, W. C., Bouwes, N., & Jordan, C. (2016). Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environmental Monitoring and Assessment, 188(10).

  • Contreras-Lichtenberg, R. (1986). Revision der in der Westpaläarktis verbreiteten Arten des Genus Dicrotendipes Kieffer, 1913 (Diptera, Nematocera, Chironomidae). Annalen des Naturhistorischen Museums Wien, 88(89), 663–726.

    Google Scholar 

  • Contreras-Lichtenberg, R. (1999). Revision der westpaläarktischen Arten des Genus Glyptotendipes Kieffer, 1913 (Insecta: Diptera: Chironomidae). Teil 1: Subgenus Phytotendipes Goetghebuer, 1937. Annalen des Naturhistorischen Museums Wien, 101B, 359–403.

    Google Scholar 

  • Corbet, P. S. (1999). Dragonflies. Behaviour and ecology of Odonata. UK: Harley Books.

  • Cranston, P. (Ed.). (1995). Chironomids. From Genes to Ecosystems. Australia: CSIRO.

  • Dettinger-Klemm, P.-M. A., & Bohle, H. W. (1996). Überlebensstrategien und Faunistik von Chironomiden (Chironomidae, Diptera) temporärer Tümpel. Limnologica, 28(4), 403–421.

    Google Scholar 

  • Duchet, C., Larroque, M., Caquet, T., Franquet, E., Lagneau, C., & Lagadic, L. (2008). Effects of spinosad and Bacillus thuringiensis israelensis on a natural population of Daphnia pulex in field microcosms. Chemosphere, 74(1), 70–77.

    Article  CAS  Google Scholar 

  • DuRant, S. E., & Hopkins, W. A. (2008). Amphibian predation on larval mosquitoes. Canadian Journal of Zoology, 86(10), 1159–1164.

    Article  Google Scholar 

  • Federici, B. A., Park, H. W., Bideshi, D. K., Wirth, M. C., Johnson, J. J., Sakano, Y., & Tang, M. (2007). Developing recombinant bacteria for control of mosquito larvae. Journal of the American Mosquito Control Association, 23(2 Suppl), 164–175.

    Article  CAS  Google Scholar 

  • Fillinger, U., Knols, B. G. J., & Becker, N. (2003). Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Tropical Medicine and International Health, 8(1), 37–47.

    Article  Google Scholar 

  • Flavin, D. A., Biggane, S. S., Shiel, C. B., Smiddy, P., & Fairley, J. S. (2001). Analysis of the diet of Daubenton’s bat Myotis daubentonii in Ireland. Acta Theriologica, 46(1), 43–52.

    Article  Google Scholar 

  • Gonsalves, L., Law, B., Webb, C., & Monamy, V. (2013). Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance. PLoS One, 8(5), e64081.

    Article  CAS  Google Scholar 

  • Green, R. H. (1979). Sampling design and statistical methods for environmental biologists. Chichester, England: Wiley Interscience.

    Google Scholar 

  • Hein, T., Schwarz, U., Habersack, H., Nichersu, I., Preiner, S., Willby, N., et al. (2015). Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, 543(Pt A), 778–790.

    Google Scholar 

  • Hering, D., Buffagni, A., Moog, O., Sandin, L., Sommerhäuser, M., Stubauer, I., Feld, C., Johnson, R., Pinto, P., Skoulikidis, N., Verdonschot, P., & Zahrádková, S. (2003). The development of a system to assess the ecological quality of streams based on macroinvertebrates—design of the sampling programme within the AQEM project. International Review of Hydrobiology, 88(3–4), 345–361.

    Article  Google Scholar 

  • Hershey, A. E., Lima, A. R., Niemi, G. J., & Regal, R. R. (1998). Effects of Bacillus thuringiensis israelensis (Bti) and methoprene on nontarget macroinvertebrates in Minnesota wetlands. Ecological Applications, 8(1), 41–60.

    Article  Google Scholar 

  • Hershey, A. E., Shannon, L., Axler, R., Ernst, C., & Mickelson, P. (1995). Effects of methoprene and Bti (Bacillus thuringiensis var. israelensis) on non-target insects. Hydrobiologia, 308, 219–227.

    Article  CAS  Google Scholar 

  • Hirvenoja, M. (1973). Revision der Gattung Cricotopus van der Wulp und ihrer Verwandten (Diptera, Chironomidae). Annales Zoologici Fennici, 10, 1–363.

    Google Scholar 

  • Hughes, P. A., Stevens, M. M., Park, H.-W., Federici, B. A., Dennisa, E. S., & Akhurst, R. (2005). Response of larval Chironomus tepperi (Diptera: Chironomidae) to individual Bacillus thuringiensis var israelensis toxins and toxin mixtures. Journal of invertebrate pathology, 88, 34–39.

    Article  CAS  Google Scholar 

  • Jakob, C., & Poulin, B. (2016). Indirect effects of mosquito control using Bti on dragonflies and damselflies (Odonata) in the Camargue. Insect Conservation and Diversity, 9(2), 161–169.

    Article  Google Scholar 

  • Janecek, B. (1999). Fauna Aquatica Austriaca, Taxonomie und Ökologie aquatischer wirbelloser Organismen. - Kursunterlagen: Teil V, Chironomidae (Zuckmücken) -Larven. Wien: Universität f. Bodenkultur.

    Google Scholar 

  • Kalugina, N. S. (1963). Systematics and development of Glyptotendipes glaucus MG. and G. gripekoveni Kieff. (Diptera, Chironomidae) [in Russian]. Revue d'Entomologie de l'URSS, 1963, 896–899.

    Google Scholar 

  • Kalugina, N. S. (1975). A key to larvae of the genus Glyptotendipes (Diptera, Chironomidae) in water bodies of Moscow district. [in Russian with English summary]. Zoologicheskii Zhurnal, 54(11), 1830–1837.

    Google Scholar 

  • Kästel, A., Allgeier, S., & Brühl, C. A. (2017). Decreasing Bacillus thuringiensis israelensis sensitivity of Chironomus riparius larvae with age indicates potential environmental risk for mosquito control. Scientific Reports, 7(1), 13565.

    Article  Google Scholar 

  • Klink, A., Moller Pillot, H., & Vallenduuk, H. (2002). Determinatiesleutel voor de larven van de in Nederland voorkomende soorten Polypedilum. Utrecht: STOWA, Concept uitgave 6/2002.

    Google Scholar 

  • Kreuziger, J. (1998). Auswirkungen großflächiger Renaturierungsprozesse auf die Brutvogelgemeinschaft einer Flußaue. Vogelwelt, 119, 65–90.

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2016). lmerTest: tests in linear mixed effects models. R package version 2.0–33. https://CRAN.R-project.org/package=lmerTest.

  • Lacey, L. A., & Merritt, R. W. (2003). The safety of bacterial microbial agents used for black fly and mosquito control in aquatic environments. In H. M. T. Hokkanen & A. E. Hajek (Eds.), Environmental impacts of microbial insecticides: need and methods for risk assessment (pp. 151–168). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Lagadic, L., Roucaute, M., & Caquet, T. (2013). Bti sprays do not adversely affect non-target aquatic invertebrates in French Atlantic coastal wetlands. Journal of Applied Ecology, 51(1), 102–113.

    Article  Google Scholar 

  • Lagadic, L., Schäfer, R. B., Roucaute, M., Szöcs, E., Chouin, S., de Maupeou, J., Duchet, C., Franquet, E., le Hunsec, B., Bertrand, C., Fayolle, S., Francés, B., Rozier, Y., Foussadier, R., Santoni, J. B., & Lagneau, C. (2016). No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands. Science of the Total Environment, 553, 486–494.

    Article  CAS  Google Scholar 

  • Langton, P. (2003). A key to pupal Exuviae of West Palaearctic Chironomidae. Huntingdon, England.

  • Lechthaler, W. (1993). Gesellschaften epiphytischer Makroevertebraten in überschwemmten Wiesen an der March (Niederösterreich). PhD Thesis, Univ. Wien, Wien.

  • Lei, P., Zhao, W. M., Yang, S. Y., Zhang, J. S., & Liu, L. J. (2005). Impact of environmental factors on the toxicity of Bacillus thuringiensis var israelensis IPS82 to Chironomus kiiensis. Journal of the American Mosquito Control Association, 21(1), 59–63.

    Article  Google Scholar 

  • Lindegaard, C. (1989). A review of secondary production of zoobenthos in freshwater ecosystems with special reference to Chironomidae (Diptera). Acta Biologica Debrecina, Suppl. Oecologica Hungarica, 3, 231–240.

  • Lundstrom, J. O., Brodin, Y., Schäfer, M. L., Vinnersten, T. Z., & Ostman, O. (2010). High species richness of Chironomidae (Diptera) in temporary flooded wetlands associated with high species turn-over rates. Bulletin of Entomological Research, 100(4), 433–444.

    Article  CAS  Google Scholar 

  • Lundström, J. O., Schäfer, M. L., Petersson, E., Persson Vinnersten, T. Z., Landin, J., & Brodin, Y. (2009). Production of wetland Chironomidae (Diptera) and the effects of using Bacillus thuringiensis israelensis for mosquito control. Bulletin of Entomological Research, 100(1), 117–125.

    Article  Google Scholar 

  • McKie, B., & Goedkoop, W. (2010). Development of alternative approaches for monitoring the effects of the mosquito control agent Bti on ecosystems of the Dalälven catchment. Department of Aquatic Sciences & Assessment, Swedish University of Agricultural Sciences. http://www.diva-portal.org/smash/get/diva2:1235622/FULLTEXT01.pdf. Accessed 4th October 2018.

  • Medlock, J. M., & Snow, K. R. (2008). Natural predators and parasites of British mosquitoes—as review. European Mosquito Bulletin, 25, 1–11.

    Google Scholar 

  • Minnesota Department of Health (1999). Metropolitan Mosquito Control District. A Program Evaluation Report. Saint Paul, Minnesota: Office of the Legislative Auditor, State of Minnesota.

  • Mittal, P. K. (2003). Biolarvicides in vector control: challenges and prospects. Journal of Vector Borne Diseases, 40, 20–32.

    CAS  Google Scholar 

  • Moller Pillot, H. K. M., & Buskens, R. F. M. (1990). De larven der Nederlandse Chironomidae (Diptera). Deel C: Autoekologie en verspreiding. Nederlandse Faunist. Mededelingen (Leiden), 1C, 1–85.

    Google Scholar 

  • Moller Pillot, H. K. M., Vallenduuk, H. J., & Bij de Vaate, A. (1997). Bijdrage tot de kennis over de Nederlandse Chironomidae (vedermuggen): de larven van het genus Glyptotendipes in West-Europa. Lelystad: Rijkinst. v. Integr. Zoetwaterbeh. & Afvalwaterbeh., rapp. nr. 57.052.

  • Moog, O. (Ed.). (1995). Fauna Aquatica Austriaca, Lieferung Mai/95. Wien: Bundesministerium für Land- und Forstwirtschaft, Wasserwirtschaftskataster.

  • Moog, O. (Ed.). (2002). Fauna Aquatica Austriaca Katalog zur autökologischen Einstufung aquatischer Organismen Österreichs, 2. Lieferung. Wien: Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wasserwirtschaftskataster.

  • Park, H.-W., Bideshi, D. K., Wirth, M. C., Johnson, J. J., Walton, W. E., & Federici, B. A. (2005). Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile virus. The American Journal of Tropical Medicine and Hygiene, 72, 732–738.

    Article  CAS  Google Scholar 

  • Persson Vinnersten, T. Z., Lundström, J. O., Petersson, E., & Landin, J. (2009). Diving beetle assemblages of flooded wetlands in relation to time, wetland type and Bti-based mosquito control. Hydrobiologia, 635(1), 189–203.

    Article  Google Scholar 

  • Poulin, B. (2012). Indirect effects of bioinsecticides on the nontarget fauna: the Camargue experiment calls for future research. Acta Oecologica-International Journal of Ecology, 44, 28–32.

    Article  Google Scholar 

  • Poulin, B., & Lefebvre, G. (2016). Perturbation and delayed recovery of the reed invertebrate assemblage in Camargue marshes sprayed with Bacillus thuringiensis israelensis. Insect Sci., 25(4), 542–548.

    Article  Google Scholar 

  • Poulin, B., Lefebvre, G., & Paz, L. (2010). Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal of Applied Ecology, 47, 884–889.

    Article  Google Scholar 

  • R Core Team (2017). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. URL: http://www.R-projectorg.

  • Read, N., Balcer, M. D., Schmude, K. L., & Lima, A. (1999). Does Bti or methoprene affect wetland invertebrates other than mosquitoes? Paper presented at the Annual Meeting of the Entomological Society of America, 12–16 December 1999, Atlanta, Georgia,

  • Rodcharoen, J., Mulla, M., & Chaney, J. (1991). Microbial larvicides for the control of nuisance aquatic midges (Diptera: Chironomidae) inhabiting mesocosms and man-made lakes in California. Journal of the American Mosquito Control Association, 7(1), 56–62.

    CAS  Google Scholar 

  • Russell, T. L., Brown, M. D., Purdie, D. M., Ryan, P. A., & Kay, B. H. (2003). Efficacy of VectoBac (Bacillus thuringiensis variety israelensis) formulations for mosquito control in Australia. Journal of Economic Entomology, 96(6), 1786–1791.

    Article  Google Scholar 

  • Sánchez, M. I., Green, A. J., & Castellanos, E. M. (2006). Spatial and temporal fluctuations in presence and use of chironomid prey by shorebirds in the Odiel saltpans, south-west Spain. Hydrobiologia, 567(1), 329–340.

    Article  Google Scholar 

  • Schindler, S., O’Neill, F. H., Biró, M., Damm, C., Gasso, V., Kanka, R., van der Sluis, T., Krug, A., Lauwaars, S. G., Sebesvari, Z., Pusch, M., Baranovsky, B., Ehlert, T., Neukirchen, B., Martin, J. R., Euller, K., Mauerhofer, V., & Wrbka, T. (2016). Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries. Biodiversity and Conservation, 25(7), 1349–1382.

    Article  Google Scholar 

  • Schmid, P.-E. (1993). A key to the larval Chironomidae and their instars from Austrian Danube region streams and rivers. Part I, Diamesinae, Prodiamesinae and Orthocladiinae. Wasser und Abwasser (Wien), 93(Suppl. 3), 514.

    Google Scholar 

  • Simpson, G., Oksanen, J., Blanchet, F. G., Stevens, H., Wagner, H., Solymos, P., et al. (2011). Vegan: community ecology package. http://r-forge.r-project.org/projects/vegan/. Accessed 6 June 2011.

  • Steinhart, M. (2000). The life cycle of Hydrobaenus lugubris Fries, 1830, a chironomid (Diptera) species dwelling in temporary waters. Verhandlungen der Internationalen Vereinigung für Limnologie, 27(4), 2392–2395.

    Google Scholar 

  • Stevens, M. M., Akhurst, R. J., Clifton, M. A., & Hughes, P. A. (2004). Factors affecting the toxicity of Bacillus thuringiensis var. israelensis and Bacillus sphaericus to fourth instar larvae of Chironomus tepperi (Diptera: Chironomidae). Journal of Invertebrate Pathology, 86(3), 104–110.

    Article  CAS  Google Scholar 

  • Theissinger, K., Kästel, A., Elbrecht, V., Makkonen, J., Michiels, S., Schmidt, S. I., et al. (2018). Using DNA metabarcoding for assessing chironomid diversity and community change in mosquito controlled temporary wetlands. Metabarcoding and Metagenomics, e21060, 2.

    Google Scholar 

  • Tockner, K., Bunn, S. E., Gordon, C., Naiman, R. J., Quinn, G. P., & Stanford, J. A. (2008). Flood plains: critically threatened ecosystems. In N. V. C. Polunin (Ed.), Aquatic Ecosystems. Trends and Global Prospects (pp. 45–62): Cambridge University Press.

  • Tockner, K., Schiemer, F., Baumgartner, C., Kum, G., Weigand, E., Zweimüller, I., & Ward, J. V. (1999). The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system. Regulated Rivers Research & Management, 15, 245–258.

    Article  Google Scholar 

  • Umweltbundesamt. (1999). Fließende Grenzen. Lebensraum March-Thaya-Auen. Wien: Umweltbundesamt.

    Google Scholar 

  • Underwood, A. J. (1993). The mechanisms of spatially replicated sampling programmes to detect environmental impacts in a variable world. Australian Journal of Ecology, 18, 99–116.

    Article  Google Scholar 

  • Urbanic, G., Petkovska, V., & Pavlin, M. (2012). The relationship between littoral benthic invertebrates and lakeshore modification pressure in two alpine lakes. Fundamental and Applied Limnology, 180(2), 157–173.

    Article  Google Scholar 

  • Vallenduuk, H., Moller Pillot, H., van der Velde, J., Wiersma, S., & Bij de Vaate, A. (1997). Bijdrage tot de kennis der Nederlands Chironomidae (vedermuggen): der larven van het genus Chironomus. Lelystad: Rijksinst. v. Integr. Zoetwaterbeh. & Afvalwaterbeh., rapp. nr., 97, 053.

    Google Scholar 

  • Vallenduuk, H. J., & Moller Pillot, H. (2007). Chironomidae larvae of the Netherlands and adjacent lowlands: general ecology and Tanypodinae (Vol. 1). Engelska: KNNV Publishing.

    Google Scholar 

  • Vaughan, I. P., Newberry, C., Hall, D. J., Liggett, J. S., & Ormerod, S. J. (2008). Evaluating large-scale effects of Bacillus thuringensis var. israelensis on non-biting midges (Chironomidae) in a eutrophic urban lake. Freshwat Biol, 10(2117–2128).

  • Vaughan, N. (1997). The diets of British bats (Chiroptera). Mammal Revue, 27, 77–94.

    Article  Google Scholar 

  • Wiederholm, T. (Ed.). (1983). Chironomidae of the Holarctic The Region Part 1, Larvae: Ent. Scandinavica Suppl. 19.

  • Williams, D. D. (2006). The Biology of Temporary Waters. Oxford - New York: Oxford University Press.

    Google Scholar 

  • Wolfram, G. (1996). Distribution and production of chironomids (Diptera: Chironomidae) in a shallow, alkaline lake (Neusiedler see, Austria). Hydrobiologia, 318(1–2), 103–115.

    Article  Google Scholar 

  • Wolfram, G., Donabaum, K., Schagerl, M., & Kowarc, V. A. (1999). The zoobenthic community of shallow salt pans in Austria—preliminary results on phenology and the impact of salinity on benthic invertebrates. Hydrobiologia, 408(409), 193–202.

    Google Scholar 

  • Zuna-Kratky, T., Kalivodová, E., Kürthy, A., Horal, D., & Horák, P. (2000). Die Vögel der March-Thaya-Auen im österreichisch-slowakisch-tschechischen Grenzraum. Deutsch-Wagram: Distelverein.

    Google Scholar 

  • Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer-Verlag.

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Silvia Hintermaier for the chemical analyses; Georg Fürnweger, Roland Hainz, Catherine Hörl, Romana Niedermayr, and Elisabeth Sigmund for their support in field work; Mirna Ruiz-Pum for sorting the samples; and Wolfgang Lechthaler for the identification of the chironomid larvae. This study was determined by an official decision of the Federal State Government of Lower Austria and funded by the Regionalverband March-Thaya-Auen and the Verein “Biologische Gelsenregulierung entlang Thaya und March”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Wolfram.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolfram, G., Wenzl, P. & Jerrentrup, H. A multi-year study following BACI design reveals no short-term impact of Bti on chironomids (Diptera) in a floodplain in Eastern Austria. Environ Monit Assess 190, 709 (2018). https://doi.org/10.1007/s10661-018-7084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7084-6

Keywords

Navigation