Skip to main content

Advertisement

Log in

Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Vegetation is commonly monitored to improve efficiency of various agricultural practices. Spatial and temporal changes in plant growth and development can be monitored with the aid of remote sensing techniques employing ground, aerial, and satellite platforms. Unmanned aerial vehicles (UAV) and multi-spectral cameras developed for UAVs have an important potential for agricultural management activities with high-resolution spatial and temporal images. However, UAV images should be assessed based on ground measurements for using these images as a decision-support tool in agriculture. This study was conducted to estimate sunflower leaf area index (LAI) and yield with the aid of Normalized Difference Vegetation Index (NDVI) images generated from raw UAV images. Furthermore, UAV-based NDVI values were compared with NDVI values calculated by using hyper-spectral measurements carried out with a ground-based spectroradiometer. Between July and August of 2017, six flight missions were conducted and spectral measurements were made simultaneously. A significant correlation (R2 = 0.77) was determined between NDVI values that belong to UAV platform and spectroradiometer. Also, regression models developed for sunflower LAI and yield estimation depending UAV-based NDVI have R2 values of 0.88 and 0.91, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agüera, F., Carvajal, F., & Pérez, M. (2011). Measuring sunflower nitrogen status from an unmanned aerial vehicle-based system and an on the ground device. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, 33–37.

    Google Scholar 

  • Akay, H. (2016). Different applictions agricultural and technological features impact in organic paddy (Oryza sativa L.) growing. Ondokuz Mayıs University (PhD Thesis), Turkey.

  • Anonymous (2018). http://forum.developer.parrot.com/t/parrot-announcement-release-of-application-notes/5455. Accessed 15.05.2018.

  • Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E. (2009). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing, 47(3), 722–738.

    Article  Google Scholar 

  • Cano, E., Horton, R., Liljegren, C., & Bulanon, D. M. (2017). Comparison of small unmanned aerial vehicles performance using image processing. Journal of Imaging, 3(1), 4.

    Article  Google Scholar 

  • Çetin, S., Köksal, E. S., & Tunca, E. (2017). Enerji dengesine dayalı evapotranspirasyon haritalamada içsel kalibrasyon için temel hücrelerin görüntü filtreleme yaklaşımı ile seçilmesi. Anadolu Tarım Bilimleri Dergisi, 32(3), 330–339.

    Article  Google Scholar 

  • Córcoles, J. I., Ortega, J. F., Hernández, D., & Moreno, M. A. (2013). Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems Engineering, 115(1), 31–42.

    Article  Google Scholar 

  • Doğan, Z., Arslan, S., & Berkman, A. N. (2015). Türkiye’de Tarım Sektörünün İktisadi Gelişimi Ve Sorunları: Tarihsel Bir Bakış. Ömer Halisdemir Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 8(1), 29–41.

    Google Scholar 

  • Duan, T., Chapman, S., Guo, Y., & Zheng, B. (2017). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Research, 210, 71–80.

    Article  Google Scholar 

  • Fieuzal, R., Sicre, C. M., & Baup, F. (2017). Estimation of sunflower yield using a simplified agrometeorological model controlled by optical and SAR satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5412–5422.

    Article  Google Scholar 

  • Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115.

    Article  Google Scholar 

  • Göksoy, A., Demir, A., Turan, Z., & Dağüstü, N. (2004). Responses of sunflower (Helianthus annuus L.) to full and limited irrigation at different growth stages. Field Crops Research, 87(2–3), 167–178.

    Article  Google Scholar 

  • Govaerts, B., Sayre, K. D., & Deckers, J. (2006). A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and Tillage Research, 87(2), 163–174.

    Article  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  • Howell, T. A., Evett, S. R., Tolk, J. A., Copeland, K. S., & Marek, T. H. (2015). Evapotranspiration, water productivity and crop coefficients for irrigated sunflower in the US southern High Plains. Agricultural Water Management, 162, 33–46.

    Article  Google Scholar 

  • Karadoğan, T., & Özgödek, Z. (1994). Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Erzurum, 25(2), 188–201.

    Google Scholar 

  • Kim, S. J., & Pollefeys, M. (2008). Robust radiometric calibration and vignetting correction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(4), 562–576.

    Article  Google Scholar 

  • Köksal, E. (2012). Sulama Suyu Yönetiminde Uzaktan Algılama Tekniklerinin Kullanımı. Anadolu Tarım Bilimleri Dergisi, 22(3), 306–315.

    Google Scholar 

  • Machekposhti, M. F., Shahnazari, A., Ahmadi, M. Z., Aghajani, G., & Ritzema, H. (2017). Effect of irrigation with sea water on soil salinity and yield of oleic sunflower. Agricultural Water Management, 188, 69–78.

    Article  Google Scholar 

  • Mengmeng, D., Noboru, N., Atsushi, I., & Yukinori, S. (2017). Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle. International Journal of Agricultural and Biological Engineering, 10(5), 1–13.

    Article  Google Scholar 

  • MGM (2018). www.mgm.gov.tr.

  • Moran, M. S., Maas, S. J., & Pinter Jr., P. J. (1995). Combining remote sensing and modeling for estimating surface evaporation and biomass production. Remote Sensing Reviews, 12(3–4), 335–353.

    Article  Google Scholar 

  • Mozgeris, G., Jonikavičius, D., Jovarauskas, D., Zinkevičius, R., Petkevičius, S., & Steponavičius, D. (2018). Imaging from manned ultra-light and unmanned aerial vehicles for estimating properties of spring wheat. Precision Agriculture, 19(5), 876–894.

    Article  Google Scholar 

  • Potgieter, A. B., George-Jaeggli, B., Chapman, S. C., Laws, K., Suárez Cadavid, L. A., Wixted, J., Watson, J., Eldridge, M., Jordan, D. R., & Hammer, G. L. (2017). Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Frontiers in Plant Science, 8, 1532.

    Article  Google Scholar 

  • Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13(4), 517–523.

    Article  Google Scholar 

  • Vega, F. A., Ramírez, F. C., Saiz, M. P., & Rosúa, F. O. (2015). Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop. Biosystems Engineering, 132, 19–27.

    Article  Google Scholar 

  • Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190.

    Article  Google Scholar 

  • Yu, B., & Shang, S. (2017). Multi-year mapping of maize and sunflower in Hetao Irrigation District of China with high spatial and temporal resolution vegetation index series. Remote Sensing, 9(8), 855.

    Article  Google Scholar 

  • Zhou, X., Zheng, H., Xu, X., He, J., Ge, X., Yao, X., et al. (2017). Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 246–255.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Ondokuz Mayis University, Agricultural Research and Implementation Center. Many thanks, to Ass. Prof. Dr. Hasan Akay for his contribution to agronomic applications, to Osman Kop and field workers for their valuable effort during field works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Tunca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunca, E., Köksal, E.S., Çetin, S. et al. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environ Monit Assess 190, 682 (2018). https://doi.org/10.1007/s10661-018-7064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7064-x

Keywords

Navigation