Skip to main content

Advertisement

Log in

Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fires are a major disturbance to forest ecosystems and socioeconomic activities in Mazandaran province, northern Iran, particularly in the Hyrcanian forest sub-region. Mapping the spatial distribution of fire hazard levels and the most important influencing factors is crucial to enhance fire management strategies. In this research, MODIS hotspots were used to represent fire events covering Mazandaran Province over the period 2000–2016. We applied the ecological niche theory through the maximum entropy (MaxEnt) method to estimate fire hazard potential and the association with different anthropogenic and biophysical conditions, by applying different modeling approaches (heuristic, permutation, and jackknife metrics). Our results show that higher fire likelihood is related to density of settlements, distance to roads up to 3 km and to land cover types associated with agricultural activities, indicating a strong influence of human activities in fire occurrence in the region. To decrease fire hazard, prevention activities related to population awareness and the adjustment of farming practices need to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi, O., Kamkar, B., Shirvani, Z., Teixeira da Silva, J. A., & Buchroithner, M. F. (2016). Spatial-statistical analysis of factors determining forest fires: A case study from Golestan, Northeast Iran (pp. 1–14). Natural Hazards and Risk: Geomatics. https://doi.org/10.1080/19475705.2016.1206629.

    Book  Google Scholar 

  • Abdi, O., Kamkar, B., Shirvani, Z., Teixeira da Silva, J. A., & Buchroithner, M. F. (2018). Spatial-statistical analysis of factors determining forest fires: A case study from Golestan, Northeast Iran. Geomatics, Natural Hazards and Risk, 9(1), 267–280. https://doi.org/10.1080/19475705.2016.1206629.

    Article  Google Scholar 

  • Adab, H. (2017). Landfire hazard assessment in the Caspian Hyrcanian forest ecoregion with the long-term MODIS active fire data. Natural Hazards, 87(3), 1807–1825. https://doi.org/10.1007/s11069-017-2850-2.

    Article  Google Scholar 

  • Adab, H., Devi Kanniah, K., & Beringer, J. (2016). Estimating and up-scaling fuel moisture and leaf dry matter content of a temperate humid forest using multi resolution remote sensing data. Remote Sensing, 8(11), 961.

    Google Scholar 

  • Adab, H., Kanniah, K. D., Solaimani, K., & Sallehuddin, R. (2015). Modelling static fire hazard in a semi-arid region using frequency analysis. International Journal of Wildland Fire, 24(6), 763–777. https://doi.org/10.1071/WF13113.

    Article  Google Scholar 

  • Adel, M. N., Pourbabaei, H., & Dey, D. C. (2014). Ecological species group—environmental factors relationships in unharvested beech forests in the north of Iran. Ecological Engineering, 69, 1–7.

    Google Scholar 

  • Agee, J. K. (1996). Fire ecology of Pacific Northwest forests. Washington, D.C: Island press.

  • Agee, J. K., Wakimoto, R. H., & Biswell, H. H. (1976). Fire and fuel dynamics of Sierra Nevada conifers. Forest Ecology and Management, 1, 255–265.

    Google Scholar 

  • Ajin, R., Loghin, A.-M., Vinod, P., & Jacob, M. (2016). Forest fire risk zone mapping using RS and GIS techniques: A study in Achankovil forest division, Kerala, India. [original article]. Journal of Earth, Environment and Health Sciences, 2(3), 109–115. https://doi.org/10.4103/2423-7752.199288.

    Article  Google Scholar 

  • Akhani, H., Djamali, M., Ghorbanalizadeh, A., & Ramezani, E. (2010). Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pakistan Journal of Botany, 42, 231–258.

    Google Scholar 

  • Allard, G. B. (2001). The fire situation in Islamic Republic of Iran. Global Forest Fire Assessment 1990-2000 (pp. 495). Rome, Italy: FAO, Forestry Department.

  • Alvares, C. A., Stape, J. L., Sentelhas, P. C., de Moraes, G., Leonardo, J., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728.

    Google Scholar 

  • Anderson, R. P., & Gonzalez Jr., I. (2011). Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling, 222(15), 2796–2811.

    Google Scholar 

  • Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences, 110(16), 6442–6447. https://doi.org/10.1073/pnas.1211466110.

    Article  Google Scholar 

  • Arino, O., Gross, D., Ranera, F., Leroy, M., Bicheron, P., Brockman, C., et al. (2007). GlobCover: ESA service for global land cover from MERIS. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, (pp. 2412–2415): IEEE.

  • Armenteras, D., Barreto, J. S., Tabor, K., Molowny-Horas, R., & Retana, J. (2017). Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences, 14(11), 2755–2765.

    Google Scholar 

  • Armién, A. G., Armién, B., Koster, F., Pascale, J. M., Avila, M., Gonzalez, P., et al. (2009). Hantavirus infection and habitat associations among rodent populations in agroecosystems of Panama: Implications for human disease risk. The American Journal of Tropical Medicine and Hygiene, 81(1), 59–66.

    Google Scholar 

  • Arpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258–270. https://doi.org/10.1016/j.apgeog.2014.05.015.

    Article  Google Scholar 

  • Baldwin, R. A. (2009). Use of maximum entropy modeling in wildlife research. Entropy, 11(4), 854–866.

    Google Scholar 

  • Bani Assadi, S., Kaboli, M., Etemad, V., Ghadiri Khanaposhtani, M., & Tohidifar, M. (2015). Habitat selection of cavity-nesting birds in the Hyrcanian deciduous forests of northern Iran. Ecological Research, 30(5), 889–897. https://doi.org/10.1007/s11284-015-1293-z.

    Article  Google Scholar 

  • Barros, A. M. G., Pereira, J. M. C. (2014). Wildfire Selectivity for Land Cover Type: Does Size Matter? PLoS ONE, 9(1), e84760. https://doi.org/10.1371/journal.pone.0084760.

    Article  CAS  Google Scholar 

  • Bashari, H., Naghipour, A. A., Khajeddin, S. J., Sangoony, H., & Tahmasebi, P. (2016). Risk of fire occurrence in arid and semi-arid ecosystems of Iran: An investigation using Bayesian belief networks. Environmental Monitoring and Assessment, 188(9), 531. https://doi.org/10.1007/s10661-016-5532-8.

    Article  Google Scholar 

  • Bistinas, I., Oom, D., Sá, A. C., Harrison, S. P., Prentice, I. C., & Pereira, J. M. (2013). Relationships between human population density and burned area at continental and global scales. PLoS One, 8(12), e81188.

    Google Scholar 

  • Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77.

    Google Scholar 

  • Bottero, A., D'Amato, A. W., Palik, B. J., Bradford, J. B., Fraver, S., Battaglia, M. A., & Asherin, L. A. (2017). Density-dependent vulnerability of forest ecosystems to drought. Journal of Applied Ecology, 54(6), 1605–1614. https://doi.org/10.1111/1365-2664.12847.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Balch, J., Artaxo, P., Bond, W. J., Cochrane, M. A., D’Antonio, C. M., DeFries, R., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Mack, M., Moritz, M. A., Pyne, S., Roos, C. I., Scott, A. C., Sodhi, N. S., & Swetnam, T. W. (2011). The human dimension of fire regimes on earth. Journal of Biogeography, 38(12), 2223–2236. https://doi.org/10.1111/j.1365-2699.2011.02595.x.

    Article  Google Scholar 

  • Bowman, D. M. J. S., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M., Cochrane, M. A., D'Antonio, C. M., DeFries, R. S., Doyle, J. C., Harrison, S. P., Johnston, F. H., Keeley, J. E., Krawchuk, M. A., Kull, C. A., Marston, J. B., Moritz, M. A., Prentice, I. C., Roos, C. I., Scott, A. C., Swetnam, T. W., van der Werf, G. R., & Pyne, S. J. (2009). Fire in the earth system. Science, 324(5926), 481–484. https://doi.org/10.1126/science.1163886.

    Article  CAS  Google Scholar 

  • Brotons, L., Thuiller, W., Araújo, M. B., & Hirzel, A. H. (2004). Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography, 27(4), 437–448.

    Google Scholar 

  • Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.

    Google Scholar 

  • Brown, J. L., Bennett, J. R., & French, C. M. (2017). SDMtoolbox 2.0: The next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ, 5, e4095.

    Google Scholar 

  • Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.

    Google Scholar 

  • Caldararo, N. J. S. o.t. T. E. (2002). Human ecological intervention and the role of forest fires in human ecology. 292(3), 141–165.

  • Carmo, M., Moreira, F., Casimiro, P., & Vaz, P. (2011). Land use and topography influences on wildfire occurrence in northern Portugal. Landscape and Urban Planning, 100(1–2), 169–176.

    Google Scholar 

  • Chandra, K., & Bhardwaj, A. K. (2015). Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and microbial status of soil. International Journal of Agriculture and Forestry, 5(2), 69–78.

    Google Scholar 

  • Chen, F., Du, Y., Niu, S., & Zhao, J. (2015). Modeling forest lightning fire occurrence in the Daxinganling mountains of northeastern China with MAXENT. Forests, 6(5), 1422–1438.

    Google Scholar 

  • Chuvieco, E., Martínez, S., Román, M. V., Hantson, S., & Pettinari, M. L. (2014). Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Global Ecology and Biogeography, 23(2), 245–258. https://doi.org/10.1111/geb.12095.

    Article  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Google Scholar 

  • Connor, C. D. O., Calkin, D. E., & Thompson, M. P. (2017). An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management. International Journal of Wildland Fire, 26(7), 587–597. https://doi.org/10.1071/WF16135.

    Article  Google Scholar 

  • Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015). System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geoscientific Model Development Discussions, 8(2), 2271–2312.

    Google Scholar 

  • Curt, T., & Delcros, P. (2010). Managing road corridors to limit fire hazard. A simulation approach in southern France. Ecological Engineering, 36(4), 457–465.

    Google Scholar 

  • De la Riva, J., Pérez-Cabello, F., Lana-Renault, N., & Koutsias, N. (2004). Mapping wildfire occurrence at regional scale. Remote Sensing of Environment, 92(3), 363–369.

    Google Scholar 

  • Devisscher, T., Anderson, L. O., Aragão, L. E., Galván, L., & Malhi, Y. (2016). Increased wildfire risk driven by climate and development interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS One, 11(9), e0161323.

    Google Scholar 

  • Dimitrakopoulos, A. P. (2002). Mediterranean fuel models and potential fire behaviour in Greece. International Journal of Wildland Fire, 11(2), 127–130. https://doi.org/10.1071/WF02018.

    Article  Google Scholar 

  • Dwyer, E., Grégoire, J.-M., & Pereira, J. M. C. (2000). Climate and vegetation as driving factors in global fire activity. In J. L. Innes, M. Beniston, & M. M. Verstraete (Eds.), Biomass burning and its inter-relationships with the climate system (pp. 171–191). Dordrecht: Springer Netherlands.

    Google Scholar 

  • Earl, D. E. (1975). Forest energy and economic development. Clarendon Press.

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.

    Google Scholar 

  • Emadi, M., Shahriari, A. R., Sadegh-Zadeh, F., Jalili Seh-Bardan, B., & Dindarlou, A. (2016). Geostatistics-based spatial distribution of soil moisture and temperature regime classes in Mazandaran province, northern Iran. Archives of Agronomy and Soil Science, 62(4), 502–522. https://doi.org/10.1080/03650340.2015.1065607.

    Article  CAS  Google Scholar 

  • Eshliki, S. A., & Kaboudi, M. (2012). Community perception of tourism impacts and their participation in tourism planning: A case study of Ramsar, Iran. Procedia - Social and Behavioral Sciences, 36, 333–341. https://doi.org/10.1016/j.sbspro.2012.03.037.

    Article  Google Scholar 

  • Eskandari, S., & Chuvieco, E. (2015). Fire danger assessment in Iran based on geospatial information. International Journal of Applied Earth Observation and Geoinformation, 42, 57–64.

    Google Scholar 

  • FAO (2015). Global forest resources assessment 2015—desk reference. (pp. 253). Rome: FAO/UN.

  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International journal of climatology, n/a-n/a, 37, 4302–4315. https://doi.org/10.1002/joc.5086.

    Article  Google Scholar 

  • Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B., & Wotton, B. (2006). Forest fires and climate change in the 21 st century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847–859.

    Google Scholar 

  • Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., & Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5), 483–507.

    Google Scholar 

  • Franklin, J. (2010). Mapping species distributions: Spatial inference and prediction. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M., & Lampin, C. (2013). A review of the main driving factors of forest fire ignition over Europe. Environmental Management, 51(3), 651–662.

    Google Scholar 

  • Giglio, L., Randerson, J. T., & Werf, G. R. (2013). Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317–328.

    Google Scholar 

  • Giglio, L., Schroeder, W., & Justice, C. O. (2016). The collection 6 MODIS active fire detection algorithm and fire products. Remote Sensing of Environment, 178, 31–41. https://doi.org/10.1016/j.rse.2016.02.054.

    Article  Google Scholar 

  • Grégoire, J.-M., Eva, H. D., Belward, A. S., Palumbo, I., Simonetti, D., & Brink, A. (2013). Effect of land-cover change on Africa's burnt area. International Journal of Wildland Fire, 22(2), 107.

    Google Scholar 

  • Guillera-Arroita, G., Lahoz-Monfort, J. J., & Elith, J. (2014). Maxent is not a presence–absence method: A comment on Thibaud et al. Methods in Ecology and Evolution, 5(11), 1192–1197.

    Google Scholar 

  • Guo, F., Su, Z., Wang, G., Sun, L., Tigabu, M., Yang, X., et al. (2017). Understanding fire drivers and relative impacts in different Chinese forest ecosystems. Science of the Total Environment, 605, 411–425.

    Google Scholar 

  • Hantson, S., Lasslop, G., Kloster, S., & Chuvieco, E. (2015). Anthropogenic effects on global mean fire size. International Journal of Wildland Fire, 24(5), 589–596. https://doi.org/10.1071/WF14208.

    Article  Google Scholar 

  • Hantson, S., Padilla, M., Corti, D., & Chuvieco, E. (2013). Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, 131, 152–159.

    Google Scholar 

  • Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773–785.

    Google Scholar 

  • Itziar, R. U., Gonzalo, Z., Joaquín, B., José, M. G., Jesús San, M.-A., Andrea, C., et al. (2015). Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 10(11), 114013.

    Google Scholar 

  • Jafarzadeh, A. A., Mahdavi, A., & Jafarzadeh, H. (2017). Evaluation of forest fire risk using the Apriori algorithm and fuzzy c-means clustering. Journal of Forest Science, 63(8), 370–380.

    Google Scholar 

  • Jahdi, R., Salis, M., Darvishsefat, A. A., Alcasena, F., Mostafavi, M. A., Etemad, V., Lozano, O. M., & Spano, D. (2016). Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran. Forestry: An International Journal of Forest Research, 89(2), 136–149. https://doi.org/10.1093/forestry/cpv045.

    Article  Google Scholar 

  • Justice, C., Giglio, L., Korontzi, S., Owens, J., Morisette, J., Roy, D., et al. (2002). The MODIS fire products. Remote Sensing of Environment, 83(1), 244–262.

    Google Scholar 

  • Kadej, M., Zając, K., Smolis, A., Tarnawski, D., Tyszecka, K., Malkiewicz, A., et al. (2017). The great capricorn beetle Cerambyx cerdo L. in south-western Poland—The current state and perspectives of conservation in one of the recent distribution centres in Central Europe. Nature Conservation, 19, 111–134. https://doi.org/10.3897/natureconservation.19.11838.

    Article  Google Scholar 

  • Kasischke, E. S., Verbyla, D. L., Rupp, T. S., McGuire, A. D., Murphy, K. A., Jandt, R., Barnes, J. L., Hoy, E. E., Duffy, P. A., Calef, M., & Turetsky, M. R. (2010). Alaska’s changing fire regime—Implications for the vulnerability of its boreal forests this article is one of a selection of papers from the dynamics of change in Alaska’s boreal forests: Resilience and vulnerability in response to climate warming. Canadian Journal of Forest Research, 40(7), 1313–1324.

    Google Scholar 

  • Ketterings, Q. M., & Bigham, J. M. (2000). Soil color as an indicator of slash-and-burn fire severity and soil fertility in Sumatra, Indonesia. Soil Science Society of America Journal, 64(5), 1826–1833.

    CAS  Google Scholar 

  • Kibria, A. S., Behie, A., Costanza, R., Groves, C., & Farrell, T. (2017). The value of ecosystem services obtained from the protected forest of Cambodia: The case of Veun Sai-Siem Pang National Park. Ecosystem Services, 26, 27–36.

    Google Scholar 

  • Knorr, W., Kaminski, T., Arneth, A., & Weber, U. (2014). Impact of human population density on fire frequency at the global scale. Biogeosciences, 11(4), 1085–1102. https://doi.org/10.5194/bg-11-1085-2014.

    Article  Google Scholar 

  • Korontzi, S., McCarty, J., Loboda, T., Kumar, S., & Justice, C. (2006). Global distribution of agricultural fires in croplands from 3 years of moderate resolution imaging spectroradiometer (MODIS) data. Global Biogeochemical Cycles, 20(2).

    Google Scholar 

  • Kramer-Schadt, S., Niedballa, J., Pilgrim, J. D., Schröder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A. K., Augeri, D. M., Cheyne, S. M., Hearn, A. J., Ross, J., Macdonald, D. W., Mathai, J., Eaton, J., Marshall, A. J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J. W., Breitenmoser-Wuersten, C., Belant, J. L., Hofer, H., & Wilting, A. (2013). The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19(11), 1366–1379.

    Google Scholar 

  • Krawchuk, M., & Moritz, M. (2014). Burning issues: Statistical analyses of global fire data to inform assessments of environmental change. Environmetrics, 25(6), 472–481.

    Google Scholar 

  • Krawchuk, M. A., Moritz, M. A., Parisien, M.-A., Van Dorn, J., & Hayhoe, K. (2009). Global pyrogeography: The current and future distribution of wildfire. PLoS One, 4(4), e5102.

    Google Scholar 

  • Kumar, S., & Stohlgren, T. J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and the Natural Environment, 1(4), 094–098.

    Google Scholar 

  • Lentz, D. L., Bye, R., & Sánchez-Cordero, V. (2008). Ecological niche modeling and distribution of wild sunflower (Helianthus annuus L.) in Mexico. International Journal of Plant Sciences, 169(4), 541–549.

    Google Scholar 

  • Lezama-Ochoa, N., Murua, H., Chust, G., Van Loon, E., Ruiz, J., Hall, M., et al. (2016). Present and future potential habitat distribution of Carcharhinus falciformis and Canthidermis maculata by-catch species in the tropical tuna purse-seine fishery under climate change. [original research]. Frontiers in Marine Science, 3(34). https://doi.org/10.3389/fmars.2016.00034.

  • Littell, J. S., McKenzie, D., Peterson, D. L., & Westerling, A. L. (2009). Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications, 19(4), 1003–1021.

    Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P., & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393.

    Google Scholar 

  • Louzao, M., Delord, K., García, D., Boué, A., & Weimerskirch, H. (2012). Protecting persistent dynamic oceanographic features: Transboundary conservation efforts are needed for the critically endangered balearic shearwater. PLoS One, 7(5), e35728.

    CAS  Google Scholar 

  • MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8), 2248–2255.

    Google Scholar 

  • MacMillan, R., & Shary, P. (2008). Geomorphometry: Concepts, software, applications. Elsevier Science. Chap. Landforms and Landforms elements in geomorphometry.

  • Mahdavi, A. (2012). Forests and rangelands? Wildfire risk zoning using GIS and AHP techniques. Caspian Journal of Environmental Sciences, 10(1), 43–52.

    Google Scholar 

  • Mahdavi, A., & Naghdi, R. (2007). Information and data flow analysis for forestry sector in Iran as a basic requirement for designing a forest information system (FIS). Caspian Journal of Environmental Sciences, 5(2), 147–153.

    Google Scholar 

  • Marchal, J., Cumming, S. G., & McIntire, E. J. (2017). Land cover, more than monthly fire weather, drives fire-size distribution in southern Québec forests: Implications for fire risk management. PLoS One, 12(6), e0179294.

    Google Scholar 

  • Martínez-Fernández, J., Chuvieco, E., & Koutsias, N. (2013). Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression. Natural Hazards and Earth System Sciences, 13(2), 311–327.

    Google Scholar 

  • Massada, A. B., Syphard, A. D., Stewart, S. I., & Radeloff, V. C. (2013). Wildfire ignition-distribution modelling: A comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2), 174–183.

    Google Scholar 

  • Matthews, S. (2014). Dead fuel moisture research: 1991–2012. International Journal of Wildland Fire, 23(1), 78–92.

    Google Scholar 

  • Miller, R. H., Masuoka, P., Klein, T. A., Kim, H.-C., Somer, T., & Grieco, J. (2012). Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Neglected Tropical Diseases, 6(6), e1678.

    Google Scholar 

  • Mirzaei, R. (2013). Modeling the socioeconomic and environmental impacts of nature-based tourism to the host communities and their support for tourism : perceptions of local population, Mazandaran, north of Iran. Universitätsbibliothek, Gießen.

  • Modugno, S., Balzter, H., Cole, B., & Borrelli, P. (2016). Mapping regional patterns of large forest fires in wildland–urban interface areas in Europe. Journal of Environmental Management, 172, 112–126. https://doi.org/10.1016/j.jenvman.2016.02.013.

    Article  Google Scholar 

  • Mohammadi, F., Bavaghar, M. P., & Shabanian, N. (2014). Forest fire risk zone modeling using logistic regression and GIS: An Iranian case study. Small-scale Forestry, 13(1), 117–125. https://doi.org/10.1007/s11842-013-9244-4.

    Article  Google Scholar 

  • Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the kappa statistic. Ecological Modelling, 62(4), 275–293.

    Google Scholar 

  • Moreira, F., Vaz, P., Catry, F., & Silva, J. S. (2009). Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. International Journal of Wildland Fire, 18(5), 563–574.

    Google Scholar 

  • Najafabadi, A. T. P., Gorgani, F., & Najafabadi, M. O. (2015). Modeling forest fires in Mazandaran Province, Iran. Journal of Forestry Research, 26(4), 851–858. https://doi.org/10.1007/s11676-015-0107-z.

    Article  Google Scholar 

  • Nami, M., Jaafari, A., Fallah, M., & Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International journal of Environmental Science and Technology, 15(2), 373–384.

    Google Scholar 

  • Nilsson, K., Sangster, M., & Konijnendijk, C. C. (2011). Forests, trees and human health and well-being: Introduction. In Forests, trees and human health (pp. 1–19): Springer.

  • Nunes, A., Lourenço, L., & Meira, A. C. (2016). Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Science of the Total Environment, 573, 1190–1202.

    CAS  Google Scholar 

  • Oliveira, S., Félix, F., Nunes, A., Lourenço, L., Laneve, G., & Sebastián-López, A. (2018). Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. Journal of Environmental Management, 206, 158–169. https://doi.org/10.1016/j.jenvman.2017.10.003.

    Article  Google Scholar 

  • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J. M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management, 275, 117–129.

    Google Scholar 

  • Oliveira, S., Pereira, J. M. C., San-Miguel-Ayanz, J., & Lourenço, L. (2014). Exploring the spatial patterns of fire density in southern Europe using geographically weighted regression. Applied Geography, 51, 143–157. https://doi.org/10.1016/j.apgeog.2014.04.002.

    Article  Google Scholar 

  • Oliveira, S., Zêzere, J. L., Queirós, M., & Pereira, J. M. (2017). Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography, 88, 104–117.

    Google Scholar 

  • Özbayoğlu, A. M., & Bozer, R. (2012). Estimation of the burned area in forest fires using computational intelligence techniques. Procedia Computer Science, 12, 282–287.

    Google Scholar 

  • Pahlavani, P., & Bigdeli, B. (2017). Providing the fire risk map in forest area using a geographically weighted regression model with gaussin kernel and modis images, a case study: Golestan Province. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.

  • Parente, J., Pereira, M. G., & Tonini, M. (2016). Space-time clustering analysis of wildfires: The influence of dataset characteristics, fire prevention policy decisions, weather and climate. Science of the Total Environment, 559(Supplement C), 151–165. https://doi.org/10.1016/j.scitotenv.2016.03.129.

    Article  CAS  Google Scholar 

  • Parisien, M.-A., Miller, C., Parks, S. A., DeLancey, E. R., Robinne, F.-N., & Flannigan, M. D. (2016). The spatially varying influence of humans on fire probability in North America. Environmental Research Letters, 11(7), 075005.

    Google Scholar 

  • Parisien, M.-A., & Moritz, M. A. (2009). Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79(1), 127–154.

    Google Scholar 

  • Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Townsend Peterson, A. (2007). Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), 102–117.

    Google Scholar 

  • Penman, T. D., Bradstock, R. A., & Price, O. (2013). Modelling the determinants of ignition in the Sydney Basin, Australia: Implications for future management. International Journal of Wildland Fire, 22(4), 469–478. https://doi.org/10.1071/WF12027.

    Article  Google Scholar 

  • Pereira, M. G., Aranha, J., & Amraoui, M. (2014). Land cover fire proneness in Europe. Forest Systems, 23(3), 598.

    Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231–259.

    Google Scholar 

  • Reed, D. J., Spencer, T., Murray, A. L., French, J. R., & Leonard, L. (1999). Marsh surface sediment deposition and the role of tidal creeks: Implications for created and managed coastal marshes. Journal of Coastal Conservation, 5(1), 81–90.

    Google Scholar 

  • Renard, Q., Pélissier, R., Ramesh, B. R., & Kodandapani, N. (2012). Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), 368–379. https://doi.org/10.1071/WF10109.

    Article  Google Scholar 

  • Richards, S. A., Possingham, H. P., & Tizard, J. (1999). Optimal fire management for maintaining community diversity. Ecological Applications, 9(3), 880–892. https://doi.org/10.1890/1051-0761(1999)009[0880:OFMFMC]2.0.CO;2.

    Google Scholar 

  • Rodrigues, M., & de la Riva, J. (2014). An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environmental Modelling & Software, 57, 192–201.

    Google Scholar 

  • Romero-Calcerrada, R., Novillo, C., Millington, J., & Gomez-Jimenez, I. (2008). GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23(3), 341–354.

    Google Scholar 

  • Ruiz-Mirazo, J., Martínez-Fernández, J., & Vega-García, C. J. J. o. e. m. (2012). Pastoral wildfires in the Mediterranean: Understanding their linkages to land cover patterns in managed landscapes. 98, 43–50.

    Google Scholar 

  • Russo, A., Gouveia, C. M., Páscoa, P., DaCamara, C. C., Sousa, P. M., & Trigo, R. M. (2017). Assessing the role of drought events on wildfires in the Iberian Peninsula. Agricultural and Forest Meteorology, 237–238(Supplement C), 50–59. https://doi.org/10.1016/j.agrformet.2017.01.021.

    Article  Google Scholar 

  • San-Miguel-Ayanz, J., Rodrigues, M., de Oliveira, S. S., Pacheco, C. K., Moreira, F., Duguy, B., et al. (2012). Land cover change and fire regime in the European Mediterranean region. In Post-fire management and restoration of southern European forests (pp. 21–43): Springer.

  • Satir, O., Berberoglu, S., & Donmez, C. (2016). Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomatics, Natural Hazards and Risk, 7(5), 1645–1658. https://doi.org/10.1080/19475705.2015.1084541.

    Article  Google Scholar 

  • Satoh, K., Song, W., & Yang, K. T. (2004) A study of forest fire danger prediction system in Japan. In Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004., 30 Aug.-3 Sept. 2004 (pp. 598–602). doi:https://doi.org/10.1109/DEXA.2004.1333540.

  • Scharnweber, T., Rietschel, M., & Manthey, M. (2007). Degradation stages of the Hyrcanian forests in southern Azerbaijan. Archiv für Naturschutz und Landschaftsforschung, 46(2), 133–156.

    Google Scholar 

  • Schoennagel, T., Veblen, T. T., & Romme, W. H. (2004). The interaction of fire, fuels, and climate across Rocky Mountain forests. BioScience, 54(7), 661–676. https://doi.org/10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2.

    Google Scholar 

  • Shafiei, A. B., Akbarinia, M., Jalali, G., & Hosseini, M. (2010). Forest fire effects in beech dominated mountain forest of Iran. Forest Ecology and Management, 259(11), 2191–2196.

    Google Scholar 

  • Shvidenko, A., & Gonzalez, P. (2005). Forest and woodland systems. In R. Hassan, R. Scholes, & N. Ash (Eds.), Ecosystems and human well-being: Current state and trends, vol 1. Findings of the condition and trends working group of the Millennium Ecosystem Assessment (pp. 587–621). Washington, DC: Island Press.

  • Silva, J. S., Moreira, F., Vaz, P., Catry, F., & Godinho-Ferreira, P. (2009). Assessing the relative fire proneness of different forest types in Portugal. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 143(3), 597–608.

    Google Scholar 

  • Small, R. D., & Bush, B. W. (1985). Smoke production from multiple nuclear explosions in nonurban areas. Science, 229(4712), 465–469. https://doi.org/10.1126/science.229.4712.465.

    Article  CAS  Google Scholar 

  • Sobhani, A., & Khosravi, H. (2015). Assessing environmental sensitivity areas to desertification in north of Iran. Current World Environment, 10(3), 890–902.

    Google Scholar 

  • Sørensen, R., Zinko, U., & Seibert, J. (2006). On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrology and Earth System Sciences, 10(1), 101–112.

    Google Scholar 

  • Stohlgren, T. J. (1988). Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates. Canadian Journal of Forest Research, 18(9), 1127–1135.

    Google Scholar 

  • Šturm, T., & Podobnikar, T. (2017). A probability model for long-term forest fire occurrence in the Karst forest management area of Slovenia. International Journal of Wildland Fire, 26(5), 399–412. https://doi.org/10.1071/WF15192.

    Article  Google Scholar 

  • Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M. K., Stewart, S. I., & Hammer, R. B. (2007). Human influence on California fire regimes. Ecological Applications, 17(5), 1388–1402. https://doi.org/10.1890/06-1128.1.

    Article  Google Scholar 

  • Syphard, A. D., Radeloff, V. C., Keuler, N. S., Taylor, R. S., Hawbaker, T. J., Stewart, S. I., & Clayton, M. K. (2008). Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17(5), 602.

    Google Scholar 

  • Tachikawa, T., Hato, M., Kaku, M., & Iwasaki, A. (2011). Characteristics of ASTER GDEM version 2. In Geoscience and remote sensing symposium (IGARSS), 2011 IEEE international, (pp. 3657–3660): IEEE.

  • Tien Bui, D., Bui, Q.-T., Nguyen, Q.-P., Pradhan, B., Nampak, H., & Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. https://doi.org/10.1016/j.agrformet.2016.11.002.

    Article  Google Scholar 

  • Tien Bui, D., Le, K.-T. T., Nguyen, V. C., Le, H. D., & Revhaug, I. (2016). Tropical forest fire susceptibility mapping at the cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sensing, 8(4), 347.

    Google Scholar 

  • UNISDR, U. Sendai framework for disaster risk reduction 2015–2030. In 3rd United Nations World Conference on DRR, 2015: UNISDR Sendai, Japan.

  • Vadrevu, K. P., Eaturu, A., & Badarinath, K. (2006). Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environmental Monitoring and Assessment, 123(1–3), 75–96.

    Google Scholar 

  • Vadrevu, K. P., & Justice, C. (2011). Vegetation fires in the Asian region: Satellite observational needs and priorities. Global Environmental Research, 15(1), 65–76.

    Google Scholar 

  • Wimberly, M. C., & Reilly, M. J. (2007). Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment, 108(2), 189–197.

    Google Scholar 

  • Xu, D., Shao, G., Dai, L., Hao, Z., Tang, L., & Wang, H. (2006). Mapping forest fire risk zones with spatial data and principal component analysis. Science in China Series E: Technological Sciences, 49, 140–149.

    Google Scholar 

  • Zhang, Y., Lim, S., & Sharples, J. J. (2016). Modelling spatial patterns of wildfire occurrence in south-eastern Australia. Geomatics, Natural Hazards and Risk, 7(6), 1800–1815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Adab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adab, H., Atabati, A., Oliveira, S. et al. Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach. Environ Monit Assess 190, 670 (2018). https://doi.org/10.1007/s10661-018-7052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-7052-1

Keywords

Navigation