Skip to main content

Advertisement

Log in

Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The golden apple snail, Pomacea canaliculata, is one of the world’s 100 most notorious invasive alien species. Knowledge about the critical climate variables that limit the global distribution range of the snail, as well as predictions of future species distributions under climate change, is very helpful for management of snail. In this study, the climatically suitable habitats for this kind of snail under current climate conditions were modeled by biomod2 and projected to eight future climate scenarios (2 time periods [2050s, 2080s] × 2 Representative Concentration Pathways [RCPs; RCP2.6, RCP8.5] × 2 atmospheric General Circulation Models [GCMs; Canadian Centre for Climate Modelling and Analysis (CCCMA), Commonwealth Scientific and Industrial Research Organisation (CSIRO)]). The results suggest that the lowest temperature of coldest month is the critical climate variable to restrict the global distribution range of P. canaliculata. It is predicted that the climatically suitable habitats for P. canaliculata will increase by an average of 3.3% in 2050s and 3.8% in 2080s for the RCP2.6 scenario, while they increase by an average of 8.7% in 2050s and 10.3% in 2080s for the RCP8.5 scenario. In general, climate change in the future may promote the global invasion of the invasive species. Therefore, it is necessary to take proactive measures to monitor and preclude the invasion of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223–1232.

    Article  Google Scholar 

  • Barbet-Massin, M., Rome, Q., Muller, F., Perrard, A., Villemant, C., & Jiguet, F. (2013). Climate change increases the risk of invasion by the yellow-legged hornet. Biological Conservation, 157(1), 4–10.

    Article  Google Scholar 

  • Beltramino, A. A., Vogler, R. E., Gregoric, D. E. G., & Rumi, A. (2015). Impact of climate change on the distribution of a giant land snail from South America: predicting future trends for setting conservation priorities on native malacofauna. Climatic Change, 131(4), 621–633.

    Article  Google Scholar 

  • Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., et al. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507.

    Article  CAS  Google Scholar 

  • Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters, 10(8), 701–709.

    Article  CAS  Google Scholar 

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.

    Article  Google Scholar 

  • Conlisk, E., Syphard, A. D., Franklin, J., Flint, L., Flint, A., & Regan, H. (2013). Uncertainty in assessing the impacts of global change with coupled dynamic species distribution and population models. Global Change Biology, 19(3), 858–869.

    Article  Google Scholar 

  • D’Amen, M., Bombi, P., Pearman, P. B., Schmatz, D. R., Zimmermann, N. E., & Bologna, M. A. (2011). Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biological Conservation, 144(3), 989–997.

    Article  Google Scholar 

  • Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 66–77.

    Article  Google Scholar 

  • Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342.

    Article  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.

    Article  Google Scholar 

  • Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions, 16(3), 321–330.

    Article  Google Scholar 

  • Gallien, L., Münkemüller, T., Albert, C. H., Boulangeat, I., & Thuiller, W. (2010). Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions, 16(3), 331–342.

    Article  Google Scholar 

  • Gallien, L., Douzet, R., Pratte, S., Zimmermann, N. E., & Thuiller, W. (2012). Invasive species distribution models—how violating the equilibrium assumption can create new insights. Global Ecology and Biogeography, 21(11), 1126–1136.

    Article  Google Scholar 

  • Giovanelli, J. G. R., de Siqueira, M. F., Haddad, C. F. B., & Alexandrino, J. (2010). Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecological Modelling, 221(2), 215–224.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186.

    Article  Google Scholar 

  • Guo, Q., & Liu, Y. (2010). ModEco: an integrated software package for ecological niche modeling. Ecography, 33(4), 637–642.

    Article  Google Scholar 

  • Hartley, S., Harris, R., & Lester, P. J. (2006). Quantifying uncertainty in the potential distribution of an invasive species: climate and the Argentine ant. Ecology Letters, 9(9), 1068–1079.

    Article  Google Scholar 

  • Hayes, K. A., Joshi, R. C., Thiengo, S. C., & Cowie, R. H. (2008). Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions, 14(4), 701–712.

    Article  Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.

    Article  Google Scholar 

  • Horgan, F. G., Stuart, A. M., & Kudavidanage, E. P. (2014). Impact of invasive apple snails on the functioning and services of natural and managed wetlands. Acta Oecologica, 54(1), 90–100.

    Article  Google Scholar 

  • IPCC. (2014). Climate change 2014: synthesis report. Geneva: Switzerland 151pp.

    Google Scholar 

  • Jiménez-Valverde, A., Peterson, A. T., Soberón, J., Overton, J. M., Aragón, P., & Lobo, J. M. (2011). Use of niche models in invasive species risk assessments. Biological Invasions, 13(12), 2785–2797.

    Article  Google Scholar 

  • Kappes, H., & Haase, P. (2012). Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences, 74(1), 1–14.

    Article  Google Scholar 

  • Le Maitre, D. C., Thuiller, W., & Schonegevel, L. (2008). Developing an approach to defining the potential distributions of invasive plant species: a case study of Hakea species in South Africa. Global Ecology and Biogeography, 17(5), 569–584.

    Article  Google Scholar 

  • Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771.

    Article  CAS  Google Scholar 

  • Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2004). 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), 12pp.

  • Lv, S., Zhang, Y., Steinmann, P., Yang, G. J., Yang, K., Zhou, X. N., et al. (2011). The emergence of angiostrongyliasis in the People’s Republic of China: the interplay between invasive snails, climate change and transmission dynamics. Freshwater Biology, 56(4), 717–734.

    Article  Google Scholar 

  • Lv, S., Zhang, Y., Liu, H. X., Hu, L., Liu, Q., Wei, F. R., et al. (2013). Phylogenetic evidence for multiple and secondary introductions of invasive snails: Pomacea species in the People's Republic of China. Diversity and Distributions, 19(2), 147–156.

    Article  Google Scholar 

  • Matsukura, K., Tsumuki, H., Izumi, Y., & Wada, T. (2009). Physiological response to low temperature in the freshwater apple snail, Pomacea canaliculata (Gastropoda: Ampullariidae). The Journal of Experimental Biology, 212, 2558–2563.

    Article  Google Scholar 

  • Matsukura, K., Izumi, Y., Yoshida, K., & Wada, T. (2016). Cold tolerance of invasive freshwater snails, Pomacea canaliculata, P. maculata, and their hybrids helps explain their different distributions. Freshwater Biology, 61, 80–87.

    Article  CAS  Google Scholar 

  • Mazza, G., Tricarico, E., Genovesi, P., & Gherardi, F. (2014). Biological invaders are threats to human health: an overview. Ethology Ecology & Evolution, 26(2–3), 112–129.

    Article  Google Scholar 

  • McDowell, W. G., Benson, A. J., & Byers, J. E. (2014). Climate controls the distribution of a widespread invasive species: implications for future range expansion. Freshwater Biology, 59, 847–857.

    Article  Google Scholar 

  • Nghiem, L. T. P., Soliman, T., Yeo, D. C. J., Tan, H. T. W., Evans, T. A., Mumford, J. D., et al. (2013). Economic and environmental impacts of harmful non-indigenous species in Southeast Asia. PloS One, 8(8), e71255.

    Article  CAS  Google Scholar 

  • Nori, J., Urbina-Cardona, J. N., Loyola, R. D., Lescano, J. N., & Leynaud, G. C. (2011). Climate change and American bullfrog invasion: what could we expect in South America? PloS One, 6(10), e25718.

    Article  CAS  Google Scholar 

  • Olson, L., Sauder, J. D., Albrecht, N. M., Vinkey, R. S., Cushman, S. A., & Schwartz, M. K. (2014). Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 169, 89–98.

    Article  Google Scholar 

  • Padilla, D. K., & Williams, S. L. (2004). Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Frontiers in Ecology and the Environment, 2(3), 131–138.

    Article  Google Scholar 

  • Papes, M., Havel, J. E., & Zanden, J. V. (2016). Using maximum entropy to predict the potential distribution of an invasive freshwater snail. Freshwater Biology, 61, 457–471.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42.

    Article  CAS  Google Scholar 

  • Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3), 149–158.

    Article  Google Scholar 

  • Pigneur, L. M., Falisse, E., Roland, K., Everbecq, E., Deliège, J. F., Smitz, J. S., et al. (2014). Impact of invasive Asian clams, Corbicula spp., on a large river ecosystem. Freshwater Biology, 59(3), 573–583.

    Article  Google Scholar 

  • Pyke, C. R., Thomas, R., Porter, R. D., Hellmann, J. J., Dukes, J. S., Lodge, D. M., et al. (2008). Current practices and future opportunities for policy on climate change and invasive species. Conservation Biology, 22(3), 585–592.

    Article  Google Scholar 

  • Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., et al. (2009). Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15(6), 557–1569.

    Article  Google Scholar 

  • Rödder, D., & Engler, J. (2011). Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915–927.

    Article  Google Scholar 

  • Sarma, R. R., Munsi, M., & Ananthram, A. N. (2015). Effect of climate change on invasion risk of Giant African Snail (Achatina fulica Férussac, 1821: Achatinidae) in India. PloS One, 10(11), e0143724.

    Article  Google Scholar 

  • Secretariat of the Convention on Biological Diversity. (2014). Global biodiversity outlook 4. Montréal, 155 pp.

  • Sousa, R., Novais, A., Costa, R., & Strayer, D. L. (2014). Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, 735(1), 233–251.

    Article  Google Scholar 

  • Theobald, E. J., Ettinger, A. K., Burgess, H. K., DeBey, L. B., Schmidt, N. R., Froehlich, H. E., et al. (2015). Global change and local solutions: tapping the unrealized potential of citizen science for biodiversity research. Biological Conservation, 181, 236–244.

    Article  Google Scholar 

  • Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

    Article  CAS  Google Scholar 

  • Thuiller, W. (2003). BIOMOD—optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9(10), 1353–1362.

    Article  Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD—a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369–373.

    Article  Google Scholar 

  • Tricarico, E., Junqueira, A. O. R., & Dudgeon, D. (2016). Alien species in aquatic environments: a selective comparison of coastal and inland waters in tropical and temperate latitudes. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(5), 872–891.

    Article  Google Scholar 

  • Václavík, T., & Meentemeyer, R. K. (2012). Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Diversity and Distribution, 18(1), 73–83.

    Article  Google Scholar 

  • Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N., & Kornis, M. S. (2010). A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research, 36(1), 199–205.

    Article  Google Scholar 

  • Wada, T., & Matsukura, K. (2011). Linkage of cold hardiness with desiccation tolerance in the invasive freshwater apple snail, Pomacea canaliculata (Caenogastropoda: Ampullariidae). Journal of Molluscan Studies, 77(2), 149–153.

    Article  Google Scholar 

  • Wang, Z., Tan, J., Tan, L., Liu, J., & Zhong, L. (2012). Control the egg hatchling process of Pomacea canaliculata (Lamarck) by water spraying and submersion. Acta Ecologica Sinica, 32(4), 184–188.

    Article  Google Scholar 

  • Xu, Y. P., Zheng, G. W., Dong, S. Z., Liu, G. F., & Yu, X. P. (2014). Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata. Fish & Shellfish Immunology, 41(2), 643–653.

    Article  CAS  Google Scholar 

  • Xu, Z. L., Peng, H. H., & Peng, S. Z. (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35(2), 557–567 (in Chinese with English abstract).

    Google Scholar 

  • Yamanishi, Y., Yoshida, K., Fujimori, N., & Yusa, Y. (2012). Predator-driven biotic resistance and propagule pressure regulate the invasive apple snail Pomacea canaliculata in Japan. Biological Invasions, 14(7), 1343–1352.

    Article  Google Scholar 

  • Zhang, H. T., Luo, D., Mu, X. D., Xu, M., Wei, H., Luo, J. R., et al. (2016). Predicting the potential suitable distribution area of the apple snail Pomacea canaliculata in China based on multiple ecological niche models. Chinese Journal of Applied Ecology, 27(4), 1277–1284 (in Chinese with English abstract).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tiago S. Vasconcelos, Morgane Barbet-Massin, and anonymous reviewers for valuable comments and suggestions on the manuscript. This research was sponsored by Qing Lan Project of Jiangsu Province, Natural Science Foundation of Jiangsu Province (grant no. BK20131087), Natural Science Foundation of Jiangsu Higher Education Institutions of China (grant no. 15KJB180004), and Doctoral Scientific Research Fund of Jiangsu Second Normal University (grant no. JSNU2015BZ04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Chen.

Electronic supplementary material

Appendix S1

References used for collecting Pomacea canaliculata presence records. (DOCX 50 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Chen, L. & Li, H. Using ensemble forecasting to examine how climate change promotes worldwide invasion of the golden apple snail (Pomacea canaliculata). Environ Monit Assess 189, 404 (2017). https://doi.org/10.1007/s10661-017-6124-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6124-y

Keywords

Navigation