Skip to main content
Log in

Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study explores the in vivo and in vitro genotoxic effects of lead nitrate, [Pb(NO3)2] a recognized environmental pollutant and cobalt chloride (CoCl2), an emerging environmental pollutant in polychaete Perinereis cultrifera using comet assay. Despite widespread occurrence and extensive industrial applications, no previous published reports on genotoxicity of these compounds are available in polychaete as detected by comet assay. Polychaetes were exposed in vivo to Pb(NO3)2 (0, 100, 500, and 1000 μg/l) and CoCl2 (0, 100, 300, and 500 μg/l) for 5 days. At 100 μg/l Pb(NO3)2 concentration, tail DNA (TDNA) values in coelomocytes were increase by 1.16, 1.43, and 1.55-fold after day 1, day 3, and day 5, whereas, OTM showed 1.12, 2.33, and 2.10-fold increase in in vivo. Pb(NO3)2 showed a concentration and time-dependent genotoxicity whereas CoCl2 showed a concentration-dependent genotoxicity in in vivo. A concentration-dependent increase in DNA damage was observed in in vitro studies for Pb(NO3)2 and CoCl2. DNA damage at 500 μg/L showed almost threefold increase in TDNA and approximately fourfold increase in OTM as compared to control in in vitro. Our studies suggest that Pb(NO3)2 and CoCl2 have potential to cause genotoxic damage, with Pb(NO3)2 being more genotoxic in polychaete and should be used more carefully in industrial and other activities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akinrinde, A., Oyagbemi, A., Omobowale, T., Asenuga, E., & Ajibade, T. (2016). Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats. Journal of Trace Elements in Medicine and Biology, 36, 27–37.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Ali, S., & Hanif, M. A. (2009). Bioaccumulation of cobalt in silkworm (Bombyx mori L.) in relation to mulberry, soil and wastewater metal concentrations. Process Biochemistry, 44(10), 1179–1184.

    Article  CAS  Google Scholar 

  • Attahiru, U., Birnin-Yauri, U., & Muhammad, C. (2015). Acacia nitolica as bioindicator of copper and cobalt pollution due to vehicular emission along the main entrance road of Usmanu Danfodiyo University, Sokoto-Nigeria. Int. J. Adv. Res. Chem. Sci, 2, 1–8.

    Google Scholar 

  • Baş, H., Kalender, Y., Pandir, D., & Kalender, S. (2015). Effects of lead nitrate and sodium selenite on DNA damage and oxidative stress in diabetic and non-diabetic rat erythrocytes and leucocytes. Environmental Toxicology and Pharmacology, 39(3), 1019–1026.

    Article  Google Scholar 

  • Begović, L., Mlinarić, S., Dunić, J. A., Katanić, Z., Lončarić, Z., Lepeduš, H., & Cesar, V. (2016). Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage. Aquatic Toxicology, 175, 117–126.

    Article  Google Scholar 

  • Biscéré, T., Rodolfo-Metalpa, R., Lorrain, A., Chauvaud, L., Thébault, J., Clavier, J., & Houlbrèque, F. (2015). Responses of two scleractinian corals to cobalt pollution and ocean acidification. PloS One, 10(4), e0122898.

    Article  Google Scholar 

  • Blasco, J., & Puppo, J. (1999). Effect of heavy metals (Cu, Cd and Pb) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 122(2), 253–263.

    Article  CAS  Google Scholar 

  • Caicedo, M., Jacobs, J. J., Reddy, A., & Hallab, N. J. (2008). Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. Journal of Biomedical Materials Research Part A, 86(4), 905–913.

    Article  Google Scholar 

  • Chakraborty, S., Chakraborty, P., & Nath, B. N. (2015). Lead distribution in coastal and estuarine sediments around India. Marine Pollution Bulletin, 97(1), 36–46.

    Article  CAS  Google Scholar 

  • Ciğerci, İ. H., Ali, M. M., Kaygısız, Ş. Y., & Liman, R. (2016). Genotoxicity assessment of cobalt chloride in Eisenia hortensis earthworms coelomocytes by comet assay and micronucleus test. Chemosphere, 144, 754–757.

    Article  Google Scholar 

  • Cong, Y., Banta, G. T., Selck, H., Berhanu, D., Valsami-Jones, E., & Forbes, V. E. (2014). Toxicity and bioaccumulation of sediment-associated silver nanoparticles in the estuarine polychaete, Nereis (Hediste) diversicolor. Aquatic Toxicology, 156, 106–115.

    Article  CAS  Google Scholar 

  • Cynthia, L., Fianko, J., Akiti, T., Osei, J., Brimah, A., Osae, S., & Bam, E. (2011). Determination of trace elements in the Sakumo wetland sediments. Research Journal of Environmental and Earth Sciences, 3(4), 417–421.

    CAS  Google Scholar 

  • De Boeck, M., Lison, D., & Kirsch-Volders, M. (1998). Evaluation of the in vitro direct and indirect genotoxic effects of cobalt compounds using the alkaline comet assay. Influence of interdonor and interexperimental variability. Carcinogenesis, 19, 2021–2029.

  • De Boeck, M., Lombaert, N., De Backer, S., Finsy, R., Lison, D., & Kirsch-Volders, M. (2003). In vitro genotoxic effects of different combinations of cobalt and metallic carbide particles. Mutagenesis, 18(2), 177–186.

    Article  CAS  Google Scholar 

  • De Putter, T., Decrée, S., Banza, C. L. N., & Nemery, B. (2011). Mining the Katanga (DRC) Copper belt: geological aspects and impacts on public health and the environment–towards a holistic approach. Mining and the Environment in Africa. Proceedings of the Inaugural Workshop, IGCP/SIDA (pp. 14–17).

  • Dean, H. K. (2008). The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Revista de Biologia Tropical, 56(4), 11–38.

    Google Scholar 

  • Durmaz, E., Kocagöz, R., Bilacan, E., & Orhan, H. (2016). Metal pollution in biotic and abiotic samples of the Büyük Menderes River, Turkey. Environmental Science and Pollution Research, 1–10.

  • Ercal, N., Gurer-Orhan, H., & Aykin-Burns, N. (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6), 529–539.

    Article  CAS  Google Scholar 

  • Fauvel, P. (1932). Annelida Polychaeta of the Indian Museum, Calcutta. Memoirs of the Indian Museum, 12(1), 1–262.

    Google Scholar 

  • Fernandes, M. C., & Nayak, G. (2015). Speciation of metals and their distribution in tropical estuarine mudflat sediments, southwest coast of India. Ecotoxicology and Environmental Safety, 122, 68–75.

    Article  CAS  Google Scholar 

  • Flora, S., Saxena, G., Gautam, P., Kaur, P., & Gill, K. D. (2007). Response of lead-induced oxidative stress and alterations in biogenic amines in different rat brain regions to combined administration of DMSA and MiADMSA. Chemico-Biological Interactions, 170(3), 209–220.

    Article  CAS  Google Scholar 

  • Frenzilli, G., Nigro, M., & Lyons, B. (2009). The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research, 681(1), 80–92.

    Article  CAS  Google Scholar 

  • Gaitonde, D., Sarkar, A., Kaisary, S., Silva, C., Dias, C., Rao, D., Ray, D., Nagarajan, R., De Sousa, S., & Sarker, S. (2006). Acetylcholinesterase activities in marine snail (Cronia contracta) as a biomarker of neurotoxic contaminants along the Goa coast, West coast of India. Ecotoxicology, 15(4), 353–358.

    Article  CAS  Google Scholar 

  • Galloway, T., Lewis, C., Dolciotti, I., Johnston, B. D., Moger, J., & Regoli, F. (2010). Sublethal toxicity of nano-titanium dioxide and carbon nanotubes in a sediment dwelling marine polychaete. Environmental Pollution, 158(5), 1748–1755.

    Article  CAS  Google Scholar 

  • Ghirardini, A. V., Cavallini, L., Delaney, E., Tagliapietra, D., Ghetti, P., Bettiol, C., & Argese, E. (1999). H. diversicolor, N. succinea and P. cultrifera (Polychaeta: Nereididae) as bioaccumulators of cadmium and zinc from sediments: preliminary results in the Venetian lagoon (Italy). Toxicological & Environmental Chemistry, 71(3–4), 457–474.

    Article  Google Scholar 

  • Gopalakrishnan, S., Thilagam, H., & Raja, P. V. (2008). Comparison of heavy metal toxicity in life stages (spermiotoxicity, egg toxicity, embryotoxicity and larval toxicity) of Hydroides elegans. Chemosphere, 71(3), 515–528.

    Article  CAS  Google Scholar 

  • Guemouda, M., Meghlaoui, Z., Daas, T., Daas-Maamcha, O., & Scaps, P. (2014). Monitoring pollution in East Algerian coasts using biochemical markers in the polychaete annelid Perinereis cultrifera. Annals of Biological Research, 5(2), 31–40.

    Google Scholar 

  • Hermes-Lima, M., Pereira, B., & Bechara, E. (1991). Are free radicals involved in lead poisoning? Xenobiotica, 21(8), 1085–1090.

    Article  CAS  Google Scholar 

  • Hoffman, D. J., Rattner, B. A., Burton Jr, G. A., & Cairns Jr, J. (2002). Handbook of ecotoxicology. CRC Press.

  • Kirkland, D., Brock, T., Haddouk, H., Hargeaves, V., Lloyd, M., Mc Garry, S., Proudlock, R., Sarlang, S., Sewald, K., & Sire, G. (2015). New investigations into the genotoxicity of cobalt compounds and their impact on overall assessment of genotoxic risk. Regulatory Toxicology and Pharmacology, 73(1), 311–338.

    Article  CAS  Google Scholar 

  • Koigoora, S., Ahmad, I., Pallela, R., & Janapala, V. R. (2013). Spatial variation of potentially toxic elements in different grain size fractions of marine sediments from Gulf of Mannar, India. Environmental Monitoring and Assessment, 185(9), 7581–7589.

    Article  CAS  Google Scholar 

  • Lewis, C., & Galloway, T. (2008). Genotoxic damage in polychaetes: a study of species and cell-type sensitivities. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 654(1), 69–75.

    Article  CAS  Google Scholar 

  • Lison, D., De Boeck, M., Verougstraete, V., & Kirsch-Volders, M. (2001). Update on the genotoxicity and carcinogenicity of cobalt compounds. Occupational and Environmental Medicine, 58(10), 619–625.

    Article  CAS  Google Scholar 

  • Liu, C. M., Zheng, Y. L., Lu, J., Zhang, Z. F., Fan, S. H., Wu, D. M., Ma, J. Q. (2010). Quercetin protects rat liver against lead-induced oxidative stress and apoptosis. Environmental Toxicology and Pharmacology 29 (2),158–166.

  • Malar, S., Manikandan, R., Favas, P. J., Vikram, S., & Venkatachalam, P. (2013). Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicology and Environmental Safety, 108, 249–257.

    Article  Google Scholar 

  • Misra, M., Olinski, R., Dizdaroglu, M., & Kasprzak, K. S. (1993). Enhancement by L-histidine of nickel (II)-induced DNA-protein cross-linking and oxidative DNA base damage in the rat kidney. Chemical Research in Toxicology, 6(1), 33–37.

    Article  CAS  Google Scholar 

  • Mohammadi, S., Mehrparvar, A., & Aghilinejad, M. (2008). Appendectomy due to lead poisoning: a case-report. Journal of occupational Medicine and Toxicology, 3(1), 1.

    Article  Google Scholar 

  • Morales-Caselles, C., Lewis, C., Riba, I., DelValls, T. Á., & Galloway, T. (2009). A multibiomarker approach using the polychaete Arenicola marina to assess oil-contaminated sediments. Environmental Science and Pollution Research, 16(6), 618–629.

    Article  CAS  Google Scholar 

  • Mwongyera, A., Mbabazi, J., Muwanga, A., Ntale, M., Kwetegyeka, J., & Kwetegyeka, J. (2014). Impact of the disused Kilembe mine pyrites on the domestic water quality of Kasese town, western Uganda.

  • Nayak, B., Ray, M., Persaud, T., & Nigli, M. (1989). Relationship of embryotoxicity to genotoxicity of lead nitrate in mice. Experimental Pathology, 36(2), 65–73.

    Article  CAS  Google Scholar 

  • Osman, A. G., Mekkawy, I. A., Verreth, J., Wuertz, S., Kloas, W., & Kirschbaum, F. (2008). Monitoring of DNA breakage in embryonic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay. Environmental Toxicology, 23(6), 679–687.

    Article  CAS  Google Scholar 

  • Palmqvist, A., Rasmussen, L. J., & Forbes, V. E. (2006). Influence of biotransformation on trophic transfer of the PAH, fluoranthene. Aquatic Toxicology, 80(3), 309–319.

    Article  CAS  Google Scholar 

  • Palmqvist, A., Selck, H., Rasmussen, L. J., & Forbes, V. E. (2003). Biotransformation and genotoxicity of fluoranthene in the deposit-feeding polychaete Capitella sp. I. Environmental Toxicology and Chemistry, 22(12), 2977–2985.

    Article  CAS  Google Scholar 

  • Pasha Shaik, A., Sankar, S., Reddy, S. C., Das, P. G., & Jamil, K. (2006). Lead-induced genotoxicity in lymphocytes from peripheral blood samples of humans: in vitro studies. Drug and Chemical Toxicology, 29(1), 111–124.

    Article  CAS  Google Scholar 

  • Pol, P. D., Sangannavar, M. C., Chavan, R. R., & Yadawe, M. S. (2015). Variation of Krishna River water quality in Jamkhandi taluka of Bagalakot district, Karnataka, India. World Journal of Pharmaceutical Research, 4 (9), 1011-1029.

  • Ponti, J., Sabbioni, E., Munaro, B., Broggi, F., Marmorato, P., Franchini, F., Colognato, R., & Rossi, F. (2009). Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis, 24(5), 439–445.

    Article  CAS  Google Scholar 

  • Rabbani-Chadegani, A., Abdosamadi, S., Fani, N., & Mohammadian, S. (2009). A comparison of the effect of lead nitrate on rat liver chromatin, DNA and histone proteins in solution. Archives of Toxicology, 83(6), 565–570.

    Article  CAS  Google Scholar 

  • Rainbow, P., Kriefman, S., Smith, B., & Luoma, S. (2011). Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining? Science of the Total Environment, 409(8), 1589–1602.

    Article  CAS  Google Scholar 

  • Ramsdorf, W., Ferraro, M., Oliveira-Ribeiro, C., Costa, J., & Cestari, M. (2009). Genotoxic evaluation of different doses of inorganic lead (PbII) in Hoplias malabaricus. Environmental Monitoring and Assessment, 158(1–4), 77–85.

    Article  CAS  Google Scholar 

  • Reichelt-Brushett, A., & Hudspith, M. (2016). The effects of metals of emerging concern on the fertilization success of gametes of the tropical scleractinian coral Platygyra daedalea. Chemosphere, 150, 398–406.

    Article  CAS  Google Scholar 

  • Sandrini, J. Z., Regoli, F., Fattorini, D., Notti, A., Inácio, A. F., Linde-Arias, A. R., Laurino, J., Bainy, A. C. D., Marins, L. F. F., & Monserrat, J. M. (2006). Short-term responses to cadmium exposure in the estuarine polychaete Laeonereis acuta (Polychaeta, Nereididae): subcellular distribution and oxidative stress generation. Environmental Toxicology and Chemistry, 25(5), 1337–1344.

    Article  CAS  Google Scholar 

  • Sarkar, A., Patil, S., & Holkar, P. (2010). Measurement of DNA strand breaks as a biomarker of Genotoxic Pollutants.

  • Shumilin, E., Figueroa, G. R., Sapozhnikov, D., & Mirlean, N. (2013). Vertical profiles of cobalt and zinc in marine sediments of the Santa Rosalía mining region, Gulf of California, Mexico/Perfiles verticales del cobalto y zinc en los sedimentos marinos de la región minera de Santa Rosalía, Golfo de California, México. Journal of Iberian Geology, 39(1), 89.

    Article  Google Scholar 

  • Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.

    Article  CAS  Google Scholar 

  • Snani, M., Meghlaoui, Z., Maamcha, O., Daas, T., & Scaps, P. (2015). Laying period and biomarkers of the polychaete Perinereis cultrifera from the eastern coast of Algeria subjected to marine pollution. Journal of Entomology and Zoology Studies, 3(3), 249–254.

    Google Scholar 

  • Squadrone, S., Burioli, E., Monaco, G., Koya, M., Prearo, M., Gennero, S., Dominici, A., & Abete, M. (2016). Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (DR Congo). Science of the Total Environment.

  • Stafilov, T., Sajn, R., Mukaetov, D., Andreevski, M., Lepitkova, S., Boev, B., & Cvetković, J. (2009). Distribution of cobalt in soil from Kavadarci and the environs. UDC 55 CODEN--GEOME 2 ISSN 0352--1206, 23, 43–53.

  • Ström, O. J. (2012). Metal pollution in urban snow-a field study in Gothenburg, Sweden. M.Sc. Thesis. Department of Earth Science. University of Gothenburg.

  • Sun, F.-H., & Zhou, Q.-X. (2007). Metal accumulation in the polychaete Hediste japonica with emphasis on interaction between heavy metals and petroleum hydrocarbons. Environmental Pollution, 149(1), 92–98.

    Article  CAS  Google Scholar 

  • Tian, Y., Liu, H., Wang, Q., Zhou, J., & Tang, X. (2014). Acute and chronic toxic effects of Pb 2+ on polychaete Perinereis aibuhitensis: morphological changes and responses of the antioxidant system. Journal of Environmental Sciences, 26(8), 1681–1688.

    Article  CAS  Google Scholar 

  • Van Goethem, F., Lison, D., & Kirsch-Volders, M. (1997). Comparative evaluation of the in vitro micronucleus test and the alkaline single cell gel electrophoresis assay for the detection of DNA damaging agents: genotoxic effects of cobalt powder, tungsten carbide and cobalt–tungsten carbide. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 392(1), 31–43.

    Article  CAS  Google Scholar 

  • Venkatachalam, P., Jayalakshmi, N., Geetha, N., Sahi, S. V., Sharma, N. C., Rene, E. R., Sarkar, S. K., & Favas, P. J. (2017). Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere, 171, 544–553.

    Article  CAS  Google Scholar 

  • Wang, Y., Xie, W., & Wang, D. (2007). Transferable properties of multi-biological toxicity caused by cobalt exposure in Caenorhabditis elegans. Environmental Toxicology and Chemistry, 26(11), 2405–2412.

    Article  CAS  Google Scholar 

  • Wlodarska-Kowalczuk, M., & Kedra, M. (2007). Surrogacy in natural patterns of benthic distribution and diversity: selected taxa versus lower taxonomic resolution. Marine Ecology Progress Series, 351, 53–63.

    Article  Google Scholar 

  • Woźniak, K., & Blasiak, J. (2003). In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA–protein cross-links. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 535(2), 127–139.

    Article  Google Scholar 

  • Xie, H., Wise, S. S., Holmes, A. L., Xu, B., Wakeman, T. P., Pelsue, S. C., Singh, N. P., & Wise, J. P. (2005). Carcinogenic lead chromate induces DNA double-strand breaks in human lung cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 586(2), 160–172.

    Article  CAS  Google Scholar 

  • Yedjou, C. G., Tchounwou, C. K., Haile, S., Edwards, F., & Tchounwou, P. B. (2010). N-acetyl-cysteine protects against DNA damage associated with lead toxicity in HepG2 cells. Ethnicity & Disease, 20(1 Suppl 1), S1.

    Google Scholar 

  • Yedjou, C. G., Tchounwou, H. M., & Tchounwou, P. B. (2015). DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. International Journal of Environmental Research and Public Health, 13(1), 56.

    Article  Google Scholar 

  • Yıldız, M., Ciğerci, İ. H., Konuk, M., Fidan, A. F., & Terzi, H. (2009). Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere, 75(7), 934–938.

    Article  Google Scholar 

  • Zhang, R., Niu, Y., Du, H., Cao, X., Shi, D., Hao, Q., & Zhou, Y. (2009). A stable and sensitive testing system for potential carcinogens based on DNA damage-induced gene expression in human HepG2 cell. Toxicology In Vitro, 23(1), 158–165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, Council of Scientific & Industrial Research (CSIR)-NIO for all the facilities and encouragement and CSIR New Delhi for their financial support (Project No. PSC0206). Department of Biotechnology (Govt. of India), New Delhi is acknowledged for Senior Research Fellowship (SRF) to Jacky Bhagat. They also like to thank Dr. Sanitha Sivadas and Mr. Periasamy for their help in sampling and identification of polychaete. They are grateful to Dr. Anupam Sarkar and Mr. D P Rao for providing facilities to conduct comet assay. This is contribution No.6050 of CSIR-NIO, Goa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacky Bhagat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Bhagat, J. & Ingole, B.S. Genotoxicity of two heavy metal compounds: lead nitrate and cobalt chloride in Polychaete Perinereis cultrifera . Environ Monit Assess 189, 308 (2017). https://doi.org/10.1007/s10661-017-5993-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5993-4

Keywords

Navigation