Skip to main content
Log in

Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agarwal, V. M., & Rastogi, N. (2008). Role of floral repellents in the regulation of flower visits of extrafloral nectary-visiting ants in an Indian crop plant. Ecological Entomology, 33(1), 59–65.

    Article  Google Scholar 

  • Andersen, A. N., & Majer, J. D. (2004). Ants show the way down under: invertebrates as bioindicators in land management. Frontiers in Ecology and Environment, 2(6), 291–298.

    Article  Google Scholar 

  • Andersen, A. N., Fisher, A., Hoffmann, B. D., Read, J. L., & Richards, R. (2004). Use of terrestrial invertebrates for biodiversity monitoring in Australian rangelands, with particular reference to ants. Austral Ecology, 29(1), 87–92.

    Article  Google Scholar 

  • Butovsky, R. O. (2011). Heavy metal in carabids (Coleoptera, Carabidae). ZooKeys, 100, 215–222.

    Article  Google Scholar 

  • Cammeraat, E. L. H., & Rish, A. C. (2008). The impact of ants on mineral soil properties and processes at different spatial scales. Journal of Applied Entomology, 132(4), 285–294.

    Article  CAS  Google Scholar 

  • Cerdá, X., & Retana, J. (2000). Alternative strategies by thermophilic ants to cope with extreme heat: individual versus colony level traits. Oikos, 89(1), 155–163.

    Article  Google Scholar 

  • Cerdá, X., Retana, J., & Manzaneda, A. (1998). The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia, 117(3), 404–412.

    Article  Google Scholar 

  • Chaubey, O. P., Bohre, P., & Singhal, P. K. (2012). Impact of bio-reclamation of coal mine spoil on nutritional and microbial characteristics—a case study. International Journal of Bio-Science and Bio-Technology, 4(3), 69–79.

    Google Scholar 

  • Chen, J., Rashid, T., & Feng, G. (2014). A comparative study between Solenopsis invicta and Solenopsis richteri on tolerance to heat and desiccation. PloS One, 9(6). doi:10.1371/journal.pone.0096842.

  • Cortet, J., Vauflery, A. G. D., Balaguer, N. P., Gomot, L., Texier, C., & Cluzeau, D. (1999). The use of invertebrate soil fauna in monitoring pollutant effects. European Journal of Soil Biology, 35(3), 115–134.

    Article  CAS  Google Scholar 

  • Creamer, R. E., Rimmer, D. L., & Black, H. I. J. (2008). Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term? Soil Use and Management, 24, 37–46.

    Article  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., Nahmani, J., & Lavelle, P. (2004). Heavy metal accumulation by two earthworm species and its relationship to total and DTPA extractable metals in soils. Soil Biology and Biochemistry, 36(1), 91–98.

    Article  CAS  Google Scholar 

  • Eeva, T., Sorvari, J., & Koivunen, V. (2004). Effects of heavy metal pollution on red wood ant (Formica s. Str.) populations. Environmental Pollution, 132(3), 533–539.

    Article  CAS  Google Scholar 

  • Eldridge, D. J. (1993). Effect of ants on sandy soils in semi-arid eastern Australia–local distribution of nest entrances and their effect on infiltration of water. Australian Journal of Soil Research, 31, 509–518.

    Article  Google Scholar 

  • Farji-Brener, A. G., & Ghermandi, L. (2000). The influence of nests of leaf-cutting ants on plant species diversity in road verges of northern Patagonia. Journal of Vegetation Science, 11, 453–460.

    Article  Google Scholar 

  • Fernández, M. D., Vega, M. M., & Tarazona, J. V. (2006). Risk-based ecological soil quality criteria for the characterization of contaminated soils combination of chemical and biological tools. Science of the Total Environment, 366(2–3), 466–484.

    Article  Google Scholar 

  • Flemming, C. A., & Trevors, J. T. (1989). Copper toxicity and chemistry in the environment: a review. Water Air and Soil Pollution, 44, 143–158.

    Article  CAS  Google Scholar 

  • Franco-Uría, A., López-Mateo, C., Roca, E., & Fernández-Marcos, M. L. (2009). Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165(1–3), 1008–1015.

    Article  Google Scholar 

  • Frouz, J., & Jilková, V. (2008). The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecological News, 11, 191–199.

    Google Scholar 

  • Frouz, J., Holec, M., & Kalčík, J. (2003). The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil properties. Pedobiologia, 47, 205–212.

    Article  CAS  Google Scholar 

  • Frouz, J., Elhottová, D., Kuráž, V., & Šourková, M. (2006). Effect of soil macrofauna on other soil biota and soil. Formation in reclaimed and unreclaimed post mining sites: result of field microcosm experiment. Applied Soil Ecology, 33, 308–320.

    Article  Google Scholar 

  • Fu, C., Guo, J., Pan, J., Qi, J., & Zhou, W. (2009). Potential ecological risk assessment of heavy metal pollution in sediments of the Yangtze River within the Wanzhou section, China. Biological Trace Element Research, 129(1), 270–277.

    Article  CAS  Google Scholar 

  • Gautam, S., Patra, A., & Prusty, B. K. (2012). Opencast mines: a subject to major concern for human health. International Research Journal of Geology and Mining, 2(2), 25–31.

    Google Scholar 

  • Gavrilescu, M. (2004). Removal of heavy metals from the environment by biosorption. Engineering in Life Science, 4, 219–232.

    Article  CAS  Google Scholar 

  • Ginzburg, O., Whitford, G., & Steinberger, Y. (2008). Effects of harvester ant (Messor spp.) activity on soil properties and microbial communities in a Negev desert ecosystem. Biology and Fertility of Soils, 45, 165–173.

    Article  Google Scholar 

  • Głowacka, E., Migula, P., Nuorteva, S. L., Nuorteva, P., & Tulisalo, E. (1997). Psyllids as a potential source of heavy metals for predators. Archives of Environmental Contamination and Toxicology, 32(4), 376–382.

    Article  Google Scholar 

  • Gramigni, E., Calusi, S., Gelli, N., Giuntini, L., Massi, M., Delfino, G., Chelazzi, G., Baracchi, D., Frizzi, F., & Santini, G. (2013). Ants as bioaccumulators of metals from soils: body content and tissue-specific distribution of metals in the ant Crematogaster scutellaris. European Journal of Soil Biology, 58, 24–31.

    Article  CAS  Google Scholar 

  • Grześ, I. M. (2010a). Ants and heavy metal pollution—a review. European Journal of Soil Biology, 46(6), 350–355.

    Article  Google Scholar 

  • Grześ, I. M. (2010b). Zinc and cadmium regulation efficiency in three ant species originating from a metal. Bulletin of Environmental Contamination and Toxicology, 84(1), 61–65.

    Article  Google Scholar 

  • Grześ, I. M., Okrutniak, M. & Antosik, G. (2015). Body size of the monomorphic ant Lasius niger: young colonies along a metal pollution gradient. Psyche Res Article ID 873415, 1–5.

  • Guo, W., Liu, X., Liu, Z., & Li, G. (2010). Pollution and potential ecological risk evaluation of heavy metals in the sediments around Dongjiang harbor, Tianjin. Procedia. Environmental Science, 2, 729–736.

    Article  Google Scholar 

  • Gupta, D. C. (1999). Environmental aspects of selected trace elements associated with coal and natural waters of Pench Valley coalfield of India and their impact on human health. International Journal of Coal Geology, 40, 133–149.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Heikens, A., Peijnenburg, W. J. G. M., & Hendriks, A. J. (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environmental Pollution, 113(3), 385–393.

    Article  CAS  Google Scholar 

  • Hendrickx, F., Maelfait, J.-P., Speelmans, M., & Van Straalen, N. M. (2003). Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia, 134, 189–194.

    Article  Google Scholar 

  • Hoffmann, B. D., Griffiths, A. D., & Andersen, A. N. (2000). Responses of ant communities to dry sulfur deposition from mining emissions in semi-arid tropical Australia, with implication for the use of functional groups. Austral Ecology, 25(6), 653–663.

    Article  Google Scholar 

  • Hölldobler, B., & Wilson, E. O. (1990). The ants. Berlin Heidelberg New York: Springer.

    Book  Google Scholar 

  • Karadjova, I., & Markova, E. (2014). Metal accumulation in insects (Orthoptera, Acrididae) near a copper smelter and copper-flotation factory (Pirdop, Bulgaria). Biotechnology and Biotechnological Equipment, 23, 204–207.

    Article  Google Scholar 

  • Kozlov, M. V., Haukioja, E., & Kovnatsky, E. F. (2000). Uptake and excretion of nickel and copper by leaf-mining larvae of Eriocrania semipurpurella (Lepidoptera: Eriocraniidae) feeding on contaminated birch foliage. Environmental Pollution, 108(2), 303–310.

    Article  CAS  Google Scholar 

  • Kramarz, P. (1999). Dynamics of accumulation and decontamination of cadmium and zinc in carnivorous invertebrates. 1. The ground beetle, Poecilus cupreus L. Bulletin of Environmental Contamination and Toxicology, 63(4), 531–537.

    Article  CAS  Google Scholar 

  • Lagisz, M., & Laskowski, R. (2008). Evidence for between-generation effects in carabids exposed to heavy metals pollution. Ecotoxicology, 17(1), 59–66.

    Article  CAS  Google Scholar 

  • Larsen, K. J., Brewer, S. R., & Taylor, D. H. (1994). Differential accumulation of heavy metals by web spiders and ground spiders in an old field. Environmental Toxicology and Chemistry, 13(3), 503–508.

    Article  CAS  Google Scholar 

  • Lenoir, A., Aron, S., Cerdá, X., & Hefetz, A. (2009). Cataglyphis desert ants: a good model for evolutionary biology in Darwin’s anniversary year—a review. Israel Journal of Entomology, 39, 1–32.

    Google Scholar 

  • Lenoir, A., Cuvillier-Hot, V., Devers, S., Christidès, J.-P., & Montigny, F. (2012). Ant cuticles: a trap for atmospheric phthalate contaminants. Science of the Total Environment, 44, 209–212.

    Article  Google Scholar 

  • Lenoir, A., Touchard, A., Devers, S., Christides, J.-P., Boulay, R., & Cuvillier-Hot, V. (2014). Ant cuticular response to phthalate pollution. Environmental Science and Pollution Research, 21, 13446–13451.

    Article  CAS  Google Scholar 

  • Lenoir, A., Boulay, R., Dejean, A., Touchard, A., & Cuvillier-Hot, V. (2016). Phthalate pollution in an Amazonian rainforest. Environmental Science and Pollution Research, 23, 16865–16872.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., Van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96, 100–230.

    Article  Google Scholar 

  • Lloyd, J. R., & Lovely, D. R. (2001). Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnology, 12, 248–253.

    Article  CAS  Google Scholar 

  • Lovely, D. R., & Coates, J. D. (1997). Bioremediation of metal contamination. Current Opinion in Biotechnology, 8(3), 285–289.

    Article  Google Scholar 

  • Lukáň, M. (2009). Heavy metals in alpine terrestrial invertebrates. Oecologia Montana, 18, 31–38.

    Google Scholar 

  • Maiti, S. K., & Ghose, M. K. (2005). Ecological restoration of acidic coal mine overburden dumps—an Indian case study. Land Contamination and Reclamation, 13(4), 361–369.

    Article  Google Scholar 

  • Maiti, S. K., & Rana, V. (2017). Assessment of heavy metals contamination in reclaimed mine soil and their accumulation and distribution in Eucalyptus hybrid. Bulletin of Environmental Contamination and Toxicology, 98, 97–104.

    Article  CAS  Google Scholar 

  • Maiti, S. K., Kumar, A., & Ahirwal, J. (2016). Bioaccumulation of metals in timber and edible fruit trees growing on reclaimed coal mine overburden dumps. International Journal of Mining, Reclamation and Environment, 30(3), 231–244.

    Article  CAS  Google Scholar 

  • Majer, J. D. (1983). Ants: bio-indicators of mine site rehabilitation, land-use, and land conservation. Environmental Management, 7(4), 375–383.

    Article  Google Scholar 

  • Migula, P., Nuorteva, P., Nuorteva, S.-L., Głowacka, E., & Oja, A. (1993). Physiological disturbances in ants (Formica aquilonia) to excess of cadmium and mercury in a Finnish forest. Science of the Total Environment, 2, 1305–1314.

    Article  Google Scholar 

  • Morgan, J. E., & Morgan, A. J. (1988). Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environmental Pollution, 54(2), 123–138.

    Article  CAS  Google Scholar 

  • Moutinho, P., Nepstad, D. C., & Davidson, E. A. (2003). Influence of leaf-cutting ant nests on secondary forest growth and soil properties in Amazonia. Ecology, 84, 265–1276.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of northern France. European Journal of Soil Biology, 38(3–4), 297–300.

    Article  CAS  Google Scholar 

  • Nettimi, R. P., & Iyer, P. (2015). Patch fidelity in Camponotus compressus ants foraging on honeydew secreted by treehoppers. Current Science, 109(2), 362–366.

    Google Scholar 

  • Ottonetti, L., Tucci, L., Chelazzi, G., & Santini, G. (2008). Stable isotopes analysis to assess the trophic role of ants in a Mediterranean agroecosystem. Agricultural and Forest. Entomology, 10(1), 29–36.

    Article  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2016). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16(1), 159–168.

    Article  CAS  Google Scholar 

  • Patel, K. S., Sharma, R., Dahariya, N. S., Yadav, A., Blazhev, B., Matini, L., & Hoinkis, J. (2015). Heavy metal contamination of tree leaves. American Journal of Analytical Chemistry, 6, 687–693.

    Article  CAS  Google Scholar 

  • Pruvot, C., Douay, F., Herve, F., & Waterlot, C. (2006). Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. Journal of Soils and Sediments, 6(4), 215–220.

    Article  CAS  Google Scholar 

  • Rabitsch, W. B. (1995). Metal accumulation in arthropods near a lead/zinc smelter in Arnoldstein, Austria. II. Formicidae. Environmental Pollution, 90(2), 239–247.

    Article  CAS  Google Scholar 

  • Rabitsch, W. B. (1997). Tissue-specific accumulation patterns of Pb, Cd, Cu, Zn, Fe, and Mn in workers of three ant species (Formicidae, Hymenoptera) from a metal-polluted site. Archives of Environmental Contamination & Toxicology, 32(2), 172–177.

    Article  CAS  Google Scholar 

  • Ruano, F., Tinaut, A., & Soler, J. J. (2000). High surface temperatures select for individual foraging in ants. Behavioural Ecology, 11(4), 396–404.

    Article  Google Scholar 

  • Salminen, J., Anh, B. T., & van Gestel, C. A. M. (2001). Indirect effects of zinc on soli microbes via a keystone enchytraeid species. Environmental Toxicology and Chemistry, 20(6), 1167–1174.

    Article  CAS  Google Scholar 

  • Santorufo, L., Van Gestel, C., & Maisto, G. (2012). Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. Chemosphere, 88, 418–425.

    Article  CAS  Google Scholar 

  • Schofield, R. M. S., Nesson, M. H., & Richardson, K. A. (2002). Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaften, 89(12), 579–583.

    CAS  Google Scholar 

  • Sheoran, V., Sheoran, A. S., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: a review. International Journal of Soil, Sediment and Water, 3, 1–20.

    Google Scholar 

  • Shukla, R. K., Singh, H., Rastogi, N., & Agarwal, V. M. (2013). Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Applied Soil Ecology, 71, 15–23.

    Article  Google Scholar 

  • Shukla, R. K., Singh, H., & Rastogi, N. (2016). How effective are disturbance—tolerant, agroecosystem-nesting ant species in improving soil fertility and crop yield? Applied Soil Ecology, 108, 156–164.

    Article  Google Scholar 

  • Singh, A. (2012). Pioneer flora on naturally revegetated coal mine spoil in a dry tropical environment. Bulletin of Environment, Pharmacology and Life Sciences, 1(3), 72–73.

    Google Scholar 

  • Singh, A. N., & Singh, J. S. (2006). Experiments on ecological restoration of coal mine spoil using native trees in a dry tropical environment, India: a synthesis. New Forest, 31, 25–39.

    Article  Google Scholar 

  • Singh, J. S., Singh, K. P., & Jha, A. K. (1995). An integrated ecological study on revegetation of mine spoil (eds.): concepts and research highlights. Report of a S&T project sponsored by the Ministry of Coal, Govt. of India. Department of Botany, Banaras Hindu University, Varanasi, India.

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2002). Plantations as a tool for mine spoil restoration. Current Science, 82(12), 1436–1441.

    CAS  Google Scholar 

  • Skalski, T., Stone, D., Kramarz, P., & Laskowski, R. (2010). Ground beetle community responses to heavy metal concentration. Baltic Journal of Coleopterology, 10(1), 1–12.

    Google Scholar 

  • Sorvari, J., & Eeva, T. (2010). Pollution diminishes intra-specific aggressiveness between wood ant colonies. Science of the Total Environment, 408(16), 3189–3192.

    Article  CAS  Google Scholar 

  • Sorvari, J., Rantala, L. M., Rantala, M. J., Hakkarainen, H., & Eeva, T. (2006). Heavy metal pollution disturbs immune response in wild ant populations. Environmental Pollution, 145(1), 324–328.

    Article  Google Scholar 

  • Sternberg, L. S. L., Pinzon, M. C., Moreira, M. Z., Moutinho, P., Rojas, E. L., & Herre, E. A. (2007). Plants use macronutrients accumulated in leaf-cutting ant nests. Proceedings of the Royal Society B, 274, 315–321.

    Article  CAS  Google Scholar 

  • Stewart, A. D., Anand, R. R., Laird, J. S., Verrall, M., Ryan, C. G., de Jonge, M. D., Paterson, D., & Howard, D. L. (2011). Distribution of metals in the termite Tumulitermes tumuli (Froggatt): two types of malpighian tubule concretion host Zn and Ca mutually exclusively. PloS One, 6, e27578. doi:10.1371/journal.pone.0027578.

    Article  CAS  Google Scholar 

  • Suresh, G., Sutharsan, P., Ramasamy, V., & Venkatachalapathy, R. (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicology and Environmental Safety, 84, 117–124.

    Article  CAS  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffney, D. W. (1980). Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters, 33(1), 566–575.

    Article  Google Scholar 

  • Usero, J., González-Regalada, E., & Gracia, I. (1997). Trace metals in the bivalve mollusks Ruditapes decussates and Ruditapes philippinarium from the Atlantic coast of southern Spain. Environment International, 23(3), 291–298.

    Article  CAS  Google Scholar 

  • Van Assche, F., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant Cell and Environment, 13(3), 195–206.

    Article  CAS  Google Scholar 

  • Wang, J. L., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24, 427–451.

    Article  CAS  Google Scholar 

  • Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.

    Article  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.

    Article  CAS  Google Scholar 

  • World Coal Association, Coal Facts. (2011). http://www.worldcoal.org/ resources/coal statistics. Accessed on 29 April 2012.

  • Xu, Z. Q., Ni, S. J., Tuo, X. G., & Zhang, C. J. (2008). Calculation of heavy metals toxicity coefficient in the evaluation of potential ecological risk index. Environmental Science and Technology, 31, 112–115 in Chinese.

    CAS  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H., Li, N., & Li, Z. (2009). Health risk from heavy metals via consumption of efood crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment, 407, 1551–1561.

    Article  CAS  Google Scholar 

  • Zmudzki, S., & Laskowski, R. (2012). Biodiversity and structure of spider communities along a metal pollution gradient. Ecotoxicology, 21, 1523–1532.

    Article  CAS  Google Scholar 

  • Zvereva, E. L., & Kozlov, M. V. (2010). Responses of terrestrial arthropods to air pollution: a meta analysis. Environmental Science and Pollution Research, 17(2), 297–311.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive suggestions which greatly contributed to improvement of the manuscript. Funding support from the Ministry of Environment, Forest and Climate Change, New Delhi, is gratefully acknowledged. We are thankful to NCL for providing permission for conducting the field study at the coal mine sites. The first author is grateful to Himender Bharti, of Punjabi University, Patiala, for his help in the identification of the ant species and to Huma Vaseem for her help in the calculation of the pollution indices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelkamal Rastogi.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.R., Singh, S.K. & Rastogi, N. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil. Environ Monit Assess 189, 195 (2017). https://doi.org/10.1007/s10661-017-5865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5865-y

Keywords

Navigation