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Abstract Before-after-control-impact (BACI) designs
are an effective method to evaluate natural and human-
induced perturbations on ecological variables when
treatment sites cannot be randomly chosen. While effect
sizes of interest can be tested with frequentist methods,
using Bayesian Markov chain Monte Carlo (MCMC)
samplingmethods, probabilities of effect sizes, such as a
≥20 % increase in density after restoration, can be
directly estimated. Although BACI and Bayesian
methods are used widely for assessing natural and
human-induced impacts for field experiments, the ap-
plication of hierarchal Bayesian modeling with MCMC
sampling to BACI designs is less common. Here, we
combine these approaches and extend the typical

presentation of results with an easy to interpret ratio,
which provides an answer to the main study question—
BHow much impact did a management action or natural
perturbation have?^ As an example of this approach, we
evaluate the impact of a restoration project, which im-
plemented beaver dam analogs, on survival and density
of juvenile steelhead. Results indicated the probabilities
of a ≥30 % increase were high for survival and density
after the dams were installed, 0.88 and 0.99, respective-
ly, while probabilities for a higher increase of ≥50 %
were variable, 0.17 and 0.82, respectively. This ap-
proach demonstrates a useful extension of Bayesian
methods that can easily be generalized to other study
designs from simple (e.g., single factor ANOVA, paired
t test) to more complicated block designs (e.g., cross-
over, split-plot). This approach is valuable for estimat-
ing the probabilities of restoration impacts or other
management actions.

Keywords Bayesian approach . BACI . Hierarchical
model . MCMC .Oncorhynchus mykiss . Restoration
impact . Steelhead

Introduction

A common approach to evaluate the impacts of natural
or human-induced perturbations on ecosystems where
the allocation of treatment and control sites cannot be
assigned randomly is a before-after-control-impact/
treatment (BACI) design (Eberhardt 1976; Green
1979). A variety of BACI designs have been proposed
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to draw inferences about impacts (e.g., BACIPS,
MBACI, and beyond-BACI, following the nomencla-
ture of Downes et al. 2002). A primary example and
impetus for development of the method was evaluation
of the impacts of a nuclear power plant on many eco-
logical response variables, from zooplankton abundance
(Mathur et al. 1980; Bence et al. 1996) to communities
of macroinvertebrates and related physical variables
(Schroeter et al. 1993). BACI designs continue to be
used to evaluate impacts from natural perturbations
(Russell et al. 2015) and management actions
(Desrosiers et al. 2006; Louhi et al. 2010; Hanisch
et al. 2013), as well as for a wide variety of smaller-
scale field experiments, including evaluating restoration
actions (Rumbold et al. 2001; Muotka and Syrjänen
2007; Bousquin and Colee 2014). Similar to studies of
larger-scale impacts, efficiently evaluating restoration
activities is complicated because, in many cases, resto-
ration actions cannot be implemented in randomly se-
lected locations owing to factors such as access require-
ments and land ownership, and replication is often re-
stricted due to limited numbers of potential restoration
sites, cost of restoration, and logistical constraints.

Analysis of BACI designs has conventionally involved
the use of general linear models (e.g., analysis of variance,
see Downes et al. 2002) or the use of intervention analyses
(Carpenter et al. 1989; Stewart-Oaten and Bence 2001). A
particularly useful modification is where impacted and
control sites are treated as fixed effects and sampling is
conducted at simultaneous (paired) time periods in treat-
ment and control sites before and after perturbation
(BACIPS; Stewart-Oaten et al. 1986; Underwood 1994).
Treatment effects for BACIPS designs are often estimated
as themean difference between treatment and control sites
after the treatment minus the mean difference between
treatment and control sites before the treatment
dtreat‐control after−dtreat‐control beforeð Þ (Stewart-Oaten et al.
1986; Bence et al. 1996), or via a treatment (control–
treatment) × time (before–after) interaction term (Russell
et al. 2009; Popescu et al. 2012). This design allows
treatment impacts to be distinguished from back-
ground time effects shared by all sites, as well as
from background differences between treatment
and control sites (Popescu et al. 2012). In essence,
this design controls for spatial differences between
treatment and control sites such that they do not
have to be identical. Because of its applicability to
restoration field experiments, here we focus on the
BACIPS design.

Although the design works well for testing for per-
turbation effects in field experiments, the results (i.e.,
treatment minus control difference or significant inter-
action term) from BACIPS designs analyzed using
frequentist statistical approaches typically lack mean-
ingful probabilistic interpretation and are thus not easily
understood by nonscientific audiences (Eberhardt 1976;
Crome et al. 1996). There is a continuum of interpret-
ability of frequentist results, withP values being perhaps
the least understandable to a lay audience and effect
sizes and their confidence intervals being more accessi-
ble. However, the interpretation of confidence interval is
also not intuitive: the interval the unknown true mean
change would fall between at the frequency of the
confidence level if the experiment were repeated.
Bayesian approaches have advantages for interpretation.
Because the Bayesian approach is explicitly conditioned
on the observed data, Bayesian inference provides direct
probability assessments of the response parameter that
are more straightforward to interpret (e.g., probability of
a % increase or decrease in population size) (Crome
et al. 1996; Wade 2000). Moreover, the Bayesian ap-
proach has the flexibility to use posterior distributions to
estimate a variety of comparisons (Wade 2000) and to
report the probability of observing a range of effects
sizes (Gelman et al. 2004; Kery 2010; King et al. 2010).
In addition, by conditioning on the data, not a specific
hypothesis, and providing inference about a range of
effect sizes, a Bayesian approach reduces the potential
for type I and type II errors, a long-standing criticism of
the analysis of BACI data (Mapstone 1995; Murtaugh
2002). If study results, particularly contentious ones, can
be conveyed in a manner that is accessible, yet accurate,
to both scientific and lay audiences alike, they are far
more likely to be embraced by resource managers
(Crome et al. 1996).

Here, we present a method with Bayesian interpret-
ability to evaluate responses of treatment sites to natural
perturbations or management actions via an adaptable
proportional response variable combined with a Bayes-
ian hierarchical model and Markov chain Monte Carlo
(MCMC) sampling to estimate the probability of ob-
serving different effect sizes. To demonstrate these tech-
niques and highlight their usefulness for evaluating
restoration actions, we use a dataset from a BACIPS
field experiment combined with a Bayesian MCMC
approach to evaluate the effectiveness of a river restora-
tion project to increase juvenile steelhead (Oncorhyn-
chus mykiss) survival and density. While we use a
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particular study design here (BACIPS), this approach
can be readily adapted for a wide variety of statistical
study designs, from simple (e.g., single factor ANOVA,
paired t test) to more complicated block designs (e.g.,
crossover, split-plot).

Materials and methods

Study area and field sampling

The data used to demonstrate this analysis method were
collected in Bridge Creek and Murderers Creek, tribu-
taries to the John Day River and part of the larger
Columbia River Basin (Fig. 1). The John Day River is
occupied by federally threatened steelhead that spawn in
both Bridge and Murderers creeks. After emergence,
these tributaries provide rearing habitat for juvenile
steelhead (anadromous life history of O. mykiss) as well
as rainbow trout (resident life history of O. mykiss).
Owing to historical land use practices, extensive por-
tions of Bridge Creek have undergone substantial down-

cutting, resulting in a narrow incised straightened channel
that lacks habitat complexity necessary to support robust
O. mykiss populations. In an attempt to aggrade the
channel by capturing fine sediments and ultimately in-
crease channel complexity, beaver dam analogs (BDAs)
spanning tributary channels were constructed within
four treatment reaches on Bridge Creek (Pollock et al.
2014; Bouwes et al. 2016). This restoration strategy
assumed that BDAs and subsequent colonization by resi-
dent beaver would increase both the total surface area
available to juvenile O. mykiss as well as increase habitat
complexity available for juvenile fish (Bouwes et al.
2016). The BDAs were installed during December 2009.
The control watershed, Murderers Creek, was chosen be-
cause it is a stream of similar size, discharge, and gradient
and resides in the same biome as the treatment watershed
(Bridge Creek).

Mark-reencounter sampling was conducted from
January 2007 through September 2012 to estimate sea-
sonal survival and density of juvenile steelhead. More
complete descriptions of the study area and sampling
methods are provided in Tattam et al. (2013) and

Fig. 1 Study sites in Bridge and Murderers creeks, located in the John Day River Basin, OR, USA. Open circles indicate sites used
for both analysis of abundance and survival data, while filled circles indicate additional sites used only for analysis of survival data
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Pollock et al. (2012). Juvenile steelhead were captured
by electroshocking at permanent sites that ranged from
500 to 1000 m long. All steelhead greater than 60 mm
were tagged with passive integrated transponders (PITs)
and released at the site of capture. In the Bridge Creek,
the treatment watershed, 13 sites (four in the treatment
reaches and nine in nontreated reaches) were sampled
throughout watershed over the study period. Because
fish can move between sites, we considered all sites in
the watershed to be treatment sites. In the lower portion
of Bridge Creek, in four of the sites, an insufficient
number of fish could be tagged to obtain accurate den-
sity estimates, and thus were not included in the density
analyses. In Murderers Creek, which served as the con-
trol watershed, three sites were sampled in its lower
portion (Fig. 1). Sites were sampled on two consecutive
days (closed-capture sessions), and each site was
revisited during three seasons, generally representing
summer (June), fall (September), and winter (Decem-
ber–January). The entire sampling period within a sea-
son was relatively short, averaging 1 to 2 weeks (in
order to sample all sites), with each site having approx-
imately the same period of time between closed-capture
sessions (although period length varied from season to
season). This yielded three biologically relevant seasons
for survival rates—summer (June–September), fall

(October–December), and winter/spring (January–
May; Table 1)—and three estimates of population abun-
dance for each year (Table 1).

Statistical methods

The overall goal of this study is to demonstrate the use
of a Bayesian approach to estimate the probability of
observing different restoration treatment effect sizes for
a BACIPS study for parameters of different scales (i.e.,
one constrained 0–1 and the other not). To do this, we
generated the best estimates of juvenile steelhead sur-
vival and density before and after the restoration action
was implemented on treatment and control watersheds,
and then used these to estimate probabilities of increases
or decreases in response to the restoration.

Survival

We generated encounter histories for each individual PIT-
tagged fish from active tagging, mobile antenna surveys,
and continuous detections from passive instream antenna
(PIA) arrays, located in four locations in Bridge Creek and
one location in Murderers Creek. Separate encounter his-
tories were generated for treatment and control water-
sheds. Because continuously collected detections by PIAs

Table 1 Seasonal periods over which juvenile steelhead survival was estimated on Bridge and Murderers creeks before and after
construction of BDAs on Bridge Creek, OR

Year Season Impact period Start End Total days

2007 Spring Before June 4, 2007 September 1, 2007 89

2007 Fall Before September 1, 2007 November 28, 2007 88

2008 Winter Before November 28, 2007 June 1, 2008 186

2008 Spring Before June 1, 2008 September 1, 2008 92

2008 Fall Before September 1, 2008 December 12, 2008 102

2009 Winter Before December 12, 2008 June 10, 2009 180

2009 Spring Before June 10, 2009 September 14, 2009 96

2009 Fall Before September 14, 2009 January 22, 2010 130

2010 Winter After January 22, 2010 June 9, 2010 138

2010 Spring After June 9, 2010 September 13, 2010 96

2010 Fall After September 13, 2010 January 24, 2011 133

2011 Winter After January 24, 2011 June 24, 2011 151

2011 Spring After June 24, 2011 September 16, 2011 84

2011 Fall After September 16, 2011 January 10, 2012 116

2012 Winter After January 10, 2012 June 21, 2012 163

2012 Spring After June 21, 2012 September 11, 2012 82
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were an important method for reencountering PIT-tagged
fish, we used the Barker model (Barker 1997) rather than
a Cormack-Jolly-Seber (CJS) model to estimate survival.
We censored encounter histories for fish detected leaving
tributaries (resighted at terminal antenna arrays) to reduce
bias in survival estimates owing to permanent emigration
(Horton and Letcher 2008; Conner et al. 2014). We used
ProgramMARK (White and Burnham 1999; White et al.
2001) to analyze these data.

Because seasonal periods (t) were of slightly unequal
length (Table 1), we standardized survival estimates (St)
to a 3-month period (e.g., St = 0.6 is probability animal
survived for 3 months) using unequal time intervals in
Program MARK (White et al. 2001). There were eight
seasons pre-restoration and seven seasons post-
restoration over which survival was estimated (the last
survival estimate was not used because it was confound-
ed with resight probabilities). Because the study was
designed as a BACIPS study, we analyzed data from
treatment and control watersheds separately and left
estimates of St unconstrained in all models. That is, St
was estimated for each season before and after imple-
mentation of the BDAs for control (St control) and treat-
ment watersheds (St treat). Before proceeding with a
hierarchical model for St using a Bayesian approach,
we wanted to find the best model for the other parame-
ters in the Barker model (e.g., p, R, F, etc.). To this end,
we constructed a series of more parsimonious models
for all other model parameters in the Barker model (see
Supplemental Information for the details of model
construction and model sets) and used the top model
structure (i.e., model with the lowest AICc; Lebreton
et al. 1992; Burnham and Anderson 2002) from which
to estimate posterior distributions of St. Note that we did
not use model averaging as part of the analysis because
it would be a much more complex approach. That is, we
would need to doMCMC simulations for each model in
the set, and then apply the model weight and average
across the 5000 simulations for each model, and then do
the averaging across time periods (and sampling sites for
abundance); this was beyond the scope of what we
wanted to highlight for this paper.

We used a Bayesian hierarchical model with
hyperdistributions to estimate mean survival and get
Bshrinkage^ estimates for St for treatment and control groups
by before and after periods e:g:; ~Scontrol;before;~Streat;after

� �
.

That is, we specified four hyperparameters. For
these hyperdistributions, we used MCMC sampling
implemented in Program MARK to generate

posterior distributions of St control and St treat,
which were shrinkage estimates that we used for
estimating ratios to evaluate the treatment effect as
described below. Because this was the first time,
we analyzed the data using a BACI model and
because we used different subsets of the data for
previous analyses, we used uninformative Bflat^
priors for the hyperpriors of the four estimates of
mean survival (S):

~S∼N μ;σð Þ

μ∼N 0; 100ð Þ

1=σ2∼γ 0:001; 0:001ð Þ
where γ represents a gamma distribution. In addition to
the parameters included in hyperdistributions, there
were additional Bnuisance^ parameters (θ) in the Barker
model (e.g., recapture probability, resighting
probability, etc; see Supplemental information for
Barker model parameter specification). These parame-
ters also require a prior distribution. All additional mod-
el parameters were logit transformed to constrain the
real estimates to be between 0 and 1. For these, we used
a normal prior on the logit scale:

logit θð Þ∼N 0; 1:75ð Þ;
which is a relatively flat priorwhenback transformed to the
real 0–1scale (2.5thand97.5thpercentiles of approximate-
ly 0.02 and0.98,with a uniformdistributionbetween those
percentiles when back transformed). We assessed conver-
genceof theMarkovchainsbyvisual inspectionof the trace
ofMCMCchainsof theposteriorsamplesof theparameters
and by using the Gelman-Rubin statistic, R-hat (Gelman
et al. 2004).Foreachparameter,weused tenchainsof1000
eachanduseda thresholdofR-hat<1.1 to indicateadequate
samplingof theposteriordistribution.Basedondiagnostics
in Program MARK’s MCMC routine (Cooch and White
2016), we determined posterior distributions needed to be
thinned and accordingly saved every sixth sample to
achieve first-order Markovian independence. We used
1000burn insamplesandkept5000samplesafter thinning.

To estimate treatment effects for this BACIPS study,
we used the posterior distributions of St to estimate the
posterior distribution of the ratio of treatment to control
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watersheds (Rt tjc) as Rt tjc = St treat/ St control) for each
time period. We then estimated the posterior distribution
of the treatment effect for survival (RS BACI) as

RS BACI = Rtjc after/Rtjc before. That is, for each MCMC
sample, we calculated the mean ratio from the seven
seasons after the BDAs were installed and the mean
ratio from the eight seasons before the BDAs were
installed, and then divided them. Note that because
the ratios were log-normally distributed, we did all
calculations on the log scale, and then back trans-
formed the final RS BACI for each MCMC sample.
We estimated the median and 2.5 and 97.5 percen-
tiles for the distribution of RS BACI.

Density

Abundance for each site was estimated from the two
closed-capture sessions, which occurred at the start of
each of the seasonal time periods described above for
survival (Table 1), except for one additional capture
session that occurred pre-treatment in January (winter)
2007. Thus, for each closed-capture session, a fish could
have a 10 (captured the first session but not captured the
second session), 11 (captured the first session and cap-
tured the second session), or 01 (not captured the first
session but captured the second session) encounter his-
tory. We summarized these encounter histories for each
of the two closed-capture sessions across sites for each
time period (season). There were 18 abundance esti-
mates, 10 before and 8 after BDAs were installed for
each site. There were three additional abundance esti-
mates relative to survival because there was an addition-
al closed-capture session at the start of the study, sur-
vival could not be estimated for the last seasonal period,
as discussed above, and survival is an interval estimate
(i.e., there is one survival estimate between two closed-
capture sessions/estimates).

We used a Bayesian MCMC approach to generate a
posterior distribution of abundance (N) for each site and
time period based on number of unique individuals
captured (n) and capture probability. We used closed-
capture modelM0 (Otis et al. 1978) and a data augmen-
tation procedure (Royle and Dorazio 2012) for closed-
capture models following Royle et al. (2007). We aug-
mented each sample (n) by 500 (z) because this was
more than twice any empirical abundance estimate for
any of the study sites. This augmentation provided, in
essence, a relatively uninformative prior (i.e.,M = z + n,

and N ∼ DU(0, M) where DU = discrete uniform distri-
bution; for details, see Royle and Dorazio 2012). To
obtain a posterior distribution of site abundances, we
usedWinBUGS (Lunn et al. 2000), called frommatbugs
(available from http://code.google.com/p/matbugs/) in
MATLAB (v. R2012b; MATLAB_8.0 2012). We ran
model M0 for each site and time period using 20,000
MCMC samples after discarding the first 1000 samples
as burn in for each of three chains. We thinned by saving
every third sample to reduce autocorrelations between
samples; thus, we retained 5000 samples. We
determined if the Markov chains converged using the
Gelman-Rubin statistic (called Brooks-Gelman-Rubin
statistics in WinBUGS), R-hat (Gelman et al. 2004).
For each site and period, we used three chains of 5000
each and used a threshold of R-hat <1.1 for N to indicate
adequate sampling of the posterior distribution.

From the posterior distributions of abundance, we gen-
erated posterior distributions of density (D) for each site as
fish/100 m by dividing each abundance estimate by the
site length and then standardizing to 100 m. To generate
one estimate per time period for treatment and control
sites, we averaged the log of the density estimates across
treatment and control sites for each time period. We did
this for each MCMC sample to generate a posterior distri-
bution of average density for treatment and control water-
sheds for each period. Then, similar to survival, we used
the ratio of these estimates to estimate treatment effects for
this BACIPS study. That is, we calculated the ratio of the

treatment to control watersheds (Rt tjc) asRt tjc =Dt treat/Dt

control) for each time period. We then estimated the poste-
rior distribution of the treatment effect for density

(RD BACI) as RD BACI = Rtjc after/Rtjc before. That is, for each
MCMC sample, we calculated the mean ratio from the
eight seasonal periods after BDAs were installed and the
mean ratio from the ten seasonal periods before the BDAs
were installed, and then divided them. Note that because
the ratios were log-normally distributed, we did all calcu-
lations on the log scale, and then back transformed the
final RD BACI for each MCMC sample. We estimated the
median and 2.5 and 97.5 percentiles for the distribution of
RD BACI.

Results

We used 5728 and 2410 marked juvenile steelhead on
treatment and control watersheds before beaver dam
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analogs were installed, and 7892 and 2227 after, for the
analysis of survival. The Barker global model of surviv-
al fit adequately (i.e., there was not significant
overdispersion or underdispersion); c = 1.15 for the
control watershed data set and c = 1.21 for the treatment
watershed. Because c > 1, we corrected and usedQAICc
for subsequent survival analyses. Survival estimates
from the top-ranked model showed seasonal temporal
variation for treatment and control watersheds, with the
control watershed showing a consistent pattern of lower
winter and higher spring and fall survival (Fig. 2a).
Despite the temporal variation, the average survival on

the treatment watershed increased after installation of
the BDAs, relative to the control watershed (Fig. 2b);

Rtjc before = 0.83 and Rtjc after = 1.13, which resulted in
an overall treatment effect RS BACI = 1.36. This indicates
that survival on the treatment watershed increased, on
average, 36 % after the beaver dam analogs were
installed, relative to survival on the control watershed.

We used 4441 and 2440 marked juvenile steelhead on
treatmentandcontrol sitesbeforeBDAswere installed,and
4955 and 1636 after for the analysis of density. Recapture
rates were very similar for treatment and control sites both
before (0.12 for both treatment and control) and after the
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Fig. 2 The a 3-month juvenile
survival probability of steelhead
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each period (gray line), and the
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(black line) before and after
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installation of BDAs (0.07 treatment and 0.10 control).
Similar to survival, density estimates showed seasonal
variation for treatment and control watersheds, with the
control watershed showing a consistent pattern of lower
winter and higher spring and fall density (Fig. 3a). The
average density on the treatment watershed also increased
after installation of theBDAs, relative to the control water-
shed (Fig. 3b); Rtjc before = 0.60 and Rtjc after = 0.95, which
resulted in an overall treatment effect RD BACI = 1.58. This
indicates that density on treatmentwatershed increased, on
average, 58 % after the BDAs were installed, relative to
density on the control watershed.

The posterior distributions of RS BACI and RD BACI

indicate a zero probability that survival or density de-
creased after the BDAs were installed (Fig. 4). Note that
a decrease would have been indicated by RBACI <1.
After BDAs were installed, the probability of an in-
crease of ≥30 % on the treatment watershed relative to
the control watershed was high for both survival (0.88)
and abundance (0.99; Table 2). The largest difference in
the impact of the BDAs was for the probability of a
≥50 % increase; for survival it was only 0.17, while for
abundance it was 0.82 (Table 2 and shown by shaded
areas, Fig. 4). The posterior distribution of RD BACI was
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shifted to the right relative to RS BACI, and so density
showed higher probabilities of greater potential in-
creases after the installation of BDAs compared to sur-
vival (Fig. 4 and Table 2). The variation in relative
change was also greater for density than survival; the
posterior distribution CI width was 43 % wider for
density compared to survival (Fig. 4).

Discussion

Our results demonstrate a useful extension of Bayesian
methods to estimate probabilities of different effect sizes
for BACI style study designs. Here, for two different

population parameters that had output that differed in
distribution and magnitude, we quantified the probabil-
ity that restoration had a negative or positive impact. In
addition, we can readily evaluate different levels of
impact. For example, the probability that BDAs in-
creased both survival and density of juvenile steelhead
by ≥50% was 0.17 and 0.82, respectively (Table 2), and
we can compare this to the probability of a more mod-
erate increase of ≥30 % (0.88 and 0.99, respectively;
Table 2). Indeed, the output metrics from a posteri-
or distribution are flexible, and metrics such as
presented here are intuitive to restoration and other
management concerns and well adapted for deci-
sion making (Wade 2000).
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Fig. 4 Distribution of the relative
change (RBACI) in a juvenile
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The combination of a ratio test statistic and the
Bayesian approach yields results that are directly appli-
cable to restoration and management questions (as well
as for evaluating natural perturbation impacts). First,
using a Bayesian MCMC approach to estimate this test
statistic is particularly useful because the posterior prob-
ability distribution of the treatment effect (RBACI) can be
used to directly draw inferences about the probability
that there was a change in the response variable, given
the observed data (Crome et al. 1996). Secondly, using a
Bayesian approach provides accurate estimates of vari-
ation for the ratios (or any contrast, including nonlinear
contrasts, of interest), whereas approaches to estimate
variance from combined or transformed variables, such
as the Delta method, can yield poor estimates where the
function is nonlinear (Cooch and White 2016) or when
the variance in the measured response is relatively large
(e.g., CV > 20–50 %; Zhou 2002).

Additionally, using a test statistic that is a ratio of
treatment to control observations provides directly in-
terpretable effects in terms of the percent response of
treatment sites, relative to control sites, after a restora-
tion action was implemented relative to before period
(RBACI). Thus, if RBACI = 1.28, there was a 28 % in-
crease in the response variable in the treatment water-
shed after manipulation. As ratios provide an interpre-
tation based on proportional responses, effect sizes are
directly comparable across multiple response variables,
relative to management targets or biologically reason-
able responses, which can vary in both magnitude (daily
growth versus animal abundance) and domain (e.g.,
survival [0–1] versus density [positive numbers]). Thus,
while the mechanisms for changes in density (reproduc-
tion, mortality, immigration, emigration) and survival

(mortality) following manipulation differ significantly,
a ratio test statistic can be used to draw inference about
the probability a manipulation would achieve manage-
ment goals with different effect sizes across response
variables in a consistent and easily comparable manner.
For example, here we can easily compare the probabil-
ities of restoration targets such as a 50 % increase in
density (0.82) and a 20 % increase in survival (0.99).
However, while a ratio test statistic provides a useful
metric to quantify changes in a response variable fol-
lowing manipulations and facilitates comparison of ob-
served effect sizes from multiple response variables or
potential study targets, it does not directly imply biolog-
ical significance of that response to a population of
interest. For example, the impacts of a 20 % increase
in juvenile steelhead survival following BDA installa-
tion on the population as a whole is dependent on the
survival rate prior to manipulation and would need to be
evaluated using a population projection model, to put
it within the context of other demographic constraints.

Since the initial proposal of before-after (Box and
Tiao 1965) and BACI (Green 1979) designs, the devel-
opment of more sophisticated study designs, including
the paired BACIPS (Stewart-Oaten et al. 1986), beyond-
BACI (Underwood 1994), and multiple BACI
(MBACI; Keough and Quinn 2000), has spawned an
unresolved debate about the most appropriate study
design to draw inferences from field studies involving
nonrandom assignment of unreplicated treatments
(Reckhow 1990; Underwood and Chapman 2003;
Webb et al. 2010). However, studies are often
constrained by resources, the existence of suitable ref-
erence sites, and the ability to collect data at reference
and impact sites both before and after a perturbation

Table 2 Estimates of the probability juvenile survival and density increased or decreased a given percentage after BDAs were installed on
study sites in Bridge Creek, OR, 2007–2012

Parameter ≥0 % ≥20 % ≥30 % ≥50 % ≥100 %

Increase

Survival 1.00a 0.99 0.88 0.17 0.00

Density 1.00 1.00 0.99 0.82 0.00

Decrease

Survival 0.00 0.00 0.00 0.00 0.00

Density 0.00 0.00 0.00 0.00 0.00

a Probabilities are based on a posterior distribution of relative change (R BACI), which is the geometric mean of the ratios (for each period) of
survival and density on the treatment watershed (Bridge Creek) relative to the control watershed (Murderers Creek), with the ratio after
divided by the ratio before BDAs were installed
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occurs for a long enough time series to have power to
detect a change at impact sites. These constraints can
result in high rates of rejecting the null hypothesis when
in fact there was no impact (type I error; Murtaugh
2002), or sometimes accepting a null hypothesis when
in fact there was an impact (type II error; Benedetti-
Cecchi 2001). While it does not mitigate the importance
of good study design, the Bayesian approach we de-
scribe partially alleviates the concern over type I and II
errors by directly estimating the probability of observing
an effect size (or range of effect sizes), conditional on
the observed data, as opposed to probability of observ-
ing the data (or more extreme data), conditional on a
specific hypothesis and assumptions that may not be
satisfied by the study design and data.

We concur with recent assertions that estimation of
effect size is more important, and more informative, than
significance testing for management applications
(Stewart-Oaten et al. 1992; Mapstone 1995; Crome et al.
1996). Manipulation of Bayesian posterior distributions
allows analysts to determine the probability of observing
any effect size of interest, or contrast the probability of
effect sizes that differ in magnitude. For example, Bayes-
ian approaches have been used to determine the probabil-
ity that mean pH in Adirondack lakes increased by ≥10%
during a 7-year study period (Reckhow 1990), California
spotted owl populations increased or decreased by ≥0, 30,
and 50 % during a 20-year study period (Conner et al.
2013), bird community composition changed by greater
than or equal to −25, 0, and 25 % owing to logging
practices (Crome et al. 1996), and that there was a
≥75 % reduction in occupancy across sites after a hurri-
cane (Russell et al. 2015). Thus, analyses can be readily
framed to report the probability that a change of a magni-
tude deemed to be important to managers/policymakers
has occurred. In contrast, the question asked by a classical
hypothesis test is whether the test statistic calculated from
the sample mean was unusual in comparison to what we
would expect to calculate if there was no change. Infer-
ences drawn about significant effect sizes from
hypothesis-driven approaches can be subject to questions
of biological significance and are often difficult to inter-
pret with regard to management goals or conservation
targets.

The combination of a ratio test statistic and Bayesian
approach can easily be generalized to wide variety of
study designs and provide an answer to the main study
question—BHowmuch impact (positive or negative) did
the restoration action (or natural perturbation) have?^

While determining restoration management effects in a
field setting is the main focus of this paper, the ratio and
Bayesian approach could be applied to controlled ex-
periments or treatment contrasts of other response vari-
ables as well. Primary to adapting this approach to other
applications is defining the set of models that capture the
study design and processes determining the response
variables; in addition, this approach has the additional
advantage that priors can be incorporated, if the data are
available, for Bayesian analysis (see Wade 2000; Hobbs
and Hooten 2015). Indeed, manipulation of posterior
distributions can facilitate inferences drawn using a ratio
test statistic. For example, Kimball et al. (2014) describe
a split-plot designed experiment to evaluate the impacts
of water and nitrogen input on percent cover of native
shrubs. They provide estimates of percent native cover
for different input levels, but could recast the results to
describe the probability that water reduction (emulating
drought conditions) decreased the percent native cover
by 50 %, or some relevant ecological or management
threshold. For other non-BACI study designs in less
controlled field experiments, Bayesian methods have
been used to describe widely ranging response variables
of interest, including growth of individuals (Tanentzap
et al. 2014; Tang et al. 2014), occupancy of species
across a landscape (Russell et al. 2009), structure of
physical habitat (Wallis et al. 2008), and biochemical
makeup of terrestrial and aquatic systems (Qian et al.
2005; Larssen et al. 2006; Tanentzap et al. 2014). Such
models can easily be adapted to provide posterior dis-
tributions that facilitate ratio contrasts between treat-
ment and control experimental units for either controlled
experiments, as well as field studies based on non-BACI
study designs.

Management applications

BACI designs have been used to evaluate a variety of
field experiments where randomization of treatment
and/or control sites is not possible (Skilleter et al.
2006; Conner et al. 2007; Pitcher et al. 2009; Russell
et al. 2015). While any management action can be
evaluated with this approach, we believe it has particular
relevance to restoration activities. Ecologists and man-
agers tasked with conserving wildlife species, especially
those showing declining population trends, often em-
ploy habitat restoration to enhance population vital rates
and increase abundance. However, the majority of res-
toration activities go unevaluated (Bernhardt et al.
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2005), while those that have been evaluated show vary-
ing degrees of success (Thompson 2006; Roni et al.
2008; Stewart et al. 2009; Whiteway et al. 2010). As a
result, information is sparse as to which restoration
activities recover declining populations as well as the
extent to which restoration actions affect population
responses. The BACI design can yield inference about
impacts of restoration across broad scales (Underwood
1994; Keough and Mapstone 1995; Stewart-Oaten and
Bence 2001), but to date has yet to be incorporated in
many evaluations of restoration effectiveness (Miao
et al. 2009). This is particularly unfortunate because,
in many cases, the planning and permitting process
involved with restoration activities provide an opportu-
nity to initiate carefully designed BACI type studies,
providing a time series of data both before and after
restoration activities occur. In addition, the analysis of
BACI data using a Bayesian approach is particularly
well suited for the evaluation of restoration effectiveness
as the inferences drawn about restoration impacts can be
easily understood by many stakeholders.

The combination of a ratio test statistic and Bayesian
approach we outline here, in conjunction with carefully
a designed BACIPS study, provides ecologists and man-
agers with an elegant means to quantify the probability
of various effect sizes of interest, which can be a useful
for managers trying to balance trade-offs between costly
management actions and conservation of wildlife popu-
lations.Moreover, this approach provides results that are
easily understandable to ecologists, managers, and
stakeholders with a nonscientific background alike. We
hope this approach will be useful for field ecologists and
managers involved in restoration studies, but will also
have wider application for any field study that suffers
from a lack of adequate randomization and replication.
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