Skip to main content

Advertisement

Log in

Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Even though geothermal energy is a renewable energy source that is seen as cost-effective and environmentally friendly, emissions from geothermal plants can impact air, soil, and water in the vicinity of geothermal power plants. The Cerro Prieto geothermal complex is located 30 km southeast of the city of Mexicali in the Mexican state of Baja California. Its installed electricity generation capacity is 720 MW, being the largest geothermal complex in Mexico. The objective of this study was to evaluate whether the emissions generated by the geothermal complex have increased the soil mercury concentration in the surrounding areas. Fifty-four surface soil samples were collected from the perimeter up to an approximate distance of 7660 m from the complex. Additionally, four soil depth profiles were performed in the vicinity of the complex. Mercury concentration in 69 % of the samples was higher than the mercury concentration found at the baseline sites. The mercury concentration ranged from 0.01 to 0.26 mg/kg. Our results show that the activities of the geothermal complex have led to an accumulation of mercury in the soil of the surrounding area. More studies are needed to determine the risk to human health and the ecosystems in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An, Q., Wu, Y., Wang, J., & Li, Z. (2009). Heavy metals and polychlorinated biphenyls in sediments of the Yangtze River estuary, China. Environment and Earth Science, 59, 363–370.

    Article  CAS  Google Scholar 

  • Arellano, V.M., Barragán, R.M, Aragón, A., Rodríguez, M.H. & Pérez, A. (2010). The Cerro Prieto IV (Mexico) geothermal reservoir: pre-exploitation thermodynamic conditions and main processes related to exploitation (2000–2005). Geothermics, 40, 190–198.

  • Armienta, M. A., Rodríguez, R., Ceniceros, N., Cruz, O., Aguayo, A., Morales, P., & Cienfuegos, E. (2014). Groundwater quality and geothermal energy. The case of Cerro Prieto geothermal field, México. Renewable Energy, 63, 236–254.

    Article  CAS  Google Scholar 

  • Baldi, F. (1988). Mercury pollution in the soil and mosses around a geothermal plant. Water, Air, and Soil Pollution, 38, 111–119.

    CAS  Google Scholar 

  • Bayer, P., Rybach, L., Blum, P., & Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation. Renewable and Sustainable Energy Reviews, 26, 446–463.

    Article  Google Scholar 

  • Bertani, R. (2012). Geothermal power generation in the world 2005–2010 update report. Geothermics, 41, 1–29.

    Article  Google Scholar 

  • Bertani R., & Lund J. (2013). World Energy Resources, 2013 Survey: Summary. Chapter 9, World Energy council, 1–62, Retrieved January 10, 2015, from http://www.worldenergy.org/wp-content/uploads/2013/09/WER_2013_9_Geothermal.pdf

  • Bowen, H. (1979). Environmental chemistry of the elements. London: Academic Press.

    Google Scholar 

  • CFE (2007). Manifestación del impacto ambiental, modalidad particular, Proyecto Geotermoelectrico Cerro Prieto V (Environmental Impact Statement, particular modality. Cerro Prieto Geothermoelectric Project). Comisión Federal de Electricidad. Retrieved February 17, 2016, from: http://sinat.semarnat.gob.mx/dgiraDocs/documentos/bc/estudios/2007/02BC2007E0001.pdf

  • Cox, M. (1981). An approach to problems of a geothermal mercury survey, Puna, Hawaii. Transactions. Geothermal Resource Council, 5, 67–70.

    Google Scholar 

  • Durkalec, M., Szkoda, J., Kolacz, R., Opalinski, S., Nawrocka, A., & Zmudzki, J. (2015). Bioaccumulation of lead, cadmium and mercury in roe deer and wild boars from areas with different levels of toxic metal pollution. International Journal of Environmental Research, 9(1), 205–212.

    CAS  Google Scholar 

  • Ferrara, R., Maserti, B.E., De Liso, A., Edner, H., Ragnarson, P., Svanberg, S. & Wallinder, E. (1994). Could the geothermal power plant at Mt. Amiata (Italy) be a source of mercury contamination? In: Watras, C.J., Huckabee, J.W. (Eds) Mercury pollution integration and synthesis. Lewis, Boca Raton, pp. 601–607.

  • García, I., & Dorronsoro, C. (2005). Contaminación por metales pesados (Pollution by heavy metals); Departamento de Edafología y Química Agrícola. Unidad docente e investigadora de la Facultad de Ciencias, Universidad de Granada, España, Retrieved November 15, 2014, from: http://edafologia.ugr.es/conta/tema15/introd.htm.

  • Gutiérrez-Negrín, L., & Quijano-Leon, J. L. (2005). Results of geothermal exploitation in Mexico in 2004. Geothermal Resources Council Transactions, 29, 229–233.

    Google Scholar 

  • Harte, J., Holdren, C., Schneider, R., & Shirley, C. (1991). Toxics a to Z: a guide to everyday pollution hazards (1st ed.). Berkeley: University of California Press.

    Google Scholar 

  • Herdianita, N., & Priadi, B. (2008). Arsenic and mercury concentrations at several geothermal systems in West Java, Indonesia. Institute of Technology Bandung International Journal of Mathematical and Fundamental Sciences, 40A(1), 1–14 Retrieved October 20, 2014 from http://journals.itb.ac.id/index.php/jmfs/article/view/28.

    Google Scholar 

  • Hiriart, G., & Gutiérrez-Negrin, L. C. A. (2003). Main aspects of geothermal energy in Mexico. Geothermics, 32, 389–396.

    Article  Google Scholar 

  • Klusman, R., & Landress, R. (1978). Secondary controls on mercury in soils of geothermal areas. Journal of Geochemical Exploration, 9, 75–91.

    Article  CAS  Google Scholar 

  • Krishna, A., & Govil, P. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.

    Article  CAS  Google Scholar 

  • Kristmannsdóttir, H., & Ármannsson, H. (2003). Environmental aspects of geothermal energy utilization. Geothermics, 32, 451–461.

    Article  Google Scholar 

  • Krupp, R. E., & Seward, T. M. (1990). Transport and deposition of metals in the Rotokawa geothermal system, New Zealand. Mineralium Deposita, 25(1), 73–81.

    Article  CAS  Google Scholar 

  • Leal-Acosta, M., Shumilin, E., Mirlean, N., Sapozhnikov, D., & Gordeev, V. (2010). Arsenic and mercury contamination of sediments of geothermal springs, mangrove lagoon and the Santispac bight, Bahía Concepción, Baja California Peninsula. Bulletin of Environmental Contamination and Toxicology, 85(6), 609–613.

    Article  CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51(3), 409–420.

    Article  CAS  Google Scholar 

  • Mahajan, V., Yadav, R., Dakshinkar, N., Dhoot, V., Bhojane, G., Naik, M., Shrivastava, P., Naoghare, P., & Krishnamurthi, K. (2012). Influence of mercury from fly ash on cattle reared nearby thermal power plant. Environmental Monitoring and Assessment, 184, 7365–7372.

    Article  CAS  Google Scholar 

  • Mercado, S., & Hurtado, R. (1992). Potash extraction from Cerro Prieto geothermal brine. Geothermics, 21(5–6), 759–764.

    Article  CAS  Google Scholar 

  • Moosavi, M., & Zarasvandi, A. (2009). Geochemistry of urban soils in the Masjed-i-Soleiman (MIS) City, Khuzestan Province, Iran: environmental marks. Research Journal of Environmental Sciences, 3(3), 392–399.

    Article  CAS  Google Scholar 

  • Mueller, G. (1969). Index of geoaccumulation in sediments of Rhine River. GeoJournal, 2(3), 108–118.

    Google Scholar 

  • Nava-Martinez, E., Garcia-Flores, E., Espinoza-Gomez, H., & Wakida, F. T. (2012). Heavy metals pollution in the soil of an irregular urban settlement built on a former dumpsite in the city of Tijuana, Mexico. Environment and Earth Science, 66, 1239–1335.

    Article  CAS  Google Scholar 

  • Nimick, D., Caldwell, R., Skaar, D., & Selch, T. (2013). Fate of geothermal mercury from Yellowstone National Park in the Madison and Missouri rivers, USA. Science of the Total Environment, 443, 40–54.

    Article  CAS  Google Scholar 

  • NOM-147-SEMARNAT/SSA1-2004 (2007). que establece criterios para determinar las concentraciones de remediacion de suelos contaminados por arsenico, bario, berilio, cadmio, cromo hexavalente, mercurio, niquel, plata, plomo, selenio, talio y/o vanadio (Establishes the criteria to determine the concentrations of remediation of soil contaminated by arsenic, barium, beryllium, cadmium, chrome hexavalente, mercury, nickel, silver, lead, selenium, thallium, and/or vanadium). Diario Oficial de la Federación, Estados Unidos Mexicanos, Secretaría de Medio Ambiente y Recursos Naturales. Retrieved January 12, 2015, from http://www.profepa.gob.mx/innovaportal/file/1392/1/NOM-147-SEMARNAT_SSA1-2004.pdf.

  • Peralta, O., Castro, T., Durón, M., Salcido, A., Celada-Murillo, A., Navarro-González, R., Márquez, C., García, J., De la Rosa, J., Torres, R., Villegas-Martínez, R., Carreón-Sierra, S., Imaz, M., Martínez-Arroyo, A., Saavedra, I., Espinosa, M., & Torres-Jaramillo, A. (2013). H2S emissions from Cerro Prieto geothermal power plant, Mexico, and air pollutants measurements in the area. Geothermics, 46, 55–65.

    Article  CAS  Google Scholar 

  • Portugal, E., Barragan, R. M., & De Leon, J. (2006). Effects of artificial and natural recharge on chemical equilibrium in the Cerro Prieto reservoirs, Baja California. Journal of Geochemical Exploration, 89, 339–343.

    Article  CAS  Google Scholar 

  • Robertson, D. E., Crecelius, E. A., Fruchter, J. S., & Ludwick, J. D. (1977). Mercury emissions from geothermal power plants. Science, 196(4294), 1094–1097.

    Article  CAS  Google Scholar 

  • Rowell, D. (1994). Soil science: methods and applications. Addison Wesley Longman: England.

    Google Scholar 

  • Rychagov, S., Nuzhdaev, A., & Stepanov, I. (2009). Behavior of mercury in the supergene zone of geothermal deposits, southern Kamchatka. Geochemistry International, 47(5), 504–512.

    Article  Google Scholar 

  • Sabadell, E., & Axtmann, R. (1975). Heavy metal contamination from geothermal sources. Environmental Health Perspectives, 12, 1–7.

    Article  CAS  Google Scholar 

  • Sarychikhina, O., Glowacka, E., Mellors, R., & Suárez-Vidal, F. (2011). Land subsidence in the Cerro Prieto geothermal field, Baja California, Mexico, from 1994 to 2005: an integrated analysis of DInSAR, leveling and geological data. Journal of Volcanology and Geothermal Research, 204, 76–90.

    Article  CAS  Google Scholar 

  • SENER (2012). Prospectiva del sector eléctrico 2012–2026 (Electricity sector outlook), Secretaría de Energía, 1–237, Retrieved February 23, 2016, from: https://noalamatgirona.files.wordpress.com/2013/07/prospectivasectorelectrico_2012_2026.pdf.

  • Stallard, M.L., Winnett, T.L., Truesdell, A.H., Coplen, T.B., Kendall, C., White, L.D., Janik, C.J., & Thompson, J.M. (1987). Patterns of change in water isotopes from the Cerro Prieto geothermal field, Baja California, Mexico, 1977–1986. Geothermal Resources Council Transactions, 11, 203–210.

  • Suryantini (2013). Statistical analysis of mercury data from soil survey in non-volcanic geothermal system: a case study in Sulawesi. Procedia Earth and Planetary Science, 6, 212–218.

    Article  CAS  Google Scholar 

  • Tijhuis, L., Brattli, B., & Sæther, O. M. (2002). A geochemical survey of topsoil in the City of Oslo, Norway. Environmental Geochemistry and Health, 24(1), 67–94.

    Article  CAS  Google Scholar 

  • Timperley, M. H., & Hill, L. F. (1997). Discharge of mercury from the Wairakei geothermal power station to the Waikato River, New Zealand. Journal of Marine and Freshwater Research, 31, 327–336.

    Article  CAS  Google Scholar 

  • US Department of Energy (2010). A History of Geothermal Energy Research and Development in the United States, Energy Conversion 1976–2006, U.S. Geothermal Technologies Program; Department of Energy: 1–142, Retrieved January 15, 2015, from http://energy.gov/sites/prod/files/2014/02/f7/geothermal_history_4_conversion.pdf.

  • Varekamp, J., & Buseck, P. (1984). Global mercury flux from volcanic and geothermal sources. Applied Geochemistry, 1, 65–73.

    Article  Google Scholar 

  • Vitolo, S., & Seggiani, M. (2002). Mercury removal from geothermal exhaust gas by sulfur-impregnated and virgin activated carbons. Geothermics, 31, 431–442.

    Article  CAS  Google Scholar 

  • Wakida, F. T., Lara-Ruiz, D., Temores-Peña, J., Rodriguez-Ventura, G., Diaz, C., & Garcia-Flores, E. (2008). Heavy metals in sediments of the Tecate River. Environmental Geology, 54, 637–642.

    Article  CAS  Google Scholar 

  • Weissberg, B. G., & Rohde, A. G. (1978). Mercury in some New Zealand geothermal discharges. New Zealand Journal of Science, 21, 365–369.

    CAS  Google Scholar 

  • Xu, J., Garcia-Bravo, A., Lagerkvist, A., Bertilsson, S., Sjöblomb, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Universidad Autónoma de Baja California (UABC) for the financial support through its internal program of research grants (16ta Convocatoria interna para apoyo a proyectos de Investigacion de la UABC). The authors are also indebted to Professor Samuel G. Meléndez-Lopez for proofreading an earlier version of this manuscript and the anonymous reviewers for their comments to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. T. Wakida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastrana-Corral, M.A., Wakida, F.T., García-Flores, E. et al. Soil mercury levels in the area surrounding the Cerro Prieto geothermal complex, MEXICO . Environ Monit Assess 188, 466 (2016). https://doi.org/10.1007/s10661-016-5474-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5474-1

Keywords

Navigation