Skip to main content
Log in

Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this work, we investigated the emerging pollutants in Taiwanese groundwater for the first time and correlated their presence with possible contamination sources. Fifty target pharmaceuticals and perfluorinated chemicals in groundwater were mostly present at ng L−1 concentrations, except for 17α-ethynylestradiol, sulfamethoxazole, and acetaminophen (maximums of 1822, 1820, and 1036 ng L−1, respectively). Perfluorinated compounds were detected with the highest frequencies in groundwater at almost all of the sample sites, especially short-chained perfluorinated carboxylates, which were easily transferred to the groundwater. The results indicate that the compounds found to have high detection frequencies and concentrations in groundwater are similar to those found in other countries around the world. Most common pharmaceuticals that contain hydrophilic groups, such as sulfonamide antibiotics and caffeine, are easily transported through surface waters to groundwater. The results also indicated that the persistent natures of emerging contaminants with high detection frequencies in surface water and groundwater, such as perfluorooctanesulfonate (risk quotient >1), caffeine, and carbamazepine, should be further studied and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahrens, L. (2011). Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. Journal of Environmental Monitoring, 13(1), 20–31.

    CAS  Google Scholar 

  • Ahrens, L., Taniyasu, S., Yeung, L. W. Y., Yamashita, N., Lam, P. K. S., & Ebinghaus, R. (2010). Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan. Chemosphere, 79(3), 266–272.

    CAS  Google Scholar 

  • Ahrens, L., Yamashita, N., Yeung, L. W. Y., Taniyasu, S., Horii, Y., Lam, P. K. S., & Ebinghaus, R. (2009). Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan. Environmental Science & Technology, 43(18), 6969–6975.

    CAS  Google Scholar 

  • Al-Ahmad, A., Daschner, F. D., & Kümmerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Archives of environmental contamination and toxicology, 37(2), 158–163.

    CAS  Google Scholar 

  • Al Aukidy, M., Verlicchi, P., Jelic, A., Petrovic, M., & Barcelò, D. (2012). Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Science of the Total Environment, 438, 15–25.

    CAS  Google Scholar 

  • Ankley, G. T., Johnson, R. D., Detenbeck, N., Bradbury, S., Toth, G., & Folmar, L. (1997). Development of a research strategy for assessing the ecological risk of endocrine disruptors. Reviews in Toxicology, 1(5), 71–106.

    Google Scholar 

  • Arnaud, M. J. (2011). Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In Methylxanthines (pp. 33–91): Springer.

  • ATSDR. (2009). Public Health Statement for Perfluoroalkyls, Division of Toxicology and Environmental Medicine. Atlanta GA: Agency for Toxic Substances and Disease Registry.

    Google Scholar 

  • Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2004). Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monitoring and Remediation, 24(2), 119–126.

    CAS  Google Scholar 

  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Science of the Total Environment, 402(2–3), 192–200.

    CAS  Google Scholar 

  • Baronti, C., Curini, R., D'Ascenzo, G., Di Corcia, A., Gentili, A., & Samperi, R. (2000). Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 34(24), 5059–5066.

    CAS  Google Scholar 

  • Bartelt-Hunt, S., Snow, D. D., Damon-Powell, T., & Miesbach, D. (2011). Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of Contaminant Hydrology, 123(3), 94–103.

    CAS  Google Scholar 

  • Becker, A. M., Gerstmann, S., & Frank, H. (2008). Perfluorooctane surfactants in waste waters, the major source of river pollution. Chemosphere, 72(1), 115–121.

    CAS  Google Scholar 

  • Boillot C. (2008). Évaluation des risques écotoxicologiques liés aux rejets d'ef fl uents hospitaliers dans les milieux aquatiques. Contribution à l'amélioration de la phase “caratérisation des effets”. PhD Thesis. Institut National des Sciences Appliquées de Lyon, France, N° d'ordre 2008 ISAL 0021.

  • Boxall, A. B., Kolpin, D. W., Halling-Sørensen, B., & Tolls, J. (2003). Peer reviewed: are veterinary medicines causing environmental risks? Environmental Science & Technology, 37(15), 286A–294A.

    CAS  Google Scholar 

  • Bradley, P. M., Barber, L. B., Duris, J. W., Foreman, W. T., Furlong, E. T., Hubbard, L. E., Hutchinson, K. J., Keefe, S. H., & Kolpin, D. W. (2014). Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. Environmental Pollution, 193, 173–180.

    CAS  Google Scholar 

  • Bruchet, A., Hochereau, C., Picard, C., Decottignies, V., Rodrigues, J. M., & Janex-Habibi, M. L. (2005). Analysis of drugs and personal care products in French source and drinking waters: the analytical challenge and examples of application. Water Science and Technology, 52(8), 53–61.

    CAS  Google Scholar 

  • Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82(6), 653–659.

    CAS  Google Scholar 

  • Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008–2010. The Baix Llobregat (Barcelona, Spain). Journal of hazardous materials.

  • Caldwell, D. J., Mastrocco, F., Anderson, P. D., Länge, R., & Sumpter, J. P. (2012). Predicted‐no‐effect concentrations for the steroid estrogens estrone, 17β‐estradiol, estriol, and 17α‐ethinylestradiol. Environmental Toxicology and Chemistry, 31(6), 1396–1406.

    CAS  Google Scholar 

  • Carrara, C., Ptacek, C. J., Robertson, W. D., Blowes, D. W., Moncur, M. C., Sverko, E., & Backus, S. (2008). Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environmental Science & Technology, 42(8), 2805–2811.

    CAS  Google Scholar 

  • Carlsson, C., Johansson, A. K., Alvan, G., Bergman, K., & Kühler, T. (2006). Are pharmaceuticals potent environmental pollutants?: Part I: environmental risk assessments of selected active pharmaceutical ingredients. Science of the total environment, 364(1), 67–87.

    CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Research, 38(4), 947–954.

  • Colborn, T., & Clement, C. (1992). Chemical-induced alterations in sexual and functional development: the human/wildlife connection. Princeton New Jersey: Princeton Scientifc Publishing Co., Inc. 90.

    Google Scholar 

  • Díaz-Cruz, M. S., & Barceló, D. (2008). Trace organic chemicals contamination in ground water recharge. Chemosphere, 72(3), 333–342.

    Google Scholar 

  • Diniz, M. S., Peres, I., Magalhães-Antoine, I., Falla, J., & Pihan, J. C. (2005). Estrogenic effects in crucian carp (Carassius carassius) exposed to treated sewage effluent. Ecotoxicology and environmental safety, 62(3), 427–435.

    CAS  Google Scholar 

  • Dolder, L. K. (2013). Chapter 60—Methylxanthines: caffeine, theobromine, theophylline. In Small animal toxicology (3rd ed., pp. 647–652). Saint Louis: W.B. Saunders.

    Google Scholar 

  • Drewes, J. E., Heberer, T., Rauch, T., & Reddersen, K. (2003). Fate of pharmaceuticals during ground water recharge. Ground Water Monitoring and Remediation, 23(3), 64–72.

    CAS  Google Scholar 

  • Drewes, J. E., Heberer, T., & Reddersen, K. (2002). Fate of pharmaceuticals during indirect potable reuse. Water Science and Technology, 46(3), 73–80.

    CAS  Google Scholar 

  • Duan, Y.-P., Meng, X.-Z., Wen, Z.-H., & Chen, L. (2013). Acidic pharmaceuticals in domestic wastewater and receiving water from hyper-urbanization city of China (Shanghai): environmental release and ecological risk. Environmental Science and Pollution Research, 20(1), 108–116.

    CAS  Google Scholar 

  • Dzieweczynski, T. L., & Buckman, C. M. (2013). Acute exposure to 17α-ethinylestradiol disrupts audience effects on male–male interactions in Siamese fighting fish, Betta splendens. Hormones and Behavior, 63(3), 497–502.

    CAS  Google Scholar 

  • Einsiedl, F., Radke, M., & Maloszewski, P. (2010). Occurrence and transport of pharmaceuticals in a karst groundwater system affected by domestic wastewater treatment plants. Journal of Contaminant Hydrology, 117(1–4), 26–36.

    CAS  Google Scholar 

  • Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental Pollution, 144(1), 184–189.

    CAS  Google Scholar 

  • Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., & McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water research, 45(1), 75–92.

    CAS  Google Scholar 

  • Estévez, E., Cabrera, M. D. C., Molina-Díaz, A., Robles-Molina, J., & Palacios-Díaz, M. D. P. (2012). Screening of emerging contaminants and priority substances (2008/105/EC) in reclaimed water for irrigation and groundwater in a volcanic aquifer (Gran Canaria, Canary Islands, Spain). Science of the Total Environment, 433, 538–546.

    Google Scholar 

  • Fan, C., & He, J. (2011). Proliferation of antibiotic resistance genes in microbial consortia of sequencing batch reactors (SBRs) upon exposure to trace erythromycin or erythromycin-H2O. Water research, 45(10), 3098–3106.

    CAS  Google Scholar 

  • Ferrari, B., Mons, R., Vollat, B., Fraysse, B., Paxēaus, N., Giudice, R. L., Pollio, A., & Garric, J. (2004). Environmental risk assessment of six human pharmaceuticals: are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental toxicology and chemistry, 23(5), 1344–1354.

    CAS  Google Scholar 

  • Ferrari, B. T., Paxéus, N., Giudice, R. L., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55(3), 359–370.

    CAS  Google Scholar 

  • Ferrey, M. (2011). Wastewater Treatment Plant Endocrine Disrupting Chemical Monitoring Study. [Minnesota Pollution Control Agency].

  • Fisone, G., Borgkvist, A., & Usiello, A. (2004). Caffeine as a psychomotor stimulant: mechanism of action. Cellular and Molecular Life Sciences CMLS, 61(7–8), 857–872.

    CAS  Google Scholar 

  • Fong, P. P. (1998). Zebra mussel spawning is induced in low concentrations of putative serotonin reuptake inhibitors. The Biological Bulletin, 194(2), 143–149.

  • Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I., Elhanany, S., & Lev, O. (2010). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environmental Science & Technology, 44(10), 3919–3925.

    CAS  Google Scholar 

  • Godfrey, E., Woessner, W. W., & Benotti, M. J. (2007). Pharmaceuticals in on-site sewage effluent and ground water, western Montana. Ground Water, 45(3), 263–271.

    CAS  Google Scholar 

  • Halling-Sørensen, B., Neilsen, S. N., Lanzky, P. E., Ingerslev, F., Lüthøft, H. C. H., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere, 36(2), 357–393.

    Google Scholar 

  • Hansen, K. J., Johnson, H. O., Eldridge, J. S., Butenhoff, J. L., & Dick, L. A. (2002). Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River. Environmental Science & Technology, 36(8), 1681–1685.

    CAS  Google Scholar 

  • Harris, C. A., Santos, E. M., Janbakhsh, A., Pottinger, T. G., Tyler, C. R., & Sumpter, J. P. (2001). Nonylphenol affects gonadotropin levels in the pituitary gland and plasma of female rainbow trout. Environmental Science & Technology, 35(14), 2909–2916.

    CAS  Google Scholar 

  • Harrison, P., Holmes, P., & Humfrey, C. (1997). Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure? Science of the Total Environment, 205(2), 97–106.

    CAS  Google Scholar 

  • Hartmann, A., Golet, E., Gartiser, S., Alder, A., Koller, T., & Widmer, R. (1999). Primary DNA damage but not mutagenicity correlates with ciprofloxacin concentrations in German hospital wastewaters. Archives of environmental contamination and toxicology, 36(2), 115–119.

    CAS  Google Scholar 

  • Heberer, T., & Adam, M. (2004) Transport and attenuation of pharmaceutical residues during artificial groundwater replenishment. Environmental Chemistry, 1(1), 22–25.

  • Heberer, T., Dünnbier, U., Reilich, C., & Stan, H.-J. (1997). Detection of drugs and drug metabolites in ground water samples of a drinking water treatment plant. Fresenius Environmental Bulletin, 6(7), 438–443.

  • Heberer, T. (2002a). Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta hydrochimica et hydrobiologica, 30(5–6), 227–243.

    Google Scholar 

  • Heberer, T. (2002b). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology letters, 131(1), 5–17.

    CAS  Google Scholar 

  • Heberer, T. (2002c). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology, 266(3), 175–189.

    CAS  Google Scholar 

  • Higgins, C. P., & Luthy, R. G. (2006). Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 40(23), 7251–7256.

    CAS  Google Scholar 

  • Hilton, M., Thomas, K., & Ashton, D. (2003). Targeted monitoring programme for pharmaceuticals in the aquatic environment: Environment Agency.

  • Hinkle, S. R., Weick, R. J., Johnson, J. M., Cahill, J. D., Smith, S. G., & Rich, B. J. (2005). Organic wastewater compounds, pharmaceuticals, and coliphage in ground water receiving discharge from onsite wastewater treatment systems near La Pine, Oregon: Occurrence and implications for transport. U. S. Geological Survey.

  • Hirsch, R., Ternes, T., Haberer, K., & Kratz, K.-L. (1999). Occurrence of antibiotics in the aquatic environment. Science of The Total Environment, 225(1–2), 109–118.

    CAS  Google Scholar 

  • Hohenblum, P., Gans, O., Moche, W., Scharf, S., & Lorbeer, G. (2004). Monitoring of selected estrogenic hormones and industrial chemicals in groundwaters and surface waters in Austria. Science of the Total Environment, 333(1–3), 185–193.

    CAS  Google Scholar 

  • Holm, J. V., Ruegge, K., Bjerg, P. L., & Christensen, T. H. (1995). Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark). Environmental Science & Technology, 29(5), 1415–1420.

    CAS  Google Scholar 

  • Hong, N., Chu, H.-J., Lin, Y.-P., & Deng, D.-P. (2010). Effects of land cover changes induced by large physical disturbances on hydrological responses in Central Taiwan. Environmental Monitoring and Assessment, 166(1–4), 503–520.

    Google Scholar 

  • Hu, X. G., Zhou, Q. X., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998.

    CAS  Google Scholar 

  • Hughes, S. R., Kay, P., & Brown, L. E. (2012). Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmental Science & Technology, 47(2), 661–677.

    Google Scholar 

  • Jongbloed, R., Kan, C., Blankendaal, V., & Bernhard, R. (2002). Milieurisico’s van diergenesmiddelen en veevoeradditivien in Nederlands oppervlaktewateren. Rep.

  • Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., & Barceló, D. (2012). Emerging organic contaminants in groundwater in Spain: a review of sources, recent occurrence and fate in a European context. Science of The Total Environment, 440, 82–94.

    CAS  Google Scholar 

  • Katz, B. G., Griffin, D. W., & Davis, J. H. (2009). Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators. Science of the Total Environment, 407(8), 2872–2886.

    CAS  Google Scholar 

  • Kavlock, R. J., Daston, G. P., DeRosa, C., Fenner-Crisp, P., Gray, L. E., Kaattari, S., et al. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the US EPA-sponsored workshop. Environmental Health Perspectives, 104(Suppl 4), 715.

    Google Scholar 

  • Khanal, S. K., Xie, B., Thompson, M. L., Sung, S., Ong, S.-K., & van Leeuwen, J. (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environmental Science & Technology, 40(21), 6537–6546.

    CAS  Google Scholar 

  • Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.-G., & Park, J. (2007). Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environment International, 33(3), 370–375.

    CAS  Google Scholar 

  • Kolodziej, E. P., Harter, T., & Sedlak, D. L. (2004). Dairy wastewater, aquaculture, and spawning fish as sources of steroid hormones in the aquatic environment. Environmental Science & Technology, 38(23), 6377–6384.

    CAS  Google Scholar 

  • Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., et al. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36(6), 1202–1211.

    CAS  Google Scholar 

  • Komori, K., Suzuki, Y., Minamiyama, M., & Harada, A. (2013). Occurrence of selected pharmaceuticals in river water in Japan and assessment of their environmental risk. Environmental monitoring and assessment, 185(6), 4529–4536.

    CAS  Google Scholar 

  • Kreuzinger, N., Clara, M., Strenn, B., & Vogel, B. (2004). Investigation on the behaviour of selected pharmaceuticals in the groundwater after infiltration of treated wastewater. Water Science and Technology, 50(2), 221–228.

    CAS  Google Scholar 

  • Kümmerer, K. (2004). Pharmaceuticals in the environment: sources, fate, effects and risks; with 77 Tables. Springer.

  • Kümmerer, K., & Henninger, A. (2003). Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clinical Microbiology and Infection, 9(12), 1203–1214.

    Google Scholar 

  • Länge, R., Hutchinson, T. H., Croudace, C. P., Siegmund, F., Schweinfurth, H., Hampe, P., et al. (2001). Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 20(6), 1216–1227.

    Google Scholar 

  • Lacey, C., Basha, S., Morrissey, A., & Tobin, J. M. (2012). Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environmental Monitoring and Assessment, 184(2), 1049–1062.

    CAS  Google Scholar 

  • Lapworth, D., Baran, N., Stuart, M., & Ward, R. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.

    CAS  Google Scholar 

  • Le, T., Bhushan, V., Amin, C., Amin, C., & Bhushan, V. (2012). First aid for the USMLE step 2 (8th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Lin, A. Y.-C., Lin, C.-A., Tung, H.-H., & Chary, N. S. (2010a). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1–3), 242–250.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Lin, Y.-C., & Lee, W.-N. (2014a). Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments. Environmental Pollution, 187, 170–181.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Panchangam, S. C., & Chen, H.-Y. (2010b). Implications of human pharmaceutical occurrence in the Sindian river of Taiwan: a strategic study of risk assessment. Journal of Environmental Monitoring, 12(1), 261–270.

    Google Scholar 

  • Lin, A. Y.-C., Panchangam, S. C., & Ciou, P.-S. (2010c). High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere, 80(10), 1167–1174.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Panchangam, S. C., & Lo, C.-C. (2009a). The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution, 157(4), 1365–1372.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Panchangam, S. C., Tsai, Y.-T., & Yu, T.-H. (2014b). Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environmental Monitoring and Assessment, 186(5), 3265–3275.

    CAS  Google Scholar 

  • Lin, A. Y.-C., & Tsai, Y.-T. (2009). Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 407(12), 3793–3802.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Wang, X.-H., & Lin, C.-F. (2010d). Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere, 81(5), 562–570.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Yu, T.-H., & Lateef, S. K. (2009b). Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of hazardous materials, 167(1), 1163–1169.

    CAS  Google Scholar 

  • Lin, A. Y.-C., Yu, T.-H., & Lin, C.-F. (2008). Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere, 74(1), 131–141.

    CAS  Google Scholar 

  • Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73(19), 4640–4646.

    CAS  Google Scholar 

  • Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F., et al. (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water research, 44(14), 4115–4126.

    CAS  Google Scholar 

  • Löffler, D., Römbke, J., Meller, M., & Ternes, T. A. (2005). Environmental fate of pharmaceuticals in water/sediment systems. Environmental Science & Technology, 39(14), 5209–5218.

    Google Scholar 

  • Maeng, S. K., Sharma, S. K., Lekkerkerker-Teunissen, K., & Amy, G. L. (2011). Occurrence and fate of bulk organic matter and pharmaceutically active compounds in managed aquifer recharge: a review. Water Research, 45(10), 3015–3033.

    CAS  Google Scholar 

  • Mansell, B. L., & Drewes, J. E. (2004). Fate of steroidal hormones during soil-aquifer treatment. Ground Water Monitoring and Remediation, 24(2), 94–101.

    CAS  Google Scholar 

  • Matalon, S., Schechtman, S., Goldzweig, G., & Ornoy, A. (2002). The teratogenic effect of carbamazepine: a meta-analysis of 1255 exposures. Reproductive Toxicology, 16(1), 9–17.

    CAS  Google Scholar 

  • Miller, K. J., & Meek, J. (2006). Helena Valley Ground Water: Pharmaceuticals, Personal Care Products, Endocrine Disruptors (PPCPs), and Microbial Indicators of Fecal Contamination Montana Bureau of Mines and Geology.

  • Moody, C. A., Hebert, G. N., Strauss, S. H., & Field, J. A. (2003). Occurrence and persistence of perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. Journal of Environmental Monitoring, 5(2), 341–345.

    CAS  Google Scholar 

  • Murakami, M., Kuroda, K., Sato, N., Fukushi, T., Takizawa, S., & Takada, H. (2009). Groundwater pollution by perfluorinated surfactants in Tokyo. Environmental Science & Technology, 43(10), 3480–3486.

    CAS  Google Scholar 

  • Musolff, A., Leschik, S., Möder, M., Strauch, G., Reinstorf, F., & Schirmer, M. (2009). Temporal and spatial patterns of micropollutants in urban receiving waters. Environmental Pollution, 157(11), 3069–3077.

    CAS  Google Scholar 

  • Nakada, N., Kiri, K., Shinohara, H., Harada, A., Kuroda, K., Takizawa, S., & Takada, H. (2008). Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage. Environmental Science & Technology, 42(17), 6347–6353.

    CAS  Google Scholar 

  • NAQUA, B. (2009). Ergebnisse der Grundwasserbeobachtung Schweiz (NAQUA). Zustand und Entwicklung 2004–2006. Umwelt-Zustand Nr. 0903. Bundesamt für Umwelt, Bern. 144 S (2009).

  • Newsted, J. L., Jones, P. D., Coady, K., & Giesy, J. P. (2005). Avian toxicity reference values for perfluorooctane sulfonate. Environmental science & technology, 39(23), 9357–9362.

    CAS  Google Scholar 

  • Noever, D. A., Cronise, R. J., & Relwani, R. A. (1995). Using spider-web patterns to determine toxicity.

  • OECD (2002). Hazard assessment of perfluorooctane sulfonate (PFOS) and its salts. Organization for Economic Cooperation and Development.

  • Osenbrück, K., Gläser, H.-R., Knöller, K., Weise, S. M., Möder, M., Wennrich, R., et al. (2007). Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water research, 41(15), 3259–3270.

    Google Scholar 

  • Ozaras, N., Goksugur, N., Eroglu, S., Tabak, O., Canbakan, B., & Ozaras, R. (2012). Carbamazepine-induced hypogammaglobulinemia. Seizure, 21(3), 229–231.

    Google Scholar 

  • Pomati, F., Castiglioni, S., Zuccato, E., Fanelli, R., Vigetti, D., Rossetti, C., et al. (2006). Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environmental Science & Technology, 40(7), 2442–2447.

    CAS  Google Scholar 

  • Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2005). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40(1), 32–44.

    Google Scholar 

  • Purdom, C., Hardiman, P., Bye, V., Eno, N., Tyler, C., & Sumpter, J. (1994). Estrogenic effects of effluents from sewage treatment works. Chemistry and Ecology, 8, 275–285. Find this article online.

    CAS  Google Scholar 

  • Quinn, B., Gagné, F., & Blaise, C. (2008). An investigation into the acute and chronic toxicity of eleven pharmaceuticals (and their solvents) found in wastewater effluent on the cnidarian, Hydra attenuata. Science of The Total Environment, 389(2–3), 306–314.

    CAS  Google Scholar 

  • Ra, J. S., Oh, S. Y., Lee, B. C., & Kim, S. D. (2008). The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environment international, 34(2), 184–192.

    CAS  Google Scholar 

  • Rabiet, M., Togola, A., Brissaud, F., Seidel, J. L., Budzinski, H., & Elbaz-Poulichet, F. (2006). Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environmental Science & Technology, 40(17), 5282–5288.

    CAS  Google Scholar 

  • Rostkowski, P., Yamashita, N., So, I. M. K., Taniyasu, S., Lam, P. K. S., Falandysz, J., & Giesy, J. P. (2006). Perfluorinated compounds in streams of the Shihwa industrial zone and Lake Shihwa, South Korea. Environmental Toxicology and Chemistry, 25(9), 2374–2380.

    CAS  Google Scholar 

  • Routledge, E., Sheahan, D., Desbrow, C., Brighty, G., Waldock, M., & Sumpter, J. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology, 32(11), 1559–1565.

    CAS  Google Scholar 

  • Sacher, F., Lange, F. T., Brauch, H.-J., & Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: analytical methods and results of a monitoring program in Baden-Württemberg, Germany. Journal of Chromatography A, 938(1), 199–210.

    CAS  Google Scholar 

  • Sanderson, H., Johnson, D. J., Wilson, C. J., Brain, R. A., & Solomon, K. R. (2003). Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicology Letters, 144(3), 383–395.

    CAS  Google Scholar 

  • Santos, J. L., Aparicio, I., Callejón, M., & Alonso, E. (2009). Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of hazardous materials, 164(2–3), 1509–1516.

    CAS  Google Scholar 

  • Schmidt, C. K., Lange, F. T., Brauch, H.-J., & Kühn, W. (2003). Experiences with riverbank filtration and infiltration in Germany. DVGW-Water Technology Center (TZW).

  • Schultz, M. M., Barofsky, D. F., & Field, J. A. (2004). Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Environmental Science & Technology, 38(6), 1828–1835.

    CAS  Google Scholar 

  • Seiler, R. L., Zaugg, S. D., Thomas, J. M., & Howcroft, D. L. (1999). Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Ground Water, 37(3), 405–410.

    CAS  Google Scholar 

  • Senthilkumar, K., Ohi, E., Sajwan, K., Takasuga, T., & Kannan, K. (2007). Perfluorinated compounds in river water, river sediment, market fish, and wildlife samples from Japan. Bulletin of Environmental Contamination and Toxicology, 79(4), 427–431.

  • Sohoni, P., Tyler, C., Hurd, K., Caunter, J., Hetheridge, M., Williams, T., Woods, C., Evans, M., Toy, R., Gargas, M., & Sumpter, J. P. (2001). Reproductive effects of long-term exposure to bisphenol A in the fathead minnow (Pimephales promelas). Environmental Science & Technology, 35(14), 2917–2925.

    CAS  Google Scholar 

  • Stamatelatou, K., Frouda, C., Fountoulakis, M., Drillia, P., Kornaros, M., & Lyberatos, G. (2003). Pharmaceuticals and health care products in wastewater effluents: the example of carbamazepine. Water Supply, 3(4), 131–137.

    CAS  Google Scholar 

  • Stuart, M. E., Manamsa, K., Talbot, J. C., & Crane, E. J. (2011). Emerging contaminants in groundwater. British Geological Survey, 111.

  • Stuyfzand, P. J., Segers, W., & van Rooijen, N. (2007). Behavior of pharmaceuticals and other emerging pollutants in various artificial recharge systems in the Netherlands. In ISMAR6-6th International Symposium in managed aquifer recharge-Management of aquifer recharge for sustainability, 231–45.

  • Swartz, C. H., Reddy, S., Benotti, M. J., Yin, H. F., Barber, L. B., Brownawell, B. J., & Rudel, R. A. (2006). Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environmental Science & Technology, 40(16), 4894–4902.

    CAS  Google Scholar 

  • Snyder, S., Westerhoff, P., Yoon, Y., Vanderford, B., & Rexing, D. (2004). Evaluation of conventional and advanced treatment processes to remove endocrine disruptors and pharmaceutically active compounds. Abstracts of Papers of the American Chemical Society, 228, U620–U620.

    Google Scholar 

  • Taniyasu, S., Kannan, K., Horii, Y., Hanari, N., & Yamashita, N. (2003). A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology, 37(12), 2634–2639.

    CAS  Google Scholar 

  • USEPA (2009). ECOWIN v. 1.00, ECOSAR Classes for Microsoft Windows, OPPT-Risk Assessment Division. Washington, DC, USA.

  • USEPA (2010). US Environmental Protection Agency. Perfluorooctanoic acid (PFOA) and fluorinated telomers—related EPA actions—PFOA-related research. [cited 2010 December 11]. Available from: http://www.epa.gov/opptintr/pfoa/pubs/activities.html#ord.

  • Verlicchi, P., Al Aukidy, M., & Zambello, E. (2012). Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment—a review. Science of the Total Environment, 429, 123–155.

    CAS  Google Scholar 

  • Verstraeten, I. M., Fetterman, G. S., Meyer, M. T., Bullen, T., & Sebree, S. K. (2005). Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste. Ground Water Monitoring and Remediation, 25(2), 107–117.

    CAS  Google Scholar 

  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental Pollution, 159(10), 2929–2934.

    CAS  Google Scholar 

  • Vulliet, E., Wiest, L., Baudot, R., & Grenier-Loustalot, M. F. (2008). Multi-residue analysis of steroids at sub-ng/L levels in surface and ground-waters using liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1210(1), 84–91.

    CAS  Google Scholar 

  • Walters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids–soil mixtures in outdoor mesocosms. Water research, 44(20), 6011–6020.

    CAS  Google Scholar 

  • Wang, Y., Mu, J. & Wang, J. (2011). Aquatic predicted no-effect concentration (PNEC) derivation for perfluorooctane sulfonic acid (PFOA). Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on, 1–4.

  • Wollenberger, L., Halling-Sørensen, B., & Kusk, K. O. (2000). Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere, 40(7), 723–730.

    CAS  Google Scholar 

  • Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T., & Harter, T. (2010). Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields. Environmental Science & Technology, 44(17), 6591–6600.

    CAS  Google Scholar 

  • Xiao, F., Simcik, M. F., & Gulliver, J. S. (2012). Perfluoroalkyl acids in urban stormwater runoff: influence of land use. Water Research, 46(20), 6601–6608.

    CAS  Google Scholar 

  • Xiao, F., Zhang, X., Penn, L., Gulliver, J. S., & Simcik, M. F. (2011). Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: experimental studies and modeling. Environmental Science & Technology, 45(23), 10028–10035.

    CAS  Google Scholar 

  • Yu, Y., Wu, L., & Chang, A. C. (2013). Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants. Science of the Total Environment, 442, 310–316.

    CAS  Google Scholar 

  • Zhang, Y., Geißen, S.-U., & Gal, C. (2008). Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere, 73(8), 1151–1161.

    CAS  Google Scholar 

  • Zhao, J.-L., Ying, G.-G., Liu, Y.-S., Chen, F., Yang, J.-F., Wang, L., et al. (2010). Occurrence and a screening-level risk assessment of human pharmaceuticals in the Pearl River system, South China. Environmental Toxicology and Chemistry, 29(6).

  • Zhou, H., Wu, C., Huang, X., Gao, M., Wen, X., Tsuno, H., et al. (2010). Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environment Research, 82(11), 2239–2248.

    CAS  Google Scholar 

  • Zuehlke, S., Duennbier, U., Heberer, T., & Fritz, B. (2004). Analysis of endocrine disrupting steroids: investigation of their release into the environment and their behavior during bank filtration. Ground Water Monitoring and Remediation, 24(2), 78–85.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the support from the Environmental Protection Administration (101-S-A87).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Yu-Chen Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Lai, W.WP., Tung, Hh. et al. Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environ Monit Assess 187, 256 (2015). https://doi.org/10.1007/s10661-015-4497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4497-3

Keywords

Navigation