Skip to main content

Advertisement

Log in

Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Human activities in many parts of the world have greatly affected natural areas. Therefore, monitoring and forecasting of land-cover changes are important components for sustainable utilization, conservation, and development of these areas. This research has been conducted on Igneada, a legally protected area on the northwest coast of Turkey, which is famous for its unique, mangrove forests. The main focus of this study was to apply a land use and cover model that could quantitatively and graphically present the changes and its impacts on Igneada landscapes in the future. In this study, a Markov chain-based, stochastic Markov model and cellular automata Markov model were used. These models were calibrated using a time series of developed areas derived from Landsat Thematic Mapper (TM) imagery between 1990 and 2010 that also projected future growth to 2030. The results showed that CA Markov yielded reliable information better than St. Markov model. The findings displayed constant but overall slight increase of settlement and forest cover, and slight decrease of agricultural lands. However, even the slightest unsustainable change can put a significant pressure on the sensitive ecosystems of Igneada. Therefore, the management of the protected area should not only focus on the landscape composition but also pay attention to landscape configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adhikari, S., & Southworth, J. (2012). Simulating forest cover changes of Bannerghatta National Park based on a ca-Markov model: a remote sensing approach. Remote Sensing, 4, 3215–3243.

    Article  Google Scholar 

  • Antrop, M. (2000). Background concepts for integrated landscape analysis. Agriculture, Ecosystems and Environment, 77, 17–28.

    Article  Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Article  Google Scholar 

  • Ayazli, I. E. (2011). Simulation Model of Urban Sprawl Driven by Transportation Networks: 3rd Bosphorus Bridge Example. PhD Thesis, Yildiz Technical University, Istanbul.

  • Barredo, J. I., Kasanko, M., McCormick, N., & Lavalle, C. (2003). Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64, 145–160.

    Article  Google Scholar 

  • Basharin, G. P., Langville, A. N., & Naumov, V. A. (2004). The life and work of A.A. Markov. Linear Algebra and Its Applications, 386, 3–26.

    Article  Google Scholar 

  • Batty, M. (1997). Cellular automata and urban form: a primer. Journal of the American Planning Association, 63(2), 266–274.

    Article  Google Scholar 

  • Bayes, A., & Raquib, A. (2012). Modeling urban land-cover growth dynamics using multitemporal satellite images: a case study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3–31.

    Google Scholar 

  • Bektaş Balçık, F. (2014). Determining the impact of urban components on land-surface temperature of Istanbul by using remote sensing indices. Environmental Monitoring and Assessment, 186(2), 859–872.

    Article  Google Scholar 

  • Bektaş, F., & Göksel, C. (2005). Remote sensing and GIS integration for land-cover analysis: a case study: Bozcaada Island. Water Science and Technology, 51(11), 239–244.

    Google Scholar 

  • Bozkaya, A.G. (2013). Temporal assessment of Igneada Conservation Area with remote sensing and Geographic Information Systems and modeling the future. MSc Thesis, Istanbul Technical University, Istanbul, 161pp, (In Turkish).

  • Bozkaya, A. G., Bektas Balcik, F., Goksel, C., Dogru, A. O., Ulugtekin, N. N., & Sozen, S. (2014). Satellite-based multitemporal change detection in Igneada flooded forests. Romanian Journal of Geography, 58(2), 161–168.

    Google Scholar 

  • Burnham, B. O. (1973). Markov intertemporal land-use simulation model. Southern Journal of Agricultural Economics, 5, 253–258.

    Google Scholar 

  • Cabral, P. & Zamyatin, A. (2006). Three land change models for urban dynamics analysis in Sintra-Cascais Area. In Proceedings of 1st EARSeL Workshop of the SIG Urban Remote Sensing, Humboldt-Universität Berlin, Germany.

  • Chander, G., & Markham, B. (2003). Revised Landsat-5 TM radiometric calibration procedures and post-calibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41, 2674–2677.

    Article  Google Scholar 

  • Chavez, P. S., Jr. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24, 459–479.

    Article  Google Scholar 

  • Clarke, K. C., & Gaydos, L. J. (1998). Loose coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal Geographical Information Sciences, 12, 699–714.

    Article  CAS  Google Scholar 

  • Congalton, R. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46.

    Article  Google Scholar 

  • Coppedge, B. R., Engle, D. M., & Fuhlendorf, S. D. (2007). Markov models of land-cover dynamics in a southern Great Plains grassland region. Landscape Ecology, 22, 1383–1393.

    Article  Google Scholar 

  • Council of Europe (2000). The European Landscape Convention, Strasbourg.

  • Dogru, A. O., Bektas Balçık, F., Goksel, C., & Ulugtekin, N. N. (2006). Monitoring coastal dunes by using remote sensing and GIS integration in North West Part of Turkey: a case study of Kilyos Dunes. Fresenius Environmental Bulletin, 9b, 15.

  • Eastman, J. R. (2009a). IDRISI Taiga Guide to GIS and Image Processing, Manual Version 16.02 (Software); Clark Labs: Worcester, MA, USA.

  • Eastman, J. R. (2009b). IDRISI Taiga Tutorial (Manual Version 16.02); ClarkLabs: Worcester, MA, USA.

  • Eastman, J. R., Jiang, H., & Toledano, J. (1998). Multicriteria analysis for land use management. Environment & management (Vol. 9, pp. 227–251). Netherlands: Springer. ISBN 978-94-015-9058-7.

    Book  Google Scholar 

  • Emch, M., & Peterson, M. (2006). Mangrove forest-cover change in the Bangladesh Sundarbans from 1989 to 2000: a remote sensing approach. Geocarto International Journal, 21, 5–12.

    Article  Google Scholar 

  • Esbah, H., Deniz, B., Kara, B., & Kesgin, B. (2010). Analyzing landscape change in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics. Environmental Monitoring and Assessment, 165, 617–632.

    Article  Google Scholar 

  • Esbah, H., Turkogu, H., Terzi, F., & Aytaç, G. (2014). Monitoring of urban development in Igneada Protection Area and modelling for future. Final Report (TUBITAK 110Y015). The Scientific and Technological Research Council of Turkey.

  • Foody, G. M. (2002). Status of landcover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  • Forman, R. T. T. (1997). Land mosaics. Boston: Cambridge University Press.

    Google Scholar 

  • Gamerman, D. (1997). Markov Chain Monte Carlo: stochastic simulation for Bayesian Inference. Boca Raton: CRC Press.

    Google Scholar 

  • Kavgaci, A., Čarni, A., Tecimen, H., & Özalp, G. (2011). Diversity of flood plain forests in the Igneada region (NW Thrace–Turkey). Hacquetia, 10(1), 73–93.

    Article  Google Scholar 

  • Lahti, J. (2008). Modelling urban growth using cellular automata: a case study of Sydney, Australia. Master Thesis, Geo-information Science and Earth Observation for Environmental Modelling and Management, International Institute for Geo-information Science and Earth Observation, Enschede, The Netherlands.

  • Landsat user Landsat 7 Science Data Users Handbook. http://landsathandbook.gsfc.nasa.gov. (Last accessed on 10 March 2014).

  • Leadley, P., Pereira, H. M., Alkemade, R., Fernandez-Manjarres, J. F., Proenca, V., Scharlemann, J. P. W., & Walpole, M. J. (2010). Biodiversity scenarios: projections of 21st century change in biodiversity and associated ecosystem services. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series no. 50, 132 pages.

  • Liang, S. (2004). Quantitative remote sensing of land surfaces. New Jersey: Wiley.

    Google Scholar 

  • Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365–2401.

    Article  Google Scholar 

  • Luo, J., & Wei, Y. H. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: the case of Nanjing. Landscape and Urban Planning, 91(2), 51–64.

    Article  Google Scholar 

  • Muller, R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara region, Ontario, Canada. Landscape Ecology, 9, 151–157.

    Google Scholar 

  • Ozhatay, N., Byfield, A., & Atay, S. (2003). Türkiye’nin Önemli Bitki Alanlari, Doğal Hayati Koruma Vakfi (WWF Turkey), 88 pp.

  • Ozyavuz, M. (2010). Analysis of Igneada and its surrounding vegetation dynamics using normalized difference vegetation index data from 1987-2000. Journal of Coastal Research, 26(6), 1001–1006.

    Article  Google Scholar 

  • Ozyavuz, M. (2011). Determination of temporal changes in lakes Mert and Erikli using remote sensing and geographic information systems. Journal of Coastal Research, 27(1), 174–181.

    Article  Google Scholar 

  • Paegelow, M., & Camacho Olmedo, M.T. (2005). Possibilities and limits of prospective GIS land cover modelling - a compared case study: Garrotxes (France) and Alta Alpujarra Granadina (Spain). International Journal of Geographical Information Science, 19(6), 697–722.

  • Petit, C., Scudder, T., & Lambin, E. (2001). Quantifying processes of land-cover change by remote sensing: resettlement and rapid land-cover changes in southeastern Zambia. International Journal of Remote Sensing, 22(17), 3435–3456.

    Article  Google Scholar 

  • Pontius, R. G., Jr. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66, 1011–1016.

    Google Scholar 

  • Pontius, R. G., Jr., & Malanson, J. (2005). Comparison of the structure and accuracy of two land-change models. International Journal of Geographical Information Science, 19(2), 243–265.

    Article  Google Scholar 

  • Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.

    Article  Google Scholar 

  • Pontius, R. G., Jr., Peethambaram, S., & Castella, J. C. (2011). Comparison of three maps at multiple resolutions: a case study of land change simulation in Cho Don District, Vietnam. Annals of the Association of American Geographers, 101, 45–62.

    Article  Google Scholar 

  • Ray, D. K., Duckles, J. M., & Pijanowski, B. C. (2010). The impact of future land-use scenarios on runoff volumes in the Muskegon River watershed. Environmental Management, 46(3), 351–366.

    Article  Google Scholar 

  • Samat, N. (2009). Integrating GIS and CA-Markov Model in Evaluating Urban Spatial Growth. Malaysian Journal of Environmental Management, 10(1), 83–99.

  • Serra, P., Ponsa, X., & Sauri, D. (2008). Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Applied Geography, 28, 189–209.

    Article  Google Scholar 

  • Silva, E., & Clarke, K. (2002). Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26, 525–552.

    Article  Google Scholar 

  • Strengers, B., Leemans, R., Eickhout, B., De Vries, B., & Bouwman, L. (2004). The land-use projections and resulting emissions in the IPCC SRES scenarios as simulated by the IMAGE 2.2 model. GeoJournal, 61, 381–393.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H., & O’Neill, R. V. (2001). Landscape ecology in theory and practice: pattern and process. New York: Springer.

    Google Scholar 

  • Verburg, P. H., de Nijs, T. C. M., RitsemavanEck, J., Visser, H., & de Jong, K. (2004). Method to analyse neighbourhood characteristics of land use patterns. Computers, Environment and Urban Systems, 28, 667–690.

    Article  Google Scholar 

  • Weng, Q. (2002). Land-use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modelling. Journal of Environmental Management, 64, 273–284.

    Article  Google Scholar 

  • Wu, T. Q., Li, H., Wang, R., Paulussen, J., He, Y., Wang, M., Wang, B., & Wang, Z. (2006). Monitoring and predicting land-use change in Beijing using remote sensing and GIS. Landscape and Urban Planning, 78, 322–333.

    Article  Google Scholar 

  • Yılmaz, R. (2010). Monitoring landuse/landcover changes using CORINE landcover data: a case study of Silivri coastal zone in Metropolitan Istanbul. Environmental Monitoring and Assessment, 165(1–4), 603–615.

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted within the EnviroGRIDS Project, which is an EU Funded 7th Framework Program Project under Grant Agreement 226740 (“Building Capacity for a Black Sea Catchment Observation and Assessment System Supporting Sustainable Development”) and TUBITAK (The Scientific and Technological Research Council of Turkey) funded project (No 110Y015), “Monitoring of urban development in Igneada Protection Area and modelling for future.” Finally, we would like to thank the anonymous reviewers and the editors for their constructive comments that improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Bektas Balcik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkaya, A.G., Balcik, F.B., Goksel, C. et al. Forecasting land-cover growth using remotely sensed data: a case study of the Igneada protection area in Turkey. Environ Monit Assess 187, 59 (2015). https://doi.org/10.1007/s10661-015-4322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4322-z

Keywords

Navigation