Skip to main content

Advertisement

Log in

Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The extensive production and usage of nanoparticles with ultimate disposal in the environment leads to unintentional exposure of non-target environmentally beneficial bacteria thereby posing a serious threat to the native soil inhabitants. Soil microflora is an important link in the biogeochemical cycling of nutrients, affecting ecosystem functioning and productivity. This study evaluates the effect of one of the widely used nanoparticles, zinc oxide on two predominant soil bacteria, Gram-positive Bacillus subtilis and Gram-negative Pseudomonas aeruginosa with respect to their biocatalytic activities. Growth profiles of these bacteria in the presence of zinc oxide nanoparticles (ZnONPs) at a concentration of 20 ppm exhibited a prolonged lag phase in B. subtilis, whereas no significant effect was observed in the case of P. aeruginosa even at 200 ppm. Interestingly, the enzymatic profile of both the organisms was affected at non-lethal ZnONPs concentrations. The most pronounced effect was on the enzymes associated with amylolytic activity, denitrification and urea degradation wherein total inhibition of activity was noted in B. subtilis. The enzyme activities were lowered in the case of P. aeruginosa. The results presented here reiterate a critical need for exposure assessment and risk characterization of nanomaterial disposal on soil microflora while formalizing waste management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ZnONPs:

Zinc oxide nanoparticles

ENPs:

Engineered nanoparticles

NPs:

Nanoparticles

References

  • Adams, L. K., Lyon, D. Y., & Alvarez, P. J. J. (2006). Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 40, 3527–3532.

    Article  CAS  Google Scholar 

  • Babich, H., & Stotzky, G. (1978). Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Applied and Environmental Microbiology, 36, 906–914.

    CAS  Google Scholar 

  • Bamborough, L., & Cummings, S. P. (2009). The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biology and Fertility of Soils, 45, 273–280.

    Article  CAS  Google Scholar 

  • Berney, M., Weilenmann, H., Ihssen, J., Bassin, C., & Egli, T. (2006). Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Applied and Environmental Microbiology, 72, 2586–2593.

    Article  CAS  Google Scholar 

  • Beveridge, T. J., Forsberg, C. W., & Doyle, R. J. (1982). Major sites of metal binding in Bacillus licheniformis walls. Journal of Bacteriology, 150, 1438–1448.

    CAS  Google Scholar 

  • Blinova, I., Ivask, A., Heinlaan, M., Mortimer, M., & Kahru, A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158, 41–47.

    Article  CAS  Google Scholar 

  • Bong, C. W., Malfatti, F., Azam, F., Obayashi, Y., & Suzuki, S. (2010). The effect of zinc exposure on the bacteria abundance & proteolytic activity in seawater. In N. Hamamura, S. Suzuki, S. Mendo, C. M. Barroso, H. Iwata, & S. Tanabe (Eds.), Interdisciplinary studies on environmental chemistry — Biological responses to contaminants (pp. 57–63). Tokyo: Terrapub.

    Google Scholar 

  • Boxall, A. B. A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B., et al. (2007). Current and future predicted environmental exposure to engineered nanoparticles. York, UK: Central Science Laboratory, Report to the Department for the Environment, Food and Rural Affairs.

    Google Scholar 

  • Caille, O., Rossier, C., & Perron, K. (2007). A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. Journal of Bacteriology, 189, 4561–4568.

    Article  CAS  Google Scholar 

  • Chen, J., Obbard, J. P., & Stanforth, R. R. (2001). Microbial cellulose decomposition in soils from a rifle range contaminated with heavy metals. Environmental Pollution, 111, 367–375.

    Article  Google Scholar 

  • Comini, E., Faglia, G., Sberveglieri, G., Pan, Z., & Wang, Z. L. (2002). Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 81, 1869–1871.

    Article  CAS  Google Scholar 

  • Coyne, M. S. (2004). Soil microbiology: An exploratory approach. Singapore: Delmar publishers.

    Google Scholar 

  • Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive earth's biogeochemical cycles. Science, 320, 1034–1039.

    Article  CAS  Google Scholar 

  • Fuka, M. M., Engel, M., Hagn, A., Munch, J. C., Sommer, M., & Schloter, M. (2009). Changes of diversity pattern of proteolytic bacteria over time and space in an agricultural soil. Microbial Ecology, 57, 391–401.

    Article  Google Scholar 

  • Fukumori, F., Kudo, T., & Horikoshi, K. (1985). Purification and properties of a cellulase from alkalophilic Bacillus sp. No. 1139. Journal of General Microbiology, 131, 3339–3345.

    CAS  Google Scholar 

  • Gangadharan, D., Nampoothiri, K. M., Sivaramakrishnan, S., & Pandey, A. (2009). Biochemical characterization of raw starch digesting α-amylase from Bacillus amyloliquefaciens. Applied Biochemistry and Biotechnology, 158, 653–662.

    Article  CAS  Google Scholar 

  • Gans, J., Wolinsky, M., & Dunbar, J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 309, 1387–1390.

    Article  CAS  Google Scholar 

  • Ge, Y., Schimel, J. P., & Holden, P. A. (2011). Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science and Technology, 45, 1659–1664.

    Article  CAS  Google Scholar 

  • Ghafoor, A., & Hasnain, S. (2010). Purification and characterization of an extracellular protease from B. subtilis EAG-2 strain isolated from ornamental plant nursery. Journal of Microbiology, 59, 107–112.

    CAS  Google Scholar 

  • Gottschalk, F., Sonderer, T., Scholz, R. W., & Nowack, B. (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environmental Science and Technology, 43, 9216–9222.

    Article  CAS  Google Scholar 

  • Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalusplatyurus. Chemosphere, 71, 1308–1316.

    Article  CAS  Google Scholar 

  • Hindhumathi, M., Vijayalakshmi, S., & Thankamani, V. (2011). Optimization and cultural characterization of alkalophilic protease producing Bacillus sp. GPA4. Research in Biotechnology, 2, 13–19.

    Google Scholar 

  • Huang, G. G., Wang, C. T., Tang, H. T., Huang, Y. S., & Yang, J. (2006). ZnO nanoparticle-modified infrared internal reflection elements for selective detection of volatile organic compounds. Analytical Chemistry, 78, 2397–2404.

    Article  CAS  Google Scholar 

  • Jose, J., Giridhar, R., Anas, A., Loka Bharathi, P. A., & Nair, S. (2011). Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India. Environmental Pollution, 159, 2775–2780.

    Article  CAS  Google Scholar 

  • Jubier-Maurin, V., Rodrigue, A., Ouahrani-Bettache, S., Layssac, M., Mandrand-Berthelot, M., Kohler, S., et al. (2001). Identification of the nik gene cluster of Brucellasuis: regulation and contribution to urease activity. Journal of Bacteriology, 183, 426–434.

    Article  CAS  Google Scholar 

  • Kim, D., Matsuda, O., & Yamamoto, T. (1997). Nitrification, denitrification and nitrate reduction rates in the sediment of Hioshima bay, Japan. Journal of Oceanography, 53, 317–324.

    CAS  Google Scholar 

  • Kim, S., Kim, J., & Lee, I. (2011). Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chemistry and Ecology, 27, 49–55.

    Article  CAS  Google Scholar 

  • Klaine, S. J., Koelmans, A. A., Horne, N., Carley, S., Handy, R. D., Kapustka, L., et al. (2012). Paradigms to assess the environmental impact of manufactured nanomaterials. Environmental Toxicology and Chemistry, 31, 3–14.

    Article  CAS  Google Scholar 

  • Kumar, A., Pandey, A., Singh, S. S., Shanker, R., & Dhawan, A. (2011). Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere, 83, 1124–1132.

    Article  CAS  Google Scholar 

  • Madsen, E. L. (2005). Identifying microorganisms responsible for ecologically significant biogeochemical processes. Nature Reviews Microbiology, 3, 439–446.

    Article  CAS  Google Scholar 

  • Magalhaes, C., Costa, J., Teixeira, C., & Bordalo, A. A. (2007). Impact of trace metals on dentrification in estuarine sediments of the Douro river estuary, Portugal. Marine Chemistry, 107, 332–341.

    Article  CAS  Google Scholar 

  • Martinez, J. L., Sanchez, M. B., Martinez-Solano, L., Hernandez, A., Germendia, L., Fajardo, A., et al. (2009). Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiology Reviews, 33, 430–449.

    Article  CAS  Google Scholar 

  • Miller, R. J., Lenihan, H. S., Muller, E. B., Tseng, N., Hanna, S. K., & Keller, A. A. (2010). Impacts of metal oxide nanoparticles on marine phytoplankton. Environmental Science and Technology, 44, 7329–7334.

    Article  CAS  Google Scholar 

  • Mueller, N., & Nowack, B. (2009). Exposure modeling of engineered nanoparticles in the environment. Environmental Science and Technology, 42, 4447–4453.

    Article  Google Scholar 

  • Nweke, C. O., & Okpokwasili, G. C. (2011). Inhibition of β-galactosidase and α-glucosidase synthesis in petroleum refinery effluent bacteria by zinc and cadmium. Journal of Environmental Chemistry and Ecotoxicology, 3, 68–74.

    Google Scholar 

  • Nweke, C. O., Alisi, C. S., Okolo, J. C., & Nwanyanwu, C. E. (2007). Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Applied Ecology and Environmental Research, 5, 123–132.

    Google Scholar 

  • O’Brien, N. J., & Cummins, E. J. (2011). A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior. Risk Analysis, 31, 1539–6924.

    Google Scholar 

  • Plette, A. C. C., Benedetti, M. F., & Riemsdijk, W. H. V. (1996). Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of a Gram-positive soil bacterium. Environmental Science & Technology, 30, 1902–1910.

    Article  CAS  Google Scholar 

  • Qu, J., Ren, G., Chen, B., Fan, J., & Yong, E. (2011). Effects of lead and zinc mining contamination on bacterial community diversity & enzyme activities of vicinal cropland. Environmental Monitoring and Assessment, 182, 597–606.

    Article  CAS  Google Scholar 

  • Renella, G., Mench, M., Landi, L., & Nannipieri, P. (2005). Microbial diversity and hydrolase synthesis in long term Cd-contaminated soils. Soil Biology and Biochemistry, 37, 133–139.

    Article  CAS  Google Scholar 

  • Romero, M. C., Gatti, E. M., & Bruno, D. E. (1999). Effects of heavy metals on microbial activity of water and sediment communities. World Journal of Microbiology and Biotechnology, 15, 179–184.

    Article  Google Scholar 

  • Sakadevan, K., Zheng, H., & Bavor, H. J. (1999). Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater. Water Science and Technology, 40, 349–355.

    Article  CAS  Google Scholar 

  • Seshachala, U., & Tallapragada, P. (2012). Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean. Journal of Agricultural Research, 72, 397–403.

    Google Scholar 

  • Sharma, R., Christi, Y., & Banerjee, U. C. (2001). Production, purification, characterization and applications of lipase. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  • Shen, G., Lu, Y., & Hong, J. (2006). Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety, 63, 474–480.

    Article  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Journal of Industrial Microbiology and Biotechnology, 32, 587–605.

    Article  CAS  Google Scholar 

  • Simbert, R. M., & Krieg, N. R. (1981). General characterization. In P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg, & G. B. Phillips (Eds.), Manual of methods for general bacteriology (pp. 409–443). Washington, D.C.: American Society of Microbiology.

    Google Scholar 

  • Sinha, R., Karan, R., Sinha, A., & Khare, S. K. (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresource Technology, 102, 1516–1520.

    Article  CAS  Google Scholar 

  • Smejkalova, M., Mikanova, O., & Boruvka, L. (2003). Effects of heavy metal concentrations on biological activity of soil micro-organisms. Plant, Soil and Environment, 49, 321–326.

    CAS  Google Scholar 

  • Tayel, A. A., El-Tras, W. F., Moussa, S., El-Baz, A. F., Mahrous, H., Salem, M. F., et al. (2011). Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. Journal of Food Safety, 31, 211–218.

    Article  CAS  Google Scholar 

  • Vaccari, D. A., Strom, P. F., & Alleman, J. E. (2006). Microbial transformations in environmental biology for engineers and scientists (pp. 387–441). New Jersey: Wiley-Interscience, John Wiley & Sons.

    Google Scholar 

Download references

Acknowledgements

MCS would like to acknowledge Department of Biotechnology (DBT), New Delhi, India for the DBT-Research Associateship in Biotechnology and Life sciences. This work was supported by BITS Pilani, KK Birla Goa campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenal Kowshik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 474 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santimano, M.C., Kowshik, M. Altered growth and enzyme expression profile of ZnO nanoparticles exposed non-target environmentally beneficial bacteria. Environ Monit Assess 185, 7205–7214 (2013). https://doi.org/10.1007/s10661-013-3094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3094-6

Keywords

Navigation