Skip to main content
Log in

Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wastewater and soil samples were collected from the industrial area of Ghaziabad City, India from January 2005 to December 2007 and were analyzed for the presence of heavy metals by atomic absorption spectrophotometry. Test samples revealed high levels of Fe, Cr, Cu, Ni, Zn, and Cd as 967.03, 34.63, 27.97, 19.7, 16.70, and 3.20 mg/L of wastewater, respectively. The concentrations of inorganic minerals were higher in the soil samples irrigated with wastewater. Total coliforms were found to be maximum (1,133 × 104 most probable number per 100 mL) during spring and summer followed by winter and postmonsoon in the wastewater samples. The microbial count in soil as well as in wastewater decreases as the metal concentration increases. The concentration 200 μg/mL of nickel and cadmium inhibits majority of the population, while, at some points, it inhibits 100% of the population. The exponential decay model for microbial count at the increasing metal concentrations indicate that asymbiotic N2 fixers were best fitted to the model. In all the seasons, the order of decline in terms of exponential decay of the population of different microbial groups in soil was asymbiotic N2 fixers > actinomycetes > fungi > aerobic heterotrophic bacteria. The different microbial groups that have different values of slope in different seasons indicate that the resistant population of microorganisms was variable with seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A. S., & Schlesinger, W. H. (2004). Nutrient limitations to soil microbial biomass and activity in loblolly pine forests. Soil Biology & Biochemistry, 36, 581–589.

    Article  CAS  Google Scholar 

  • Ansari, M. I., Grohmann, E., & Malik, A. (2008). Conjugative plasmids in multi-resistant bacterial isolates from Indian soil. Journal of Applied Microbiology, 104, 1774–1781.

    Article  CAS  Google Scholar 

  • Aoyama, M., & Nagumo, T. (1997). Effects of heavy metal accumulation in apple orchard soils on microbial biomass and microbial activities. Soil Science and Plant Nutrition, 43, 601–612.

    CAS  Google Scholar 

  • APHA (1995). Standard methods for the examination of water and wastewaters (19th ed.). Washington, DC: APHA, AWWA, WPCF.

    Google Scholar 

  • Bailey, V. L., Smith, J. L., & Bolton, H. J. (2002). Fungal-to-bacterial ratios in soil investigated for enhanced C sequestration. Soil Biology & Biochemistry, 34, 997–1007.

    Article  CAS  Google Scholar 

  • Balestra, G. M., & Misaghi, I. J. (1997). Increasing the efficiency of the plate counting method for estimating bacterial diversity. Journal of Microbiological Methods, 30, 111–117.

    Article  Google Scholar 

  • Bansal, O. P. (1998). Heavy metal pollution of soils and plants due to sewage irrigation. Indian Journal of Environmental Health, 40, 51–52.

    CAS  Google Scholar 

  • Barra, R., Popp, P., Quiroz, R., Bauer, C., Cid, H., & von Tumpling, W. (2005). Persistent toxic substances in soils and waters along an altitudinal gradient in the Laja River Basin, Central Southern Chile. Chemosphere, 58(7), 905–915.

    Article  CAS  Google Scholar 

  • Brooke, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19, 269–279.

    Article  Google Scholar 

  • Chakraborty, D., & Konar, S. K. (2002). Ecological study on the status of pollution by steel plant waste on river Damodar at Barnpur, West Bengal. Indian Journal of Environmental Health, 44(1), 50–57.

    CAS  Google Scholar 

  • Chander, K., & Brookes, P. C. (1991). Effects of heavy metals from past applications on microbial biomass and organic matter accumulation in sandy loam U.K. soil. Soil Biology & Biochemistry, 23, 927–932.

    Article  Google Scholar 

  • Chander, K., & Brookes, P. C. (1993). Residual effects of zinc, copper and nickel in sewage sludge on microbial biomass in a sandy loam. Soil Biology & Biochemistry, 25, 1231–1239.

    Article  CAS  Google Scholar 

  • Chandy, J. P. (1999). Heavy metal tolerance in chromogenic and non-chromogenic marine bacteria from Arabian Gulf. Environmental Monitoring and Assessment, 59(3), 321–330.

    Article  CAS  Google Scholar 

  • Dai, J., Becquer, T., Rouiller, J. H., Rversat, G., Bernhard-Reversat, F., & lavelle, P. (2004). Influence of heavy metals on C and N mineralization and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology, 25, 99–109.

    Article  Google Scholar 

  • Dar, G. H. (1996). Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresource Technology, 56, 141–145.

    Article  CAS  Google Scholar 

  • Falih, A. M. K., & Wainwright, M. (1996). Microbial and enzyme activity in soils amended with a natural source of easily available carbon. Biology and Fertility of Soils, 21, 177–183.

    Article  CAS  Google Scholar 

  • Gomes, N. C., Heuer, H., Schonfeld, J., Costa, R., Mendonca-Hagler, L., & Smalla, K. (2001). Bacterial diversity of rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil, 232, 167–180.

    Article  CAS  Google Scholar 

  • Gupta, P. K. (2004). Methods in environmental analysis: water, soil and air. India: Updesh Purohit, Agrobios.

    Google Scholar 

  • Harner, T., Bidleman, T. F., Jantunen, L. M. M., & Mackay, D. (2001). Soil air exchange model of persistent pesticides in the United States cotton belt. Environmental Toxicology and Chemistry, 20(7), 1612–1621.

    CAS  Google Scholar 

  • Henckel, T., Jackel, U., Schnell, S., & Conrad, R. (2000). Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Applied and Environmental Microbiology, 66, 1801–1808.

    Article  CAS  Google Scholar 

  • Hopkins, D. W., MacNaughton, S. J., & O’Donnell, A. G. (1991). A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biology & Biochemistry, 23, 217–225.

    Article  Google Scholar 

  • Juwarkar, A., Dutta, S. A., & Pandey, R. A. (1988). Impact of domestic wastewater on soil microbial populations. Water, Air and Soil Pollution, 39, 169–177.

    Article  Google Scholar 

  • Kandeler, E., Kampichler, C., & Horak, O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 23, 299–306.

    Article  CAS  Google Scholar 

  • Kaur, T., & Saxena, P. K. (2002). Impact of pollution on the flesh of some fishes inhabiting river Satluj waters—a biochemical study. Journal of Environmental Health, 44(1), 58–64.

    CAS  Google Scholar 

  • Khasim, I. D. (1989). Studies on contamination of industrial chromium in soil and water and its transfer to commercial crops, fishes and agricultural products special reference to hydrogen ion concentration. Ph.D. thesis, S.V. University, Triupati.

  • Kirk, J. L., Beaudette, L. A., Hart, M., Moutoglis, P., Klironomos, J. N., Lee, H., et al. (2004). Methods of studying soil microbial diversity. Journal of Microbiological Methods, 58, 169–188.

    Article  CAS  Google Scholar 

  • Kuperman, R. G., & Carreiro, M. M. (1997). Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology & Biochemistry, 29, 179–190.

    Article  CAS  Google Scholar 

  • MacGrath, S. P. (1994). Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In S. M. Ross (Ed.), Toxic metals in soil–plant systems (pp. 242–274). Chichester: Wiley.

    Google Scholar 

  • MacGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.

    Google Scholar 

  • Malik, A., & Ahmad, M. (2002). Seasonal variation in bacterial flora of the wastewater and soil in the vicinity of industrial area. Environmental Monitoring and Assessment, 73, 263–273.

    Article  CAS  Google Scholar 

  • Malik, A., & Jaiswal, R. (2000). Metal resistance in Pseudomonas strains isolated from soil treated with industrial wastewater. World Journal of Microbiology & Biotechnology, 16, 177–182.

    Article  CAS  Google Scholar 

  • Malik, A., Khan, I. F., & Aleem, A. (2002). Plasmid incidence in bacteria from agricultural and industrial soils. World Journal of Microbiology & Biotechnology, 18, 827–833.

    Article  CAS  Google Scholar 

  • Marshall, K. C. (1976). Interfaces in microbial ecology. London: Harvard University Press.

    Google Scholar 

  • Mehmannavaz, R., Prasher, S. O., & Ahmad, D. (2001). Cell surface properties of rhizobial strains isolated from soils contaminated with hydrocarbons: Hydrophobicity and adhesion to sandy soil. Process Biochemistry, 36, 683–688.

    Article  CAS  Google Scholar 

  • Moore, J. W., & Ramamoorthy, S. (1984). Heavy metals in national waters. New York: Springer.

    Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

    Article  Google Scholar 

  • Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metal input to agricultural soils in England and Wales. Science of the Total Environment, 311, 205–219.

    Article  CAS  Google Scholar 

  • Oliveira, A., & Pampulha, M. E. (2006). Effects of long term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering, 3, 157–161.

    Article  Google Scholar 

  • Pal, A., Dutta, S., Mukherjee, P. K., & Paul, A. K. (2005). Occurrence of heavy metal-resistance in microflora from serpentine soil of Andaman. Journal of Basic Microbiology, 45(3), 207–218.

    Article  CAS  Google Scholar 

  • Ramalakshmi, A., & Raj, S. A. (2005). Seasonal variation in microbial profile of black cotton soil. Madras Agricultural Journal, 92(4–6), 284–287.

    Google Scholar 

  • Rao, K. J., & Shantaram, M. (1999). Potentially toxic elements in soils treated with urban solid wastes. Indian Journal of Environmental Health, 41, 364–368.

    CAS  Google Scholar 

  • Ravindra, K., Ameena, Meenakshi, Monika, Rani, & Kaushik, A. (2003). Seasonal variations in physico-chemical characteristics of River Yamuna in Haryan and its ecological best designated use. Journal of Environmental Monitoring, 5, 419–426.

    Article  CAS  Google Scholar 

  • Rawat, M., Moturi, M. C., & Subramanian, V. (2003). Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi, India. Journal of Environmental Monitoring, 5(6), 906–912.

    Article  CAS  Google Scholar 

  • Sanghi, R., & Sasi, K. S. (2001). Pesticides and heavy metals in agricultural soils of Kanpur, India. Bulletin of Environmental Contamination and Toxicology, 67, 446–454.

    Article  CAS  Google Scholar 

  • Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66(2), 258–266.

    Article  CAS  Google Scholar 

  • Shi, W., Becker, J., Bischoff, M., Turco, R. F., & Konopka, A. E. (2002). Association of microbial community composition and activity with lead, chromium, and hydrocarbon contamination. Applied and Environmental Microbiology, 68(8), 3859–3866.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Sinha, S., & Dalwani, R. (2004). Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in wastewater disposal area. Chemosphere, 55, 227–255.

    Article  CAS  Google Scholar 

  • Tam, N. F. Y. (1998). Effects of wastewater discharge on microbial populations and enzyme activities in mangrove soils. Environmental Pollution, 102, 233–242.

    Article  CAS  Google Scholar 

  • Taylor, J. P., Wilson, B., Mills, M. S., & Burns, R. G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology & Biochemistry, 34, 387–401.

    Article  CAS  Google Scholar 

  • van Beelen, P., & Doelman, P. (1997). Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere, 34(3), 455–499.

    Article  Google Scholar 

  • Wei, C., & Morrison, G. (1992). Bacterial enzyme activity and metal speciation in urban river sediments. Hydrobiologia, 235/236, 597–603.

    Article  Google Scholar 

  • Yang, S. S., Fan, H. Y., Yang, C. K., & Lin, I. C. (2003). Microbial population of spruce soil in Tatachia mountain of Taiwan. Chemosphere, 52, 1489–1498.

    Article  CAS  Google Scholar 

  • Yang, S. S., Tsai, S. H., Fan, H. Y., Yang, C. K., Hung, W. L., & Cho, S. T. (2006). Seasonal variation of microbial ecology in hemlock soil of Tatachia mountain, Taiwan. Journal of Microbiology, Immunology and Infection, 39, 195–205.

    Google Scholar 

  • Yao, H., He, Z., Wilson, M. J., & Campbell, C. D. (2000). Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microbial Ecology, 40, 233–237.

    Google Scholar 

  • Yao, J., Xu, C., Wang, F., Tian, L., Wang, Y., Chen, H., et al. (2007). An invitro microcalorimetric method for studying the toxic effect of cadmium on microbial activity of an agricultural soil. Ecotoxicology, 16, 503–509.

    Article  CAS  Google Scholar 

  • Zhou, J., Davey, M. E., Figueras, E., Rivkina, E., Gilichinsky, D., & Tiedje, J. M. (1997). Phylogenetic diversity of a bacterial community from Siberian tundra soil DNA. Microbiology, 143, 3913–3919.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.I., Malik, A. Seasonal variation of different microorganisms with nickel and cadmium in the industrial wastewater and agricultural soils. Environ Monit Assess 167, 151–163 (2010). https://doi.org/10.1007/s10661-009-1038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1038-y

Keywords

Navigation