Skip to main content
Log in

Rapid quantitative assessment of visible injury to vegetation and visual amenity effects of fluoride air pollution

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Quantitative measures of visible injury are proposed for the protection of the aesthetic acceptability and health of ecosystems. Visible indications of air pollutant injury symptoms can be assessed rapidly and economically over large areas of mixed species such as native ecosystems. Reliable indication requires close attention to the criteria for assessment, species selection, and the influence of other environmental conditions on plant response to a pollutant. The estimation of fluoride-induced visible injury in dicotyledonous species may require techniques that are more varied than the measurement of necrosis in linear-leaved monocotyledons and conifers. A scheme is described for quantitative estimates of necrosis, chlorosis and deformation of leaves using an approximately geometric series of injury categories that permits rapid and sufficiently consistent determination and recognises degrees of aesthetic offence associated with foliar injury to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ANZEC (1990). Ambient air quality goals: Fluoride (p. 9). Canberra: Australia and New Zealand Environment Council.

    Google Scholar 

  • Arndt, U. (1982). Comparability and standardization of bioindication processes. In L. Steubing & H. J. Jager (Eds.), Monitoring of air pollutants by plants. Methods and problems. Tasks for vegetation science (Vol. 7, pp. 129–130). The Hague: Dr. W. Junk.

    Google Scholar 

  • Arndt, U., Erhardt, W., Keitel, A., Michenfelder, K., Nobel, W., & Schluter, C. (1985). Standardisierte Exposition von Pflanzlichen Reaktionsindikatoren. Staub Reinhaltung der Luft, 45, 481–483.

    Google Scholar 

  • Arndt, U., Nobel, W., & Schweizer, B. (1987). Bioindikatoren. Möglichkeiten, grenzen und neue erkenntnisse. Stuttgart: Eugen Ulmer Verlag.

    Google Scholar 

  • Ashmore, M. R. (2005). Assessing the future global impacts of ozone on vegetation. Plant, Cell & Environment, 28, 949–964. doi:10.1111/j.1365-3040.2005.01341.x.

    Article  CAS  Google Scholar 

  • Ashmore, M. R., Bell, J. N. B., & Reily, C. (1980). The distribution of phytotoxic ozone in the British Isles. Environmental Pollution, B, 1, 195–216.

    Article  CAS  Google Scholar 

  • Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta, 212, 696–709. doi:10.1007/s004250000439.

    Article  CAS  Google Scholar 

  • Batzias, F. A., & Siontorou, C. G. (2006). A knowledge-based approach to environmental biomonitoring. Environmental Monitoring and Assessment, 123, 167–197. doi:10.1007/s10661-006-9190-0.

    Article  CAS  Google Scholar 

  • Boone, R., & Westwood, R. (2006). An assessment of tree health and trace element accumulation near a coal-fired generating station, Manitoba, Canada. Environmental Monitoring and Assessment, 121, 151–172. doi:10.1007/s10661-005-9112-6.

    Article  CAS  Google Scholar 

  • Bussotti, F., Schaub, M., Cozzi, A., Krauchi, N., Ferretti, M., Novak, K., & Skelly, J. M. (2003). Assessment of ozone visible symptoms in the field: Perspectives of quality control. Environmental Pollution, 125, 81–89. doi:10.1016/S0269-7491(03)00095-2.

    Article  CAS  Google Scholar 

  • Bussotti, F., Schaub, M., Cozzi, A., Gerosa, G., Novak, K., & Hug, C. (2006). Sources of error in assessing ozone visible injury symptoms on native vegetation. Environmental Pollution, 140, 257–268. doi:10.1016/j.envpol.2005.07.012.

    Article  CAS  Google Scholar 

  • Bustamente, M., Oliva, M. O., Sant’Anna, R., & Lopes, N. F. (1993). Sensibilidade da soja ao flúor. Revista Brasileira de Fisiologia Vegetal, 5, 151–157.

    Google Scholar 

  • Bytnerowicz, A., Godzik, B., Fraczek, K., Grodzinska, K., Krywult, M., Badea, O., et al. (2002). Distribution of ozone and other air pollutants in forests of the Carpathian mountains in Central Europe. Environmental Pollution, 116, 3–25. doi:10.1016/S0269-7491(01)00187-7.

    Article  CAS  Google Scholar 

  • Bytnerowicz, A., Omasa, K., & Paoletti, E. (2007). Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective. Environment and Progress, 147, 438–445.

    CAS  Google Scholar 

  • Chappelka, A. H., Neufeld, H. S., Davison, A. W., Somers, G. L., & Renfro, J. R. (2003). Ozone injury on cutleaf coneflower (Rudbeckia laciniata) and crown-beard (Verbesina occidentalis) in Great Smoky Mountains National Park. Environmental Pollution, 125, 53–59. doi:10.1016/S0269-7491(03)00086-1.

    Article  CAS  Google Scholar 

  • Chappelka, A. H., Somers, G. L., & Renfro, J. R. (2007). Temporal patterns of foliar ozone symptoms on tall milkweed (Asclepias exaltata L.) in Great Smoky Mountains National Park. Environmental Pollution, 149, 358–365. doi:10.1016/j.envpol.2007.05.015.

    Article  CAS  Google Scholar 

  • Chen, C. W., & Goldstein, R. A. (1986). Techniques for assessing ecosystem impacts of air pollutants. In A. H. Legge & S. V. Krupa (Eds.), Air pollutants and their effects on the terrestrial ecosystem (pp. 603–630). Chichester: Wiley.

    Google Scholar 

  • Cobb, N. A. (1892). Contribution to an economic knowledge of the Australian rusts (Uredineae). Agricultural Gazette of New South Wales, 3, 60–68.

    Google Scholar 

  • Costanza, R., Norton, B. G., & Haskell, B. D. (Eds.) (1992). Ecosystem health—new goals for environmental management. Washington, DC: Island.

    Google Scholar 

  • Croxall, H. E., Gwinne, D. C., & Jenkins, J. E. E. (1952). The rapid assessment of apple scab on leaves. Plant Pathology, 1, 39–41. doi:10.1111/j.1365-3059.1952.tb00022.x.

    Article  Google Scholar 

  • Davis, D. D., & Orendovici, T. (2006). Incidence of ozone symptoms on vegetation within a National Wildlife Refuge in New Jersey, USA. Environmental Pollution, 143, 555–564. doi:10.1016/j.envpol.2005.10.051.

    Article  CAS  Google Scholar 

  • Doley, D. (1986). Plant-fluoride relationships. Melbourne: Inkata.

    Google Scholar 

  • Doley, D., Hill, R. J., & Riese, R. H. (2004). Environmental fluoride in Australasia: Ecological effects, regulation and management. Clean Air and Environmental Quality, 38(2), 35–55.

    Google Scholar 

  • Feder, W. A., & Manning, W. J. (1978). Living plants as indicators and monitors. In W. W. Heck, S. V. Krupa, & S. N. Linzon (Eds.), Handbook of methodology for the assessment of air pollution effects on vegetation, TE-2, Informative Report No. 3, (pp. 9–1–9–14) Pittsburgh: Agricultural Committee, Air Pollution Control Association.

    Google Scholar 

  • Flagler, R. B. (Ed.) (1998). Recognition of air pollution injury to vegetation: A pictorial atlas. Pittsburgh: Air and Waste Management Association.

    Google Scholar 

  • Franzaring, J., Klumpp, A., & Fangmeier, A. (2007). Active biomonitoring of airborne fluoride near an HF producing factory using standardised grass cultures. Atmospheric Environment, 41, 4828–4840. doi:10.1016/j.atmosenv.2007.02.010.

    Article  CAS  Google Scholar 

  • Gostelow, P., Parsons, S. A., & Stuetz, R. M. (2001). Odour measurement for sewage treatment works. Water Research, 35, 579–597. doi:10.1016/S0043-1354(00)00313-4.

    Article  CAS  Google Scholar 

  • Guidi, L., Mori, S., Degl’Innocenti, E., & Pecchia, S. (2007). Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by chlorophyll a fluorescence. Plant Physiology and Biochemistry, 45, 851–857. doi:10.1016/j.plaphy.2007.07.001.

    Article  CAS  Google Scholar 

  • Haddow, D., Musselman, R., Blett, T., & Fisher, R. (1998). Guideline for evaluating air pollution impacts on wilderness within the Rocky Mountain Region: Report of a workshop, 1990 (p. 33). General Technical Report RMRS-GTR-4, Fort Collins: Rocky Mountains Research Station, Forest Service, United States Department of Agriculture.

  • Heck, W. W., Taylor, O. C., & Tingey, D. T. (Eds.) (1988). Assessment of crop loss from air pollutants. London: Elsevier Applied Science.

    Google Scholar 

  • Hill, A. C., Tanstrum, L. G., Pack, M. R., & Winters, W. S. (1958). Air pollution with relation to agronomic crops: VI. An investigation of the ‘hidden injury’ theory of fluoride damage to plants. Agronomy Journal, 50, 562–565.

    CAS  Google Scholar 

  • Horsfall, J. G., & Barratt, R. W. (1945). An improved grading system for measuring plant diseases. Phytopathology, 35, 655.

    Google Scholar 

  • Horsfall, J. G., & Cowling, E. B. (1978). Pathometry: The measurement of plant disease. In J. G. Horsfall & E. B. Cowling (Eds.), Plant disease: An advanced treatise (Vol. II, pp. 119–136). New York: Academic.

    Google Scholar 

  • Huggett, R. J., Kimerle, R. A., Mehrle, P. M., & Bergman, H. L. (Eds.) (1992a). Biomarkers: Biochemical, physiological, and histological markers of anthropogenetic stress. Chelsea, Michigan: Lewis.

    Google Scholar 

  • Huggett, R. J., Kimerle, R. A., Mehrle, P. M., Bergman, H. L., Dickson, K. L., Fava, J. A., et al. (1992b). Introduction. In R. J. Huggett, R. A. Kimerle, P. M. Mehrle, & H. L. Bergman (Eds.), Biomarkers: Biochemical, physiological, and histological markers of anthropogenetic stress (pp. 1–3). Chelsea, Michigan: Lewis.

    Google Scholar 

  • Innes, J. L., Skelly, J. M., & Schaub, M. (2001). Ozone and broadleaved species: A guide to the identification of ozone-induced foliar injury. Berne: P. Haupt.

    Google Scholar 

  • Jacobson, J. S., & Hill, A. C. (Eds.) (1970). Recognition of air pollution injury to vegetation: A pictorial atlas. Pittsburgh: Air Pollution Control Association.

    Google Scholar 

  • Karlsson, G. P., Selldén, G., Skärby, L., & Pleijel, H. (1995). Clover as an indicator plant for phytotoxic ozone concentrations: Visible injury in relation to species, leaf age and exposure dynamics. The New Phytologist, 129, 355–365. doi:10.1111/j.1469-8137.1995.tb04306.x.

    Article  CAS  Google Scholar 

  • Klumpp, A., Klumpp, M., & Domingos, M. (1994). Plants as bioindicators of air pollution at the Serra do Mar near the industrial complex of Cubatão, Brazil. Environmental Pollution, 85, 109–116. doi:10.1016/0269-7491(94)90244-5.

    Article  CAS  Google Scholar 

  • Klumpp, A., Domingos, M., & Klumpp, G. (1996). Assessment of vegetation risk by fluoride emissions from fertiliser industries at Cubatão, Brazil. The Science of the Total Environment, 192, 219–228. doi:10.1016/S0048-9697(96)05298-9.

    CAS  Google Scholar 

  • Klumpp, A., Klumpp, M., Domingos, M., & Guderian, R. (1995). Hemerocallis as bioindicators of fluoride pollution in tropical countries. Environmental Monitoring and Assessment, 35, 27–42.

    CAS  Google Scholar 

  • Kratz, T. K., Magnuson, J. J., Bayley, P., Benson, B. J., Berish, C. W., Bledsoe, C. S., et al. (1995). Temporal and spatial variability as neglected ecosystem properties: Lessons learned from 12 North American ecosystems. In D. J. Rapport, C. L. Gaudet, & P. Calow (Eds.), Evaluating and monitoring the health of large-scale ecosystems (pp. 359–383). Berlin: Springer.

    Google Scholar 

  • Lacasse, N. L., & Treshow, M. (Eds.) (1976). Diagnosing vegetation injury caused by air pollution. Research Triangle Park, North Carolina: Air Pollution Training Institute, U.S. Environmental Protection Agency.

  • Large, E. C. (1966). Measuring plant disease. Annual Review of Phytopathology, 4, 9–26. doi:10.1146/annurev.py.04.090166.000301.

    Article  Google Scholar 

  • Lindberg, S. E., & McLaughlin, S. B. (1986). Air pollutant interactions with vegetation: Research needs in data acquisition and interpretation. In A. H. Legge & S. V. Krupa (Eds.), Air pollutants and their effects on the terrestrial ecosystem (pp. 449–503). Chichester: Wiley.

    Google Scholar 

  • Lorenzini, G., Nali, C., Dota, M. R., & Mafrtorana, F. (2000). Visual assessment of foliar injury induced by ozone on indicator tobacco plants: A data quality evaluation. Environmental Monitoring and Assessment, 62, 175–191. doi:10.1023/A:1006262603497.

    Article  CAS  Google Scholar 

  • Malhotra, S. S., & Blauel, R. A. (1980). Diagnosis of air-pollutant and natural stress symptoms on forest vegetation in western Canada. Information Report NOR-X-228. Edmonton, Alberta: Northern Forest Research Center, Canadian Forestry Service.

  • Manning, W. J. (2003). Detecting plant effects is necessary to give biological significance to ambient ozone monitoring data and predictive ozone standards. Environmental Pollution, 126, 375–379. doi:10.1016/S0269-7491(03)00240-9.

    Article  CAS  Google Scholar 

  • Manning, W. J., & Feder, W. A. (1980). Biomonitoring air pollutants with plants. London: Applied Science.

    Google Scholar 

  • Mayer, F. L., Versteeg, D. J., McKee, M. J., Folmer, L. C., Graney, R. L., McCune, D. C., et al. (1992). Physiological and nonspecific biomarkers. In R. J. Huggett, R. A. Kimerle, P. M. Mehrle, & H. L. Bergman (Eds.), Biomarkers: Biochemical, physiological, and histological markers of anthropogenetic stress (pp. 5–85). Chelsea, Michigan: Lewis.

    Google Scholar 

  • Michener, W. K. (1997). Quantitatively evaluating restoration experiments: Research design, statistical analysis and data management considerations. Restoration Ecology, 5, 324–337. doi:10.1046/j.1526-100X.1997.00546.x.

    Article  Google Scholar 

  • Miller, P. R., Stolte, K. W., Duriscoe, D. M., & Pronos, J. (1996). Evaluating ozone air pollution effects on pines in the western United States. Riverside, California: Pacific Southwest Research Station, USDA Forest Service.

    Google Scholar 

  • Moore, W. C. (1943). The measurement of plant diseases in the field. Transactions of the British Mycological Society, 26, 28–35.

    Article  Google Scholar 

  • Moraes, R. M., Klumpp, A., Furlan, C. M., Klumpp, G., Domingos, M., Rinaldi, M. C. S., et al. (2002). Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environment International, 28, 367–374. doi:10.1016/S0160-4120(02)00060-0.

    Article  CAS  Google Scholar 

  • Novak, K., Skelly, J. M., Schaub, M., Krauchi, N., Hug, C., Landolt, W., et al. (2003). Ozone air pollution and foliar injury development on native plants of Switzerland. Environmental Pollution, 125, 41–52. doi:10.1016/S0269-7491(03)00085-X.

    Article  CAS  Google Scholar 

  • Oliva, M. A., & de Figueiredo, J. G. (2005). Gramíneas bioindicadoras da presença de flúor em regiões tropicais. Revista Brasileira de Botanica, 28, 389–397.

    CAS  Google Scholar 

  • Osmond, C. B. (1988). Ecology of photosynthesis in sun and shade: Summary and prognostications. Australian Journal of Plant Physiology, 15, 1–9.

    Article  CAS  Google Scholar 

  • Paoletti, E., & Manning, W. J. (2007). Toward a biologically significant and usable standard for ozone that will also protect plants. Environmental Pollution, 150, 85–95. doi:10.1016/j.envpol.200z7.06.037.

    Article  CAS  Google Scholar 

  • Queensland (1997). Environmental protection (air) policy. Brisbane: Queensland Government Parliamentary Counsel.

    Google Scholar 

  • Rapport, D. J., Gaudet, C. L., & Calow, P. (Eds.) (1995). Evaluating and monitoring the health of large-scale Ecosystems. NATO Series I: Global Environmental Change (Vol. 28). Berlin: Springer.

    Google Scholar 

  • Robert, C., Bancal, M.-O., Ney, B., & Lannou, C. (2005). Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. The New Phytologist, 165, 227–241. doi:10.1111/j.1469-8137.2004.01237.x.

    Article  Google Scholar 

  • Schaub, M., Skelly, J. M., Zhang, J. W., Ferdinand, J. A., Savage, J. E., Stevenson, R. E., et al. (2005). Physiological and foliar symptom response in the crowns of Prunus serotina, Fraxinus americana and Acer rubrum canopy trees to ambient ozone in the field. Environmental Pollution, 133, 553–567. doi:10.1016/j.envpol.2004.06.012.

    Article  CAS  Google Scholar 

  • Schoettle, A., & Moir, W. (1998). Terrestrial ecosystems. In Guideline for evaluating air pollution impacts on wilderness within the Rocky Mountain Region: Report of a workshop, 1990 (pp. 19–26). General Technical Report RMRS-GTR-4, Fort Collins: Rocky Mountains Research Station, Forest Service, United States Department of Agriculture.

  • Smith, E. P. (1994). Biological monitoring: Statistical issues and models. In G. P. Patil & C. R. Rao (Eds.), Handbook of statistics (Vol. 12, pp. 243–261). Amsterdam: North Holland.

    Google Scholar 

  • Smith, G., Coulston, J., Jepsen, E., & Prichard, T. (2003). A national ozone biomonitoring program—results from field surveys of ozone sensitive plants in Northeastern forests (1994–2000). Environmental Monitoring and Assessment, 87, 271–291. doi:10.1023/A:1024879527764.

    Article  CAS  Google Scholar 

  • Solberg, S., & Strand, L. (1999). Crown density assessments, control surveys and reproducibility. Environmental Monitoring and Assessment, 56, 75–86. doi:10.1023/A:1005980326079.

    Article  Google Scholar 

  • Steubing, L. (1982). Problems of bioindication and the necessity for standardization. In L. Steubing & H. J. Jager (Eds.), Monitoring of air pollutants by plant. methods and problems. Tasks for vegetation science 7 (pp. 19–24). The Hague: Dr. W. Junk.

    Google Scholar 

  • Stolte, K. W. (2001). Forest health monitoring and forest inventory analysis programs monitor climate change effects in forest ecosystems. Human and Ecological Risk Assessment, 7, 1297–1316. doi:10.1080/20018091095014.

    Article  Google Scholar 

  • Tingey, D. T., Hogsett, W. E., & Henderson, S. (1990). Definition of adverse effects for the purpose of establishing secondary national ambient air quality standards. Journal of Environmental Quality, 19, 635–639.

    Article  Google Scholar 

  • Tomkiewicz, J., Skovgård, H., Nachman, G., & Münster-Swendsen, M. (1993). A rapid and non-destructive method to assess leaf injury caused by the cassava mite, Mononychellus tanajoa (Bondar) (Acarina: Tetranuchidae). Experimental & Applied Acarology, 17, 29–40.

    Google Scholar 

  • Tucker, C. C., & Chakraborty, S. (1997). Quantitative assessment of lesion characteristics and disease severity using digital image processing. Journal of Phytopathology, 145, 273–278. doi:10.1111/j.1439-0434.1997.tb00400.x.

    Article  Google Scholar 

  • Underwood, A. J. (1994). Beyond BACI: Sampling designs that might reliably detect environmental disturbance. Ecological Applications, 4, 3–15. doi:10.2307/1942110.

    Article  Google Scholar 

  • United States Congress (1980). Clean Air Act Amendments of 1977. House Committee on Interstate and Foreign Commerce. 96th Congress: No. 96–110. (pp. 856). Washington: United States Government Printing Office.

    Google Scholar 

  • Vollenweider, P., Ottiger, M., & Gunthard-Goerg, M. S. (2003). Validation of leaf ozone symptoms in natural vegetation using microscopical methods. Environmental Pollution, 124, 101–118. doi:10.1016/S0269-7491(02)00412-8.

    Article  CAS  Google Scholar 

  • Weinstein, L. H., & Davison, A. W. (2003). Native plant species suitable as bioindicators and biomonitors for airborne fluoride. Environmental Pollution, 125, 3–11. doi:10.1016/S0269-7491(03)00090-3.

    Article  CAS  Google Scholar 

  • Weinstein, L. H., & Davison, A. (2004). Fluorides in the environment. Wallingford: CABI.

    Book  Google Scholar 

  • Weinstein, L. H., Laurence, J. A., Mandl, R. H., & Walti, K. (1990). Use of native and cultivated plants as bioindicators and biomonitors of pollution damage. In W. Wang, J. W. Gorsuch, & W. R. Lower (Eds.), Plants for toxicity assessment ASTM STP1091 (pp. 117–126). Philadelphia: American Society for Testing and Materials.

    Chapter  Google Scholar 

  • Zonneveld, I. S. (1982). Principles of indication of environment through vegetation. In L. Steubing & H. J. Jager (Eds.), Monitoring of air pollutants by plants. Methods and problems, tasks for vegetation science 7 (pp. 3–17). The Hague: Dr. W. Junk.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Doley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doley, D. Rapid quantitative assessment of visible injury to vegetation and visual amenity effects of fluoride air pollution. Environ Monit Assess 160, 181–198 (2010). https://doi.org/10.1007/s10661-008-0686-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-008-0686-7

Keywords

Navigation