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Abstract The microscopic definition for the Cauchy stress tensor has been examined
in the past from many different perspectives. This has led todifferent expressions for
the stress tensor and consequently the “correct” definitionhas been a subject of debate
and controversy. In this work, a unified framework is set up inwhich all existing def-
initions can be derived, thus establishing the connectionsbetween them. The frame-
work is based on the non-equilibrium statistical mechanicsprocedure introduced by
Irving, Kirkwood and Noll, followed by spatial averaging. The Irving–Kirkwood–
Noll procedure is extended to multi-body potentials with continuously differentiable
extensions and generalized tonon-straight bonds, which may be important for parti-
cles with internal structure. Connections between this approach and the direct spatial
averaging approach of Murdoch and Hardy are discussed and the Murdoch–Hardy
procedure is systematized. Possible sources of non-uniqueness of the stress tensor,
resulting separately from both procedures, are identified and addressed. Numerical
experiments using molecular dynamics and lattice statics are conducted to examine
the behavior of the resulting stress definitions including their convergence with the
spatial averaging domain size and their symmetry properties.
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1 Introduction

Continuum mechanics provides an efficient theoretical framework for modeling ma-
terials science phenomena. To characterize the behavior ofmaterials,constitutive re-
lations serve as an input to the continuum theory. These constitutive models have
functional forms which must be consistent with material frame-indifference and the
laws of thermodynamics and include parameters that are fitted to reproduce exper-
imental observations. With the advent of modern computing power, atomistic sim-
ulations through “numerical experiments” offer the potential for studying different
materials and arriving at their constitutive laws from firstprinciples. This could make
it possible to design new materials and to improve the properties of existing mate-
rials in a systematic fashion. To use the data obtained from an atomistic simulation
to build a constitutive law, which is framed in the language of continuum mechan-
ics, it is necessary to understand the connection between continuum fields and the
underlying microscopic dynamics.

Another arena where the connection between continuum and atomistic concepts
is important is the field ofmultiscale modeling. This discipline involves the develop-
ment of computational tools for studying problems where twoor more length and/or
time scales play a major role in determining macroscopic behavior. A prototypical
example is fracture mechanics where the behavior of a crack is controlled by atomic-
scale phenomena at the crack-tip, while at the same time long-range elastic stress
fields are set up in the body. Many advances have been made in the area of multiscale
modeling in recent years. Some common atomistic/continuumcoupling methods are
quasicontinuum [53,59], coupling of lengthscales [51], cluster quasicontinuum [31],
bridging domain [66], coupled atomistics and discrete dislocations [54], and hetero-
geneous multiscale methods [15], to name just a few. Refer to[58] for a comparison
of some prominent atomistic/continuum coupling multiscale methods. In a multiscale
method, a key issue involves the transfer of information between the discrete model
and the continuum model. It is therefore of practical interest to understand how to
construct definitions of continuum fields for an atomistic system, to ensure a smooth
transfer of information between the discrete and continuumdomains.

In this paper, we focus on just one aspect of the continuum-atomistic connection,
namely the interpretation of the (Cauchy) stress tensor in adiscrete system. This
question has been explored from many different perspectives for nearly two hundred
years and this has led to various definitions that do not appear to be consistent with
each other. As a result, the “correct” definition for the stress tensor has been a subject
of great debate and controversy. We begin with a brief historical survey.

A brief history of microscopic definitions for the stress tensor

Interest in microscopic definitions for the stress tensor dates back at least to Cauchy
in the 1820s [5,6] with his aim to define stress in a crystalline solid. Cauchy’s original
definition emerges from the intuitive idea of identifying stress with the force per unit
area carried by the bonds that cross a given surface. A comprehensive derivation
of Cauchy’s approach is given in Note B of Love’s classic bookon the theory of
elasticity [35]. Since this approach is tied to the particular surface being considered,
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it actually constitutes a definition for thetraction (or stress vector) and not for the
stress tensor. The first definition of stress as a tensorial quantity follows from the
works of Clausius [8] and Maxwell [40, 41] in the form ofvirial theorem. Clausius
states the virial theorem as

The mean vis viva of a system is equal to its virial.

By “vis viva” (literally “living force”), Clausius means kinetic energy, while the term
“virial” comes from the Latin “vis” (pl. “vires”) meaning force. The virial theorem
leads to a definition for pressure in a gas. Maxwell [40,41] extended Clausius’ work
and showed the existence of a tensorial version of the virialtheorem (see Appendix
A). The virial stressresulting from the virial theorem is widely used even today in
many atomistic simulations due to its simple form and ease ofcomputation. Unlike
Cauchy’s original definition for stress, the virial stress includes a contribution due
to the kinetic energy of the particles. This discrepancy wasaddressed by Tsai [63],
who extended the definition given by Cauchy to finite temperature by taking into
consideration the momentum flux passing through the surface. Let us refer to this
stress vector as theTsai traction.

An alternative approach for defining the stress tensor was pioneered in the land-
mark paper of Irving and Kirkwood [27]. Irving and Kirkwood derived the equa-
tions of hydrodynamics from the principles of non-equilibrium classical statistical
mechanics and in the process established a pointwise definition for various contin-
uum fields including the stress tensor. Although their work was indeed noteworthy,
the stress tensor obtained involved a series expansion of the Dirac delta distribution
which is not mathematically rigorous. Continuing their work, Noll [48] proved two
lemmas, which allowed him to avoid the use of the Dirac delta distribution, and thus
arrive at a closed-form expression for the stress tensor which does not involve a se-
ries expansion. We refer to the procedure introduced by Irving and Kirkwood and
extended by Noll as theIrving–Kirkwood–Noll procedure. Schofield and Hender-
son [52] highlighted the non-uniqueness present in the stress tensor derived by Irving
and Kirkwood, and pointed out that it could result in a non-symmetric stress tensor.
There have been several attempts to improve on the Irving andKirkwood procedure.
In particular, Lutsko [36] reformulated this procedure in Fourier space. An error in
Lutsko’s derivation was corrected by Cormier et al. [9].

Due to the stochastic nature of the Irving and Kirkwood stress, many difficulties
arise when one tries to use their expression in atomistic simulations. To avoid these
difficulties, Hardy and co-workers [23, 24] and independently Murdoch [43–47] de-
veloped a new approach that bypasses the mathematical complexity of the Irving and
Kirkwood procedure. This is done by defining continuum fieldsas direct spatial av-
erages of the discrete equations of motion using weighting functions with compact
support. In particular, this approach leads to the so-called Hardy stress[23] often
used in molecular dynamics simulations. Murdoch in [45] provides an excellent de-
scription of the spatial averaging approaches currently being used and discusses the
non-uniqueness of the stress tensor resulting from the spatial averaging procedure.
We refer to the direct spatial averaging approach as theMurdoch–Hardy procedure.

Another approach, which leads to a stress tensor very similar to that obtained
by Irving and Kirkwood is the reformulation of elasticity theory using peridynam-
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ics [55]. Lehoucq and Silling [33] have recently shown that Noll’s solution is a mini-
mum solution in a variational sense. Morante et al. [42] proposed a new approach for
defining the stress tensor using the invariance of partitionfunction under infinitesimal
canonical point transformations. However, their approachis limited to equilibrium
statistical mechanics and involves taking derivatives of delta distributions.

We can summarize the “state of the art” for the microscopic definition of the
stress tensor as follows. There are currently at least threedefinitions for the stress
tensor which are commonly used in atomistic simulations: the virial stress, the Tsai
traction, and the Hardy stress [68]. The importance of the Irving and Kirkwood for-
mulation is recognized, however, it is not normally used in practice and its connection
with the other stress definitions is not commonly understood. The difference between
pointwisestress measures and temporal and/or spatially-averaged quantities is often
not fully appreciated. The result is that the connection between the Cauchy stress ten-
sor defined in continuum mechanics and its analogue, defined for a discrete system,
remains controversial and continues to be a highly-debatedproblem.

A unified framework for the microscopic definition for the stress tensor

In this paper, a unified framework based on the Irving–Kirkwood–Noll procedure is
established whichleads to all of the major stress definitionsdiscussed above and iden-
tifies additional possible definitions. Since all of the definitions are obtained from a
common framework the connections between them can be explored and analyzed and
the uniqueness of the stress tensor can be established. An overview of the approach
and the organization of the paper are described below.

Before turning to the general framework, we begin in Section2 with a derivation
of the virial stress tensor within the framework of equilibrium statistical mechanics
using the technique of canonical transformations. Although this derivation is quite
different from the Irving–Kirkwood–Noll procedure, it provides insight into how the
geometric ideas of mechanics can be used to derive the stresstensor. It also pro-
vides a limit to which the general non-equilibrium stress tensor must converge under
equilibrium conditions in the thermodynamic limit. This isused later to establish the
uniqueness of the stress tensor obtained from our general unified framework.

Next, we turn to the construction of the new unified framework. In Section 3,
we extend the Irving–Kirkwood–Noll procedure [27, 48], originally derived for pair
potential interactions, to multi-body potentials. Due to the invariance of the poten-
tial energy function with respect to the Euclidean group, itcan be shown that any
multi-body potential can be expressed as a function of distances between particles.
When expressed in this form, we note that for a system of more than 4 particles, this
function is only defined on a manifold since theN(N − 1)/2 distances betweenN
particles inR3 are not independent forN ≥ 5. To apply the Irving–Kirkwood–Noll
procedure to multi-body potentials, we recognize that the potential energy function
must beextendedfrom its manifold to a higher-dimensional Euclidean space as a
continuously differentiable function. We show that if suchan extension exists, then
an infinite number of equivalent extensions can be constructed usingCayley-Menger
determinants, which describe the constraints that the distances betweenparticles em-
bedded inR3 must satisfy. Then for multi-body potentials that possess continuously
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differentiable extensions (which is the case for most practical interatomic potentials),
we establish the key result that due to the balance of linear and angular momentum,
the force on a particle in a discrete system can always be decomposed as a sum of
central forces between particles, i.e., forces that are parallel to the lines connecting
the particles. In other words, thestrong law of action and reactionis always satisfied
for such multi-body potentials. We show, that although the net force on a particle cal-
culated usinganyextension is the same, its decomposition into central forces is gen-
erally different for different extensions. Using this result we show that the pointwise
stress tensor resulting from the Irving–Kirkwood–Noll procedure is non-unique and
symmetric. We also show, that a generalization of Noll’s lemmas [48] tonon-straight
bondsgives a non-symmetric stress tensor that may be important for particles with
internal structure, such as liquid crystals.

The macroscopicstress tensor corresponding to the pointwise stress tensorde-
scribed above is obtained in Section 4 through a procedure ofspatial averaging. The
connection between this stress and the stress tensors obtained via the direct spatial
averaging procedure introduced by Murdoch [43–47] and Hardy [23] is explored
and in the process the Murdoch–Hardy procedure is systematized and generalized to
multi-body potentials using the results of Section 3. The non-uniqueness of the stress
tensor, inherent in the Murdoch–Hardy procedure is studiedand a general class of
possible definitions under this procedure are identified. The connection between the
non-uniqueness in the Murdoch–Hardy procedure and the non-uniqueness mentioned
in Section 3 is addressed.

In Section 5, various stress definitions including the Hardystress, the Tsai traction
and the virial stress are shown to be special cases of the macroscopic stress tensor de-
rived from the extended Irving–Kirkwood–Noll procedure inSection 4. The original
definitions for these measures are generalized in this manner to multi-body potentials.
The existence of different extensions for the potential energy function, which led to
non-uniqueness of the pointwise stress tensor discussed inSection 3, also result in
the non-uniqueness of these definitions. However it is shownthat the difference in
the macroscopic stress tensor resulting from this non-uniqueness tends to zero in the
thermodynamic limit1. Another source of non-uniqueness explored in this sectionis
that given any definition for the stress tensor, a new definition, which also satisfies the
balance of linear momentum, can be obtained by adding to it anarbitrary tensor field
with zero divergence. It is shown that in the thermodynamic limit the macroscopic
stress tensor obtained in Section 4 converges to the virial stress derived in Section 2.

To address practical aspects of the different definitions obtained within the unified
framework, Section 6 describes several “numerical experiments” involving molecular
dynamics and lattice statics. These simulations are designed to examine the behavior
of these stress definitions, including their convergence with averaging domain size
and their symmetry properties. Our conclusions and directions for future research are
presented in Section 7.

1 The thermodynamic limit is the state obtained as the number of particles,N , and the volume,V , of
the system tend to infinity in such a way that the ratioN/V is constant.
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Notation

In this paper, vectors are denoted by lower case letters in bold font and tensors of
higher order are denoted by capital letters in bold font. Thetensor product of two
vectors is denoted by the symbol “⊗” and the inner product of two vectors is denoted
by a dot “·”. The inner product of two second-order tensors is denoted by “:”. A
second-order tensor operating on a vector is denoted by juxtaposition, e.g.,Tv. The
gradient of a vector field,v(x), is denoted by∇xv(x), which in indicial notation
is given by[∇xv]ij = ∂vi/∂xj. The divergence of a tensor field,T (x), is denoted
by divx T (x). The divergence of a vector field is defined as the trace of its gradient.
The divergence of a second-order tensor field in indicial notation (with Einstein’s
summation convention) is given by[divx T ]i = ∂Tij/∂xj. The notation described
above is followed unless otherwise explicitly stated.

2 Stress in an equilibrium system

In this section, we obtain expressions for the Cauchy stressin an equilibrium sys-
tem using the technique of canonical transformations. The basic philosophy behind
canonical transformation is explained in the next section.

2.1 Canonical transformations

Consider a system consisting ofN point masses whose behavior is governed by clas-
sical mechanics. Letqα(t) andpα(t) (α = 1, 2, . . . , N) denote the generalized coor-
dinates and momenta of the system.2 For brevity, we sometimes useq(t) andp(t) to
denote the vectors(q1(t), q2(t), . . . , qN(t)) and(p1(t),p2(t), . . . ,pN (t)), respec-
tively. The time evolution of the system can be studied through three well-known
approaches, referred to as theNewtonian formulation, theLagrangian formulation,
and theHamiltonian formulation. The first approach is used in molecular dynamics
simulations, while the latter two approaches are more elegant and can sometimes be
used to obtain useful information from systems in the absence of closed-form solu-
tions.

In the Lagrangian formulation, a system is characterized bythe vectorq(t) and a
Lagrangian functionL, given by

L(q, q̇; t) = T (q̇)− V(q), (2.1)

whereT is the kinetic energy of the system,V is the potential energy of the system,
andq̇(t) represents the time derivative ofq(t). It is useful to think ofq as a point in
a 3N -dimensionalconfiguration space. The time evolution ofq(t) in configuration
space is described by a variational principle calledHamilton’s principle. Hamilton’s

2In a general theory of canonical transformations,qα andpα need not denote the actual position and
momentum of particleα.
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principle states that the time evolution ofq(t) corresponds to the extremum of the
action integral defined as a functional ofq by

A[q] =

∫ t2

t1

L(q, q̇; t) dt, (2.2)

wheret1, t2, q(t1) andq(t2) are held fixed with respect to the class of variations
being considered [32, Section V.1]. In mathematical terms,we require that

δA = 0, (2.3)

while keeping the ends fixed as described above. The Euler–Lagrange equation aris-
ing from (2.3) is

d

dt

(
∂L
∂q̇α

)
− ∂L
∂qα

= 0. (2.4)

The Lagrangian formulation is commonly used as a calculation tool in solving simple
problems.

Next, we note that the Lagrangian is the Legendre transform of the Hamiltonian
H, [32, Section VI.2],

L(q, q̇; t) = sup
p

[p · q̇ −H(p, q; t)]. (2.5)

The Hamiltonian is the total energy of the system. Using the Hamiltonian, equa-
tion (2.3) can be rewritten as

δ

∫ t2

t1

[p · q̇ −H(p, q; t)] dt = 0. (2.6)

Note that in (2.3), the variation is only with respect toq, whereas in (2.6), the func-
tional depends on the functionsq andp, and variations are taken with respect to
both q andp independently. In both cases,t1, t2, q(t1) andq(t2) are held fixed.
The variational principle given in (2.6) is commonly referred as themodified Hamil-
ton’s principle [22] or simply as the “Hamiltonian formulation”. The advantage of
the Hamiltonian formulation lies not in its use as a calculation tool, but rather in the
deeper insight it affords into the formal structure of mechanics. The Euler–Lagrange
equations associated with (2.6) are

q̇α = ∇pα
H, (2.7)

ṗα = −∇qα
H, (2.8)

commonly called Hamilton’s equations. The above equationsare also referred to as
thecanonical equations of motion3.

It is important to note that the Hamiltonian formulation is more general than the
Lagrangian formulation, since it accords the coordinates and momenta independent
status, thus providing the analyst with far greater freedomin selecting generalized

3The term “canonical” in this context has nothing to do with the canonical ensemble of statistical
mechanics. The terminology was introduced by Jacobi to indicate that Hamilton’s equations constitute the
simplest form of the equations of motion.
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coordinates. We now think of(q,p) as a point in a6N -dimensionalphase space, as
opposed to the3N -dimensional configuration space of the Lagrangian formulation.
The choice ofq andp is not arbitrary, however, since the selected variables must
satisfy the canonical equations of motion. For this reasonq andp are calledcanonical
variables.

The requirement that the generalized coordinates and momenta must be canoni-
cal means that new sets of generalized coordinates can be derived from a given set
through a special kind of transformation defined below.

Definition 1 Any transformation of generalized coordinates that preserves the canon-
ical form of Hamilton’s equations is said to be a canonical transformation.4

The construction of canonical transformations is facilitated by the introduction of
generating functionsas explained below.

Generating functions

Consider two sets of canonical variables(Q,P ) and (q,p), related to each other
through a canonical transformation given by

Q = Q(q,p, t), P = P (q,p, t). (2.9)

Since the variables are canonical, they satisfy the modifiedHamilton’s principle in
(2.6),

δ

∫ t2

t1

[p · q̇ −H(p, q; t)] dt = 0, (2.10)

δ

∫ t2

t1

[
P · Q̇− Ĥ(P ,Q; t)

]
dt = 0, (2.11)

whereĤ is defined later as part of the canonical transformation. Theintegrands of
(2.10) and (2.11) can therefore only differ by a quantity whose variation after inte-
gration is identically zero. A possible solution is

δ

∫ t2

t1

[
p · q̇ − P · Q̇− (H− Ĥ)

]
dt = δ

∫ t2

t1

dG

dt
dt, (2.12)

whereG is an arbitrary scalar function of the canonical variables and time, with
continuous second derivatives. The integral on the right isonly evaluated at fixed
integration bounds and its variation is zero. This is not obvious since there is no
restriction on the variation of the momenta at the ends. We assume this to be true to
avoid the introduction of differential forms. For a mathematically rigorous argument
refer to [1, Section 45]5. The difference between the integrands of (2.10) and (2.11)
therefore satisfies,

dG− p · dq + P · dQ+ (H− Ĥ)dt = 0. (2.13)

4This definition suffices for our purpose, but a more correct definition can be found in [1] using
differential forms.

5Briefly the proof is based on the symmetry present in the geometry of any Hamiltonian system
commonly calledsymplectic geometry.
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Now, consider the case whereG = G1(q,Q, t). The total differential ofG is then

dG = ∇qG1 · dq +∇QG1 · dQ+
∂G1

∂t
dt. (2.14)

Substituting (2.14) into (2.13) gives

(∇qG1 − p) · dq + (∇QG1 + P ) · dQ+

(
∂G1

∂t
+H− Ĥ

)
dt = 0. (2.15)

Sinceq,Q andt are independent, the above equation is satisfied provided that

pα =
∂G1

∂qα
, Pα = − ∂G1

∂Qα
, Ĥ = H +

∂G1

∂t
. (2.16)

The above relations define the canonical transformation. SinceG1 generates the
transformation, it is commonly called thegenerating functionof the canonical trans-
formation. Note that ifG1 does not depend on timet, thenĤ = H.

The generating functions of the form,G = G1(q,Q, t), does not generate all pos-
sible canonical transformations. In general, there are four primary classes of generat-
ing functions where the functional dependence is(q,Q), (q,P ), (p,Q) and(p,P ).6

We have already encountered the first class, whereG = G1(q,Q, t). The remaining
classes can be obtained from the first through Legendre transformations. Consider for
example, the following definition,

G = G3(p,Q, t) + q · p. (2.17)

The total differential of this expression is

dG = ∇pG3 · dp+∇QG3 · dQ+
∂G3

∂t
dt+ q · dp+ p · dq. (2.18)

Substituting the above equation into (2.13) gives

(∇pG3 + q) · dp+ (∇QG3 + P ) · dQ+

(
∂G3

∂t
+H− Ĥ

)
dt = 0, (2.19)

which leads to the following canonical transformation:

qα = −∂G3

∂pα
, Pα = − ∂G3

∂Qα
, Ĥ = H +

∂G3

∂t
. (2.20)

The other two classes of transformation can be derived in a similar way.
Finally, an important property of a canonical transformation is that it preserves

the volume of any element in phase space, i.e.,dqdp = dQdP [22, page 402]. This
means that for a change of variables between(p, q) and(P ,Q), the Jacobian of the
transformation is unity.

6In addition to these four classes of transformation, it is possible to have a mixed dependence, where
each degree of freedom can belong to a different class [22].
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2.2 A derivation of the stress tensor under equilibrium conditions

In this section, we use the method of canonical transformations to derive an expres-
sion for the Cauchy stress tensor. In continuum mechanics, abody is identified with
a regular region of Euclidean spaceE referred to as the reference configuration. Any
pointX ∈ B is referred to as a material point. The bodyB is deformed via a smooth,
one-to-one mappingϕ : E → E , which maps eachX ∈ B to a point,

x = ϕ(X), (2.21)

in the deformed configuration,7 where we have assumed that the deformation is inde-
pendent of time. The deformation gradientF is defined as

F (X) = ∇Xϕ. (2.22)

The mappingϕ is assumed to satisfy the condition thatdetF is strictly positive. The
Cauchy stress,σ, is defined by [37]

σ(T,F ) =
1

detF
∇FψF

T, (2.23)

whereψ(T,F ) is the Helmholtz free energy density function relative to the reference
configuration. We are only focusing on a conservative elastic body.

A system in thermodynamic equilibrium8 can by definition only support a uni-
form state of deformation. Therefore, our material system is deformed via the affine
mapping9

qα = FQα. (2.24)

7We adopt the continuum mechanics convention of denoting variables in the reference configuration
with upper-case letters, and variables in the deformed configuration with lower-case letters.

8 A system is said to be in a state of thermodynamic equilibriumwhen all of its properties are inde-
pendent of time and all of its intensive properties are independent of position [65]. To stress this, the term
uniform state of thermodynamic equilibriumis sometimes used to describe this state.

9To understand this mapping, consider a system ofN particles with positionsqα (α = 1, 2, . . . , N )
confined to a parallelepiped container defined by the three linearly independent vectorsl1, l2 and l3,
which need not be orthogonal. This selection is done for convenience and does not limit the generality of
the derivation as explained below. The position of a particle in the container can be expressed in terms of
scaled coordinatesξαi ∈ [0, 1] as

qα = ξαi li, (*)

where Einstein’s summation convention is applied to spatial indices. The deformation of the container is
defined relative to a reference configuration where the cell vectors areL1, L2 andL3. The current and
reference cell vectors are related through an affine mappingdefined byF ,

li = FLi. (**)

Equations (*) and (**) can be combined to relate the positionqα of particleα in the deformed configura-
tion with its position in the reference configurationQα,

qα = ξαi (FLi) = F (ξαi Li) = FQα. (***)

This is exactly the mapping defined in (2.24). It provides a direct relationship between the positions of
particles in the reference configuration and their positionin the deformed configuration. Note that the
assumed (parallelepiped) shape of the container does not enter into the relation,qα = FQα, which
means that this relation holds for a container of any shape.
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It is clear that if we enforce this mapping on our system, withno change in the
momentum coordinates, then the newly obtained variables will not satisfy Hamil-
ton’s equations. Therefore any change of variables should be governed by a canoni-
cal transformation. The following generator function provides the desired canonical
transformation

G3(p,Q) = −
∑

α

pα · FQα. (2.25)

Substituting this generating function into (2.20) gives

qα = −∂G3

∂pα
= FQα, Pα = − ∂G3

∂Qα
= FTpα, Ĥ = H. (2.26)

The first relation in the above equation is the desired transformation in (2.24). The
second relation is the corresponding transformation that the momentum degrees of
freedom must satisfy, so that the new set of coordinates(Q,P ) are canonical. The
third relation refers to the Hamiltonian of the system, which is assumed to be given
by

H(p, q) =

N∑

α=1

pα · pα
2mα

+ V(q1, . . . , qN ), (2.27)

whereV denotes the potential energy of the system. Expressed in terms of the refer-
ence variables, (2.27) becomes

Ĥ(P ,Q,F ) = H(p(Q,P ,F ), q(Q,P ,F ))

=
N∑

α=1

F−TPα · F−TPα

2mα
+ V(FQ1, . . . ,FQN ). (2.28)

We now proceed to derive the expression for the Cauchy stresstensor using (2.23).
The Helmholtz free energy density for the canonical ensemble is given by [26]

ψ(T,F ) = −kBT lnZ

V0
, (2.29)

wherekB is the Boltzmann’s constant,T is the absolute temperature,V0 is the vol-
ume of the body in the reference configuration, andZ(T,F ) is thepartition function
defined as

Z(T,F ) :=
1

N !h3N

∫

Γ0

e−Ĥ/kBT dP dQ, (2.30)

It is important to note that (***) doesnot impose a kinematic constraint that dictates the position of
particleα in the deformed configuration based on its position in the reference configuration (as does the
Cauchy–Born rule used in multiscale methods [58]). We will see later that this will merely be used as a
change of variables, where, instead of integrating over thedeformed configuration with the variablesq,
the integration is carried out over a given reference configuration using the variablesQ. In both cases the
same result is obtained. However, by using the referential variables the dependence on the deformation
gradient is made explicit.
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whereh is Planck’s constant andΓ0 denotes the phase space in the reference con-
figuration. With this definition, the statistical mechanicsphase average of a function
A(P ,Q) in the canonical ensemble is

〈A〉(T,F ) =

∫

Γ0

A(P ,Q)Wc(P ,Q, T,F ) dP dQ, (2.31)

where

Wc(P ,Q, T,F ) =
1

N !h3NZ
e−Ĥ(P ,Q,F )/kBT (2.32)

is the canonical distribution function. Substituting (2.29) and (2.30) into (2.23), we
obtain

σ = − kBT

(detF )V0Z
∇FZF

T =
1

V

〈
∇F Ĥ

〉
FT, (2.33)

where in the last step we have used the identityV = (detF )V0 and where

∇FZ =
∂

∂F

[
1

N !h3N

∫

Γ0

e−Ĥ/kBT dQdP

]

= − 1

kBTN !h3N

∫

Γ0

∇F Ĥe−Ĥ/kBT dQdP . (2.34)

Next, we compute∇F Ĥ. In our derivation, we make use of indicial notation and
the Einstein summation rule. To accommodate for the spatialindices, we pushα
representing the particle to the superscript position. Following this adjustment, we
have

∂Ĥ
∂FiJ

=
∂

∂FiJ

[
∑

α

pαkp
α
k

2mα
+ V(q1, . . . , qN)

]
=

∑

α

[
1

mα

∂pαk
∂FiJ

pαk +
∂V
∂qαk

∂qαk
∂FiJ

]
.

(2.35)
From (2.26), we have

∂qαk
∂FiJ

=
∂

∂FiJ
(FkLQ

α
L) = δikQ

α
J , (2.36)

∂pαk
∂FiJ

=
∂

∂FiJ
(F−1

Lk P
α
L ) = −F−1

Jk F
−1
Li P

α
L = −F−1

Jk p
α
i , (2.37)

where in (2.37), we have used the following identity:

∂F−1
Lk

∂FiJ
= −F−1

Li F
−1
Jk . (2.38)

Substituting (2.36) and (2.37) into (2.35), we have

∂Ĥ
∂FiJ

= −
∑

α

[
pαi F

−1
Jk p

α
k

mα
+ f int

α,iQ
α
J

]
, (2.39)
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wheref int
α = −∂V/∂rα is the internal force, defined in the deformed configuration,

on particleα.10 In direct notation, we have

∇F Ĥ = −
∑

α

[
pα ⊗ F−1pα

mα
+ f int

α ⊗Qα

]
. (2.40)

Substituting the above equation into (2.33) and using (2.26), we obtain an expression
for the Cauchy stress:

σ(T,F ) = − 1

V

∑

α

〈
pα ⊗ pα
mα

+ f int
α ⊗ qα

〉
, (2.41)

where the phase averaging is now being performed with respect to the variablesp and
q. The switch from phase averaging overP andQ in (2.31) top andq above can be
made because canonical transformations preserve the volume element in phase space
as explained at the end of Section 2.1.

The expression in (2.41) for the Cauchy stress tensor is called thevirial stress. A
simpler derivation of the virial stress, based on time averages, is given in Appendix
A. Although, the derivation here made use of the canonical ensemble, it is expected to
apply to any ensemble in the thermodynamic limit (see footnote 1 on page 5) where
all ensembles are equivalent. Continuum mechanics also tells us that the Cauchy
stress tensor is symmetric, something that is not evident from the above equation.
Discussion of the symmetry of the stress tensor, which hinges on an important prop-
erty off int

α , is postponed to Section 5.

The virial stress defined above corresponds to the macroscopic stress tensor only
under conditions of thermodynamic equilibrium in the thermodynamic limit. We now
show that this expression for the stress tensor, as well as all other expressions in
common use, can be derived as limiting cases of a more generalformulation which
begins with the Irving–Kirkwood–Noll procedure. We refer to this as the “unified
framework” for the stress tensor.

3 Continuum fields as phase averages

In this section, we discuss the Irving and Kirkwood procedure [27], which laid the
foundation for the microscopic definition of continuum fields for non-equilibrium
systems. This work was later extended by Walter Noll [48]11, who showed how
closed-form analytical solutions can be obtained for the definition of certain contin-
uum fields, which otherwise involved a non-rigorous12 series expansion of the Dirac

10There is a subtle point here. Since we are using the canonicalensemble, the HamiltonianH neglects
the interaction term of the system with the surrounding “heat bath”. This means that the potential energy
V in H only includes theinternal energy of the system and, therefore, its derivative with respect to the
position of particleα gives the forcef int

α on this particle due to its interactions with other particles in the
system.

11An English translation of this article appears in the current issue of theJournal of Elasticity.
12The derivation is non-rigorous in the sense that expressingthe stress tensor as a series expansion is

only possible when the probability density function, whichis used in the derivation, is an analytic function
of the spatial variables [48].
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delta distribution in the original procedure. We refer to the procedure proposed by
Noll in [48] as theIrving–Kirkwood–Noll procedure. The derivation presented in this
section largely follows that of Noll [48], but extends it to more general atomistic
models.

Consider a systemM modeled as a collection ofN point masses/particles, each
particle referred to asα (α = 1, 2, . . . , N). We use the terms “particle” and “atom”
interchangeably. The position, mass and velocity of particle α are denoted byxα,
mα andvα, respectively. The complete microscopic state of the system is known, at
any instant of time, from the knowledge of position and velocity of each particle in
R

3. Hence, the state of the system at timet, may be represented by a pointΞ(t) in
a6N -dimensional phase space13. LetΓ denote the phase space. Therefore any point
Ξ(t) ∈ Γ , can be represented as,

Ξ(t) = (x1(t),x2(t), . . . ,xN(t);v1(t),v2(t), . . . ,vN (t))

=: (x(t);v(t)). (3.1)

In reality, the microscopic state of the system is never known to us, and the only
observables identified are the macroscopic fields as defined in continuum mechanics.
We identify the continuum fields with macroscopic observables obtained in a two-
step process: (1) a pointwise field is obtained as a statistical mechanics phase average;
(2) a macroscopic field is obtained as a spatial average over the pointwise field. The
phase averaging in step (1) is done with respect to a probability density functionW :
Γ ×R

+ → R
+ of classC1 defined on all phase space for allt (Wc, defined in (2.32),

is an example of a stationary (time-independent) probability density function defined
for the canonical ensemble). The explicit dependence ofW on timet, indicates that
our system need not be in thermodynamic equilibrium.

As discussed in Section 2, the evolution ofΞ(t) in the phase space is given by
the following set of2N first-order equations (Hamilton’s equations of (2.7)–(2.8)):

ṗ = −∇xH, (3.2a)

ẋ = ∇pH, (3.2b)

wherep := (p1,p2, . . . ,pN ), pα denotes the momentum of each particle, and
H(p,x) is the Hamiltonian of the system.

The basic idea behind the original Irving and Kirkwood procedure is to pre-
scribe/derive microscopic definitions for continuum fields, such that they are con-
sistent with the balance laws of mass, momentum and energy. To arrive at these defi-
nitions, we repeatedly use the following theorem, commonlyreferred to asLiouville’s
theorem, which relates to the conservation of volume in phase space.

As a system evolves, the phase spaceΓ is mapped into itself at every instant
of time, and this mapping is governed by (3.2). Ifgt denotes this mapping, then
Liouville’s theorem essentially says that for any subsetU of Γ , the volume ofU
remains invariant under the mappinggt. This can be be formally stated as,

13The usual convention is to represent the phase space via positions and momenta of the particles. For
convenience, in this section, we represent the phase space via positions and velocities of the particles.
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Liouville’s Theorem For anyU ⊆ Γ , volume is preserved under the one-parameter
group of transformations of phase space,gt : U → Γ , given by the mapping

(x(0),p(0)) 7→ (x(t),p(t)),

wherex(t) andp(t) are solutions of the Hamilton’s system of equations(3.2), i.e.,

vol(U) = vol(gtU). (3.3)

Proof Let ˙
vol(gtU) denote the material time derivative ofvol(gtU) in the sense that

Ξ(0) is held fixed while performing this differentiation. Then wehave,

˙
vol(gtU) =

˙∫

gtU

dΞ(t) =

∫

U

( ˙detF )dΞ0,

whereF (Ξ0, t) := ∇Ξ0
Ξ(Ξ0, t),Ξ(Ξ0, t) = gt(Ξ0) andΞ0 = Ξ(0). Using the

fact that
˙detF = (detF ) tr(Ḟ F−1),

we obtain
˙

vol(gtU) =

∫

U

(detF ) tr(Ḟ F−1)dΞ0. (3.4)

Let

Ξ̇(Ξ) :=
dΞ

dt

∣∣∣∣
Ξ0=g−1

t (Ξ)

. (3.5)

From chain rule, we have

∇Ξ̇ =
d(∇Ξ)

dt

∣∣∣∣
Ξ0=g−1

t (Ξ)

∇ΞΞ0 = Ḟ F−1. (3.6)

Thereforediv Ξ̇ = tr(Ḟ F−1). Equation (3.4) can now be rewritten as

˙
vol(gtU) =

∫

U

(detF )(div Ξ̇) |Ξ(t)=gt(Ξo) dΞ0. (3.7)

But from (3.1) and (3.2) we also have,

div Ξ̇ = divx ẋ+ divp ṗ = divx(∇pH)− divp(∇xH) = 0.

Therefore ˙
vol(gtU) = 0 for arbitraryt. Thus (3.3) holds. ⊓⊔

LetW (Ξ; t) denote the probability density function defined ongt(Γ ). Hence, we
have ∫

gtU

W (Ξ(t); t)dΞ(t) =

∫

U

W (Ξ0; 0)(detF )dΞ0. (3.8)

As a consequence of Liouville’s theorem, we have,detF = 1. Therefore

d

dt

∫

gtU

W (Ξ(t); t)dΞ(t) = 0. (3.9)
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Since (3.9) holds for allU ⊆ Γ , we haveẆ (Ξ(t); t) = 0. Hence, the time evolution
of the probability density function is given by

∂W

∂t
+

N∑

α=1

[vα · ∇xα
W + v̇α · ∇vα

W ] = 0. (3.10)

The above equation can be rewritten as

∂W

∂t
+

N∑

α=1

[
vα · ∇xα

W − ∇xα
V

mα
· ∇vα

W

]
= 0, (3.11)

where, as before,V(x1,x2, . . . ,xN ) denotes the potential energy of the system.
Equation (3.11) is calledLiouville’s equation.

3.1 Phase averaging

Under the Irving–Kirkwood–Noll procedure, pointwise fields are defined as phase
averages. This phase averaging is expressed via weighted marginal densities. For
example, the pointwise mass density field is defined as

ρ(x, t) :=
∑

α

mα

∫

R3N×R3N

Wδ(xα − x) dxdv, (3.12)

where the integral represents a marginal density defined onR
3, δ denotes the Dirac

delta distribution, and
∑

α denotes summation fromα = 1 toN . To avoid the Dirac
delta distribution and for greater clarity we adopt Noll’s notation as originally used
in [48]. Hence (3.12) can be rewritten as

ρ(x, t) =
∑

α

mα

∫
W dx1 . . . dxα−1dxα+1 . . . dxNdv

=:
∑

α

mα 〈W | xα = x〉 , (3.13)

where〈W | xα = x〉 denotes an integral ofW over all its arguments exceptxα and
xα is substituted withx. Now consider the continuum velocity field. Unlike the defi-
nition of pointwise density field, which appears unambiguous, the pointwise velocity
field can be defined in different ways. It may seem more naturalto define the contin-
uum velocity in an analogous fashion to the density field, i.e.,

v(x, t) =

∑
α 〈Wvα | xα = x〉∑
α 〈W | xα = x〉 . (3.14)

Alternatively, the pointwise velocity field can be defined via the momentum density
field,p(x, t), as follows:

p(x, t) :=
∑

α

mα 〈Wvα | xα = x〉 , (3.15)

v(x, t) :=
p(x, t)

ρ(x, t)
. (3.16)
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Note that definitions (3.14) and (3.16) are equivalent for a single species material,
but are not so in general. The definition given by (3.16) is theone used in practice.
There are two reasons for this. First, the definition in (3.16) makes more physical
sense since, following spatial averaging, it associates the continuum velocity with the
velocity of the center of mass of the system of particles. Second, the definition in
(3.16) satisfies the continuity equation as shown in Section3.3, whereas (3.14) does
not.14

3.2 Regularity assumptions for the probability density function

It is clear from the definitions in (3.13), (3.15) and (3.16) that the integrals in these
equations converge under appropriate decay conditions onW . The following two
conditions are sufficient for the convergence of all the integrals and the validity of the
results in this section [48]:

1. There exists aδ > 0 such that the function

W (Ξ; t)

N∏

α=1

‖xα‖3+δ
N∏

β=1

‖vβ‖6+δ (3.17)

and its first derivatives are bounded by a constant that only depends on time.
2. V(x1,x2, · · ·xN ) is a boundedC1 function defined on the phase space, and hav-

ing bounded first derivatives.15

Conditions (1) and (2) ensure the convergence of all the integrals considered in this
section and swapping of integration and differentiation. Furthermore, letG(Ξ; t) be
any vector or tensor-valued function of classC1 defined on the phase space for allt,
and which, for suitable functionsg(t) andh(t), satisfies the condition

sup
x1∈R3,x2∈R3,··· ,xN∈R3

(‖G‖, ‖ divvα
G‖, ‖ divxα

G‖) < g(t)

N∏

β=1

‖vβ‖3 + h(t),

(3.18)
where‖ · ‖ refers to the norm defined through the inner product. Since the space of
all tensors has a natural inner product defined as

S : T = tr(STT ), (3.19)

14It would be interesting to explore how the equation of continuity fails for the definition in (3.14)
by identifying the regions that act as sinks and sources. This is difficult to do for a generalN particle
system because the continuity equation quickly becomes unwieldy. Even for the much simpler case of a
two-particle system, the answer is not trivial. A quick examination shows that the distribution of sinks and
sources depends not only on the ratio of the masses but also onthe probability density functionW .

15If any two particles overlap, we would normally expectV → ∞. By specifying additional decay
conditions forW , the case of unboundedV can be handled. For simplicity, we assumeV to be bounded.
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we have‖S‖ =
√
S : S. Under these conditions onG(Ξ; t), we have16

∫

R3

G · ∇xα
W dxα = −

∫

R3

W divxα
G dxα, (3.20a)

∫

R3

G · ∇vα
W dvα = −

∫

R3

W divvα
G dvα. (3.20b)

The above identities are repeatedly used in deriving the equation of continuity and
the equation of motion in the following sections.

3.3 Equation of continuity

Let us demonstrate that the pointwise fields defined in Section 3.1 satisfy the equation
of continuity. The equation of continuity from continuum mechanics is given by [37]

∂ρ

∂t
+ divx(ρv) = 0. (3.21)

From (3.13) we have

∂ρ

∂t
(x, t) =

∑

α

mα

〈
∂W

∂t

∣∣∣∣xα = x

〉
.

Using Liouville’s equation in (3.11), we have

∂ρ

∂t
(x, t) =

∑

α

mα

〈
∑

β

(
−vβ · ∇xβ

W +
∇xβ

V
mβ

· ∇vβ
W

)∣∣∣∣∣∣
xα = x

〉
.

Now, consider the summand on the right-hand side of the aboveequation for a fixed

α. From (3.20b), it is clear that
〈

∇xβ
V

mβ
· ∇vβ

W
∣∣∣xα = x

〉
= 0, for β = 1, 2, · · ·N ,

and from (3.20a), we also have
〈
vβ · ∇xβ

W | xα = x
〉
= 0, for β 6= α. Therefore

the above equation simplifies to

∂ρ

∂t
(x, t) = −

∑

α

mα 〈vα · ∇xα
W | xα = x〉 .

Using the identity,
divx(aw) = ∇xa ·w, (3.22)

wherea(x) is anyC1 scalar function ofx, andw is any vector independent ofx, we
obtain

∂ρ

∂t
(x, t) = −

∑

α

mα divx 〈Wvα | xα = x〉 .

16If G is a second-order tensor or higher, then the dot product indicates tensor operating on a vector.
Note that in (3.20), in the interest of brevity, we are breaking our notation of denoting a second-order
tensor operating on a vector by juxtaposition.
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Using (3.15) and (3.16) for the definition of the pointwise momentum density field,
we have

∂ρ

∂t
(x, t) + divx(ρv) = 0,

which is the continuity equation. We have established that the definitions given in
(3.12) and (3.15) identically satisfy conservation of mass.

3.4 Equation of Motion

The equation of motion from continuum mechanics is given by [37]

∂(ρv)

∂t
+ divx(ρv ⊗ v) = divx σ + b. (3.23)

Here we identifyσ with the pointwise stress tensor. From (3.15), we have

∂p

∂t
(x, t) =

∑

α

mα

〈
vα
∂W

∂t

∣∣∣∣xα = x

〉
.

Again, using (3.11) we obtain,

∂p

∂t
(x, t) =

∑

α

mα

〈
vα

∑

β

(
−∇xβ

W · vβ +
∇xβ

V
mβ

· ∇vβ
W

)∣∣∣∣∣∣
xα = x

〉

=
∑

α

mα

∑

β

〈
− (vα ⊗ vβ)∇xβ

W +

(
vα ⊗ ∇xβ

V
mβ

)
∇vβ

W

∣∣∣∣xα = x

〉
.

(3.24)

Now, consider the summand on the right-hand side of the aboveequation for fixedα
andβ. Using (3.20a), we have

〈
(vα ⊗ vβ)∇xβ

W | xα = x
〉
= 0, for β 6= α. From

(3.20b), we have
〈
(vα ⊗∇xβ

V)∇vβ
W | xα = x

〉
= 0, for β 6= α, and forβ = α,

we have

〈(vα ⊗∇xα
V)∇vα

W | xα = x〉 = −〈∇xα
VW | xα = x〉 ,

using the fact thatdivu(u ⊗w) = w, for any vectoru and for any vectorw inde-
pendent ofu. Therefore (3.24) simplifies to

∂p

∂t
(x, t) = −

∑

α

mα 〈(vα ⊗ vα)∇xα
W | xα = x〉 −

∑

α

〈W∇xα
V | xα = x〉 .

(3.25)
Using the identity,

divx(aT ) = T∇xa, (3.26)

wherea(x) is anyC1 scalar function ofx, andT is any tensor independent ofx, we
can rewrite (3.25) as

∂p

∂t
(x, t) = − divx

∑

α

mα 〈(vα ⊗ vα)W | xα = x〉 −
∑

α

〈W∇xα
V | xα = x〉 .

(3.27)
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Now, note that the termvα ⊗ vα can be written as

vα ⊗ vα = (vα − v)⊗ (vα − v) + v ⊗ vα + vα ⊗ v − v ⊗ v
= vrelα ⊗ vrelα + v ⊗ vα + vα ⊗ v − v ⊗ v, (3.28)

wherevrelα is the velocity of particleα relative to the pointwise velocity field. Con-
sider the first term on the right-hand side of (3.27). Substituting (3.28) into this ex-
pression we have,

− divx
∑

α

mα 〈(vα ⊗ vα)W | xα = x〉

= −
∑

α

mα divx
〈
(vrelα ⊗ vrelα )W | xα = x

〉
− divx

∑

α

[
v ⊗mα 〈vαW | xα = x〉

+mα 〈vαW | xα = x〉 ⊗ v −mα 〈W | xα = x〉v ⊗ v
]

= − divx
∑

α

mα

〈
(vrelα ⊗ vrelα )W | xα = x

〉
− divx(ρv ⊗ v), (3.29)

where we have used (3.13), (3.15) and (3.16) in the last step.Substituting (3.29) into
(3.27), we obtain

∂p

∂t
(x, t) + divx(ρv ⊗ v) =−

∑

α

mα divx
〈
(vrelα ⊗ vrelα )W | xα = x

〉

−
∑

α

〈W∇xα
V | xα = x〉 . (3.30)

The left-hand sides of (3.30) and (3.23) are identical. Therefore, the right-hand sides
must also be equal. Hence

divx σ+b = −
∑

α

mα divx
〈
(vrelα ⊗ vrelα )W | xα = x

〉
−
∑

α

〈W∇xα
V | xα = x〉 .

(3.31)
To proceed, we divide the potential energyV(x1,x2, . . . ,xN) into two parts:

1. An externalpart,Vext, associated with long-range interactions such as gravity or
electromagnetic fields.

2. An internalpart,Vint, associated with short-range particle interactions.

It is natural to associateVext with the body force fieldb in (3.31). We therefore define
b(x, t) as

b(x, t) := −
∑

α

〈W∇xα
Vext | xα = x〉 . (3.32)

Substituting (3.32) into (3.31), we have

divx σ = −
∑

α

mα divx
〈
(vrelα ⊗ vrelα )W | xα = x

〉
−
∑

α

〈W∇xα
Vint | xα = x〉 .

(3.33)
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From (3.33), we see that the pointwise stress tensor has two contributions:

σ(x, t) = σk(x, t) + σv(x, t), (3.34)

whereσk andσv are, respectively, thekinetic andpotentialparts of the pointwise
stress. The kinetic part is given by

σk(x, t) = −
∑

α

mα

〈
(vrelα ⊗ vrelα )W | xα = x

〉
. (3.35)

It is evident that the kinetic part of the stress tensor is symmetric. The presence of
a kinetic contribution to the stress tensor appears at odds with the continuum defi-
nition of stress that is stated solely in terms of the forces acting between different
parts of the body. This discrepancy has led to controversy inthe past about whether
the kinetic term belongs in the stress definition [67]. The confusion is related to the
difference between absolute velocity and relative velocity defined in (3.28) [63]. The
kinetic stress reflects the momentum flux associated with thevibrational kinetic en-
ergy portion of the internal energy.

Continuing with (3.33), the potential part of the stress must satisfy the following
differential equation:

divx σv(x, t) =
∑

α

〈
Wf int

α | xα = x
〉
, (3.36)

where
f int
α := −∇xα

Vint, (3.37)

is the force on particleα due to internal interactions. Equation (3.36) needs to be
solved in order to obtain an explicit form forσv. In the original paper of Irving and
Kirkwood [27], this was done by applying a Taylor expansion to the Dirac delta dis-
tribution appearing in the right-hand side of the equation.In contrast, Noll showed
that a closed-form solution forσv can be obtained by recasting the right-hand side
in a different form and applying a lemma proved in [48]. We proceed with Noll’s
approach, except we place no restriction on the nature of theinteratomic potential
energyVint. The potential energy considered in [27] and [48] is limitedto pair poten-
tials.

General interatomic potentials

In general, the internal part of the potential energy, also called theinteratomic poten-
tial energy, depends on the positions of all particles in the system:

Vint = V̂int(x1,x2, . . . ,xN ), (3.38)

where the “hat” indicates that the functional dependence ison absolute particle posi-
tions (as opposed to distances later on). We assume thatV̂int : R

3N → R is a contin-
uously differentiable function.17 This function must satisfy the following invariance
principle:

17Note that this assumption may fail in systems undergoing first-order magnetic or electronic phase
transformations.
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The internal energy of a material system is invariant with respect to the Eu-
clidean groupG := {x 7→ Qx + c | x ∈ R

3,Q ∈ O(3), c ∈ R
3}, where

O(3) denotes the full orthogonal group.

To exploit this invariance, let us consider the action ofG onR3N , i.e., the action of any
combination of translation and rotation (proper or improper), which is represented by
an elementg : x 7→ Qx+ c in G, on any configuration ofN particles represented by
a vector(x1, . . . ,xN ) ∈ R

3N :

g · (x1, . . . ,xN ) = (Qx1 + c, . . . ,QxN + c). (3.39)

This action splitsR3N into disjoint sets of equivalence classes [14], which we now
describe. For anyu = (x1, . . . ,xN ) ∈ R

3N , letOu ⊂ R
3N denote an equivalence

class which is defined as18

Ou := {g · u | g ∈ G}, (3.40)

whereg · u denotes the action ofg onu defined in (3.39). In other words,Ou repre-
sents the set of all configurations which are related to the configurationu by a rigid
body motion and/or reflection. Due to the invariance of the potential energy, we can
view the functionVint as a function on the set of equivalence classes, i.e.,

V int(Ou) = V̂int(u), (3.41)

because

V̂int(v) = V̂int(u) ∀v ∈ Ou. (3.42)

Now, consider a setS ⊂ R
N(N−1)/2, defined as

S := {(r12, r13, . . . ,r1N , r23, . . . , r(N−1)N ) |
rαβ = ‖xα − xβ‖, (x1, . . . ,xN ) ∈ R

3N}. (3.43)

In other words, the setS consists of all possibleN(N − 1)/2-tuples of real numbers
which correspond to the distances betweenN particles inR3.19 In technical terms,
the coordinates of any point inS are said to beembeddablein R

3. Note thatS is a
proper subset ofRN(N−1)/2 as it consists of only thoseN(N − 1)/2-tuple distances
which satisfy certain geometric constraints. In fact, the setS represents a(3N − 6)-
dimensional manifold inRN(N−1)/2, commonly referred to as theshape space.

Let φ be the mapping taking a point in configuration space to the corresponding
set of distances inS, i.e.,φ : R3N → S : (x1, . . . ,xN) 7→ (r12, . . . , r(N−1)N ),
whererαβ from here onwards is used to denote‖xα − xβ‖. Since the Euclidean
group preserves distances, it immediately follows that themap

φ̄ : {Equivalence classes} → S, (3.44)

18The notation “{g ·u | g ∈ G}” should be read as “the set of allg ·u, such thatg is in the Euclidean
groupG”.

19The key here is that not allN(N−1)/2 combinations of real numbers constitute a valid set of physi-
cal distances. The distances must satisfy certain geometric constraints in order to be physically meaningful
as explained below.
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defined as̄φ(Ou) = φ(u), is a bijection (one-to-one and onto mapping) from the
set of equivalence classes to the setS.20 This essentially means that for every set of
equivalent configurations, i.e., configurations related toeach other by a rigid body
motion and/or reflection, there exists a uniqueN(N − 1)/2-tuple of distances and
vice versa. From (3.41) and (3.44), it immediately follows that the potential energy
of the system can be completely described by a functionV̆int : S → R, defined as

V̆int(s) := V int(φ̄
−1(s)) ∀s ∈ S. (3.45)

We now restrict our discussion to those systems for which there exists a contin-
uously differentiable extension of̆Vint, defined on the shape space, toR

N(N−1)/2.21

This is justifiable because of the fact that all interatomic potentials used in prac-
tice, for a system ofN particles, are either continuously differentiable functions on
R

N(N−1)/2, or can easily be extended to one. For example, the pair potential and the
embedded-atom method (EAM) potential [12] are continuously differentiable func-
tions onRN(N−1)/2, while the Stillinger-Weber [57] and the Tersoff [60] potentials
can be easily extended toRN(N−1)/2 by expressing the angles appearing in them
as a function of distances between particles. Therefore, weassume that there exist a
continuously differentiable functionVint : R

N(N−1)/2 → R, such that the restriction
of Vint to S is equal toV̆int:

Vint(s) = V̆int(s) ∀s = (r12, . . . , r(N−1)N ) ∈ S. (3.46)

An immediate question that arises is whether this extensionis unique in a neigh-
borhood ofs ∈ S. Note that forN ≤ 4, 3N − 6 = N(N − 1)/2. Therefore, for
N ≤ 4, for every points ∈ S, there exists a neighborhood inRN(N−1)/2 which lies
in S. However, forN > 4, there may be multiple extensions ofV̆int.

As noted above, the reason we are considering an extension isto define the par-
tial derivative of the potential energy with respect to eachcoordinate of a point in
R

N(N−1)/2. This will be used later to define the stress tensor. For example, the
partial derivative ofVint(ζ12, . . . , ζ(N−1)N ) with respect toζ12 at any points =
(r12, . . . , r(N−1)N ) ∈ S, defined as

dVint

dζ12
(s) = lim

ǫ→0

Vint(r12 + ǫ, . . . , rN(N−1)/2)− Vint(r12, . . . , rN(N−1)/2)

ǫ
,

(3.47)

requires us to evaluate the function at non-embeddable points.

20φ̄ is surjective (onto) by the definition ofS. The proof that it is injective (one-to-one) is similar to
the proof of thebasic invariance theoremfor the simultaneous invariants of vectors due to Cauchy, which
can be found in [62, Section 11].

21The extension is necessary sinceV̆int is defined in (3.45) only on the setS. We need to extend the
definition toall points inRN(N−1)/2 , whether they correspond to a set of physical distances or not, in
order to be able to compute derivatives as explained later inthe text. This issue has been overlooked in
the past (see for example [13]), which leads to the conclusion that the stress tensor is always symmetric.
It turns out that this conclusion is correct (at least for point masses without internal structure), but the
reasoning is more involved as we show later.
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It will be shown later that the quantity evaluated in (3.47) may differ for different
extensions. On the other hand,∇xα

Vint is uniquely defined for any extension. This
is because

∇xα
Vint(s) = ∇xα

V̆int(s)

= ∇xα
V int(φ̄

−1(s))

= ∇xα
V̂int(u), (3.48)

whereφ̄−1(s) = Ou, which impliesφ(u) = s,22 and we have used (3.46), (3.45)
and (3.41) in the first, second and the last equality respectively.

We next address the possibility of having multiple extensions for the potential en-
ergy by studying the various constraints that the distancesbetween particles have to
satisfy in order to be embeddable inR3. We demonstrate, through a simple example,
how multiple extensions for the potential energy can lead toa non-unique decompo-
sition of the force on a particle, which in turn leads to a non-unique pointwise stress
tensor.

Central-force decomposition and the possibility of alternate extensions

We will now show that the force on a particle can always be decomposed as a sum of
central forces. The force on a particle due to internal interactions is defined in (3.37).
Therefore, for any configurationu ∈ R

3N , we have

f int
α (u) = −∇xα

V̂int(u). (3.49)

Using (3.48), (3.49) takes the form

f int
α (u) = −∇xα

Vint(s)|s=φ(u)

=
∑

β
β 6=α

fαβ(u), (3.50)

wheres = φ(u) = (r12, . . . , r(N−1)N ) and

fαβ(u) :=

{
∂Vint

∂ζαβ
(φ(u))

xβ−xα

rαβ
if α < β,

∂Vint

∂ζβα
(φ(u))

xβ−xα

rαβ
if α > β,

(3.51)

is the contribution to the force on particleα due to the presence of particleβ.
Note thatfαβ is parallel to the directionxβ − xα and satisfiesfαβ = −fβα.

We therefore note the important result that theinternal force on a particle, for any
interatomic potential that has a continuously differentiable extension, can always be
decomposed as a sum of central forces, i.e., forces parallelto directions connecting

22Note that the vectoru appearing in (3.48) can be replaced by anyv ∈ Ou.
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the particle to its neighbors.23 We will see later in Section 3.5 that the central-force
decomposition is the only physically-meaningful partitioning of the force.

The remaining question is how different potential energy extensions affect the
force decomposition in (3.50). We have already establishedin (3.48) and (3.49) that
the forcef int

α is independent of the particular extension used. However, we show
below that the individual terms in the decomposition,fαβ , arenot unique. These
terms depend on the manner in which the potential energy, defined on the shape
space, is extended to its neighborhood in the higher-dimensional Euclidean space.

In order to construct different extensions, we use the geometric constraints that
the distances have to satisfy in order for them to be embeddable in R

3.24 The nature
of these constraints is studied in the field ofdistance geometry, which describes the
geometry of sets of points in terms of the distances between them (see Appendix B).
One of the main results of this theory, is that the constraints are given byCayley-
Menger determinants, which are related to the volume of a simplex formed byN
points in anN − 1 dimensional space.

For simplicity let us restrict our discussion to one dimension. It is easy to see that
in one dimension the number of independent coordinates areN − 1 and forN > 2
the number of interatomic distances exceeds the number of independent coordinates.
Therefore, let the material systemM consist of three point masses interacting in one
dimension. The standard pair potential representation forthis system, which is an
extension of the potential energy to the higher-dimensional Euclidean space, is given
by

Vint(ζ12, ζ13, ζ23) = V12(ζ12) + V13(ζ13) + V23(ζ23). (3.52)

Since the calculation gets unwieldy, let us consider the special case when the particles
are arranged to satisfyx1 < x2 < x3, for whichr13 = r12 + r23. Using (3.50), the
internal force,f int

1 , evaluated at this configuration, is decomposed as

f int
1 (r12, r13, r23) = −dVint

dx1
= −dV12

dx1
− dV13

dx1

= V ′
12(r12) + V ′

13(r13)

=: f12 + f13. (3.53)

23 The result that the force on a particle, modeled using any interatomic potential with a continuously
differentiable extension, can be decomposed as sum of central forces may seem strange to some readers.
This may be due to the common confusion in the literature of using the term “central-force models” to
refer to simple pair potentials. In fact, we see that due to the invariance requirement stated on Page 21,
all interatomic potentials (including those with explicit bond angle dependence) that can be expressed as
a continuously differentiable function as described in thetext, are central-force models. By this we mean
that the force on any particle (sayα) can be decomposed as a sum of terms,fαβ , aligned with the vectors
joining particleα with its neighbors and satisfying action and reaction.

The difference between the general case and that of a pair potential is that for a pair potential,‖fαβ‖
dependsonly on the distancerαβ between the particles, whereas for a general potential, thedependence

is on a larger set of distances,‖fαβ‖ = ∂Vint

∂ζαβ
(r12, r13, . . . , r(N−1),N ), i.e.,‖fαβ‖ depends on the

environmentof the “bond” betweenα andβ. For this reason,fαβ for a pair potential is a property of
particlesα andβ alone and can be physically interpreted as the “force exerted on particleα by particle
β”. Whereas, in the more general case of arbitrary interatomic potentials, the physical significance of the
interatomic force is less clear and at best we can say thatfαβ is the “contribution to the force on particle
α due to the presence of particleβ”.

24We thank Ryan Elliott for suggesting this line of thinking.
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We now provide an alternate extension to the standard pair potential representation
given in (3.52). The Cayley-Menger determinant corresponding to a cluster of three
points (see (B.6)) is identically equal to zero at every point on the shape space. This
is because the shape space corresponds to a configuration of three collinear points,
and the area of the triangle formed by three collinear pointsis zero. Thus, we have

χ(r12, r13, r23) = (r12 − r13 − r23)(r23 − r12 − r13)

× (r13 − r23 − r12)(r12 + r13 + r23)

= 0. (3.54)

Using the identity in (3.54), an alternate extensionVA
int is constructed:

VA
int(ζ12, ζ13, ζ23) = Vint(ζ12, ζ13, ζ23) + χ(ζ12, ζ13, ζ23). (3.55)

Note thatVA
int is indeed an extension because from (3.54) it is clear thatVA

int is equal
toVint at every point on the shape space of the system and it is continuously differen-
tiable becauseχ(ζ12, ζ13, ζ23), being a polynomial, is infinitely differentiable. Let us
now see how the internal force,f int

1 , for the special configuration considered in this
example, is decomposed using the new extension:

f int
1 = −dV

A
int

dx1
= −dVint

dx1
− dχ

dx1

=

(
V ′
12 −

∂χ

∂ζ12
(s)

∂ζ12
∂x1

(s)

)
+

(
V ′
13 −

∂χ

∂ζ13
(s)

∂ζ13
∂x1

(s)

)

= (f12 − 8r12r23(r12 + r23)) + (f13 + 8r12r23(r12 + r23))

=: f̃12 + f̃13, (3.56)

It is clear from (3.53) and (3.56) that the central-force decomposition is not the same
for the two representations, i.e.,f12 6= f̃12 andf13 6= f̃13, however the force on
particle 1,f int

1 , is the same in both cases as expected.
It is very interesting to note thatVA

int is nota pair potential (based on the definition
of a pair potential), but it is equivalent to a pair potential, i.e., it agrees with a pair
potential on the shape space. Thus, the set of continuously differentiable extensions
of a given interatomic potential function form an equivalence class. It is not clear at
this stage if these equivalence classes can be fully expressed in terms of the Cayley-
Menger determinant constraints.

Although the above example is quite elementary, this process can be extended
to any arbitrary number of particles in three dimensions. Any given potential can be
altered to an equivalent potential by adding a function of the Cayley-Menger determi-
nants corresponding to any cluster of 5 or 6 particles (see Appendix B). This function
must be continuously differentiable and equal to zero when all of its arguments are
zero. For example, a new representation in three dimensionscan be constructed by
adding a linear combination of the Cayley-Menger determinants:

V∗
int = Vint(ζ12, . . . , ζ(N−1)N ) +

m∑

k=1

λkχk, (3.57)
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where there arem constraints defined by the Cayley-Menger determinantsχk, and
λk are constants.25

From this point on, we abuse our notation slightly, and writefor anys = (r12, . . . ,
r(N−1)N ) ∈ S:

∂Vint

∂rαβ
for

∂Vint

∂ζαβ
(s). (3.58)

Also, we assume that there exists a continuously differentiable extension whenever
we writefαβ and sometimes refer to a continuously differentiable extension as an
extension.

Derivation of the pointwise stress tensor

We now return to the differential equation in (3.36) for the potential part of the point-
wise stress tensor. Substituting the force decomposition given in (3.50) corresponding
to a continuously differentiable extension, into (3.36), we obtain

divx σv(x, t) =
∑

α,β
α6=β

〈Wfαβ | xα = x〉. (3.59)

On using the identity

〈fαβW | xα = x〉 =
∫

R3

〈fαβW | xα = x,xβ = y〉 dy, (3.60)

equation (3.59) takes the form

divx σv(x, t) =
∑

α,β
α6=β

∫

R3

〈Wfαβ | xα = x,xβ = y〉 dy. (3.61)

We now note that, being anti-symmetric, the integrand in theright-hand side of the
above equation satisfies all the necessary conditions for the application of Lemma
C.1 given in Appendix A. Conditions (1) and (2) in Appendix A are satisfied through
the regularity conditions onW . Therefore, using Lemma C.1, which was proved by

25Note that (3.57) has the same form as a Lagrangian with theλ terms playing the role of Lagrange
multipliers. For a static minimization problem, we seek to minimize V∗

int, without violating the physical

constraints relating the distances to each other. (This is equivalent to minimizingV̂int with respect to the
positions of particles.) Thus, the original constrained minimization ofVint is replaced by the problem of
finding the saddle points ofV∗

int.
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x

α

β (1 − s)z

sz

Fig. 3.1 A schematic diagram helping to explain the vectors appearing in the pointwise potential stress
expression in (3.62). The bondα–β is defined by the vectorz. Whens = 0, atomα is located at pointx,
and whens = 1, atomβ is located atx.

Noll in [48], we have

σv(x, t) (3.62)

=
1

2

∑

α,β
α6=β

∫

R3

∫ 1

s=0

〈−fαβW | xα = x+ sz,xβ = x− (1 − s)z〉 ds⊗ z dz

=
1

2

∑

α,β
α6=β

∫

R3

z ⊗ z
‖z‖

∫ 1

s=0

〈
∂Vint

∂rαβ
W | xα = x+ sz,xβ = x− (1 − s)z

〉
ds dz,

(3.63)

where in passing to the second line, we have used (3.51) and the identityxα − xβ =
x+ sz− [x− (1− s)z] = z. For the special case of a pair potential,∂Vint/∂rαβ =
V ′
αβ(rαβ), and (3.62) reduces to the expression originally given in [48].

The expression for the potential part of the pointwise stress tensor in (3.62) is
a general result applicable to all interatomic potentials.We make some important
observations regarding this expressions below:

1. Although the expression forσv appears complex, it is actually conceptually quite
simple.σv at a pointx is the superposition of the expectation values of the forces
in all possible bonds passing throughx. The variablez selects a bond length
and direction and the variables slides the bond throughx from end to end (see
Fig. 3.1).

2. σv is symmetric. This is clear because the termz ⊗ z is symmetric. Since the
kinetic part of the stress in (3.35) is also symmetric, the conclusion is that the
pointwise stress tensor is symmetric for all interatomic potentials.

3. Sinceσv depends on the nature of the force decomposition and different exten-
sions of a given potential energy can result in different force decompositions, we
conclude that the pointwise stress tensor isnon-uniquefor all interatomic poten-
tials (including the pair potential). We show in Section 5.5that the difference due
to any two pointwise stress tensors, resulting from different extensions for the in-
teratomic potential energy, tends to zero as the volume of the domain over which
these pointwise quantities are spatially averaged tends toinfinity. Therefore, as
expected, the macroscopic stress tensor, which is defined inthe thermodynamic
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limit (see footnote 1 on page 5), is always unique and is independent of the po-
tential energy extension.

4. Another source of non-uniqueness is that any expression of the form,σv + σ̃,
wheredivx σ̃ = 0, also satisfies the balance of linear momentum and is there-
fore also a solution. We address this issue in Section 5.1, where we show that
in the thermodynamic limit under equilibrium conditions, the spatially averaged
counterpart toσv converges to the virial stress derived in Section 2.

The above results hinge on the use of the central-force decomposition in (3.50).
One may wonder whether othernon-centraldecompositions exist, and if yes, why
are these discarded. This is discussed in the next section.

3.5 Non-central-force decompositions and the strong law ofaction and reaction

In the previous section, we showed that as a consequence of the invariance of the po-
tential energy with respect to the Euclidean group, for any interatomic potential with
a continuously differentiable extension, the force on a particle can always be repre-
sented as a sum of central forces. In this section, we show that othernon-central-
force decompositionsare possible, however that these violate thestrong law of ac-
tion and reaction, which we prove below, and therefore do not constitute physically-
meaningful force decompositions.

A proposal for a non-symmetric stress tensor for a three-body potential

As an example, let us now consider the case of a three-body potential. For simplicity,
we assume that the potential only has three-body terms and all particles are identical.
Under these conditions, the internal potential energy is

Vint =
∑

α,β,γ
α<β<γ

V̂(xα,xβ,xγ), (3.64)

whereV̂(xα,xβ,xγ) is the potential energy of an isolated cluster,{α, β, γ}, and∑
α,β,γ

α<β<γ
represents a triple sum. We know that a central-force decomposition can

be obtained by following the procedure outlined in the previous section and that this
leads to a symmetric pointwise stress tensor in (3.62). Alternatively, anon-symmetric
three-body stress tensor is derived as follows. To keep things simple, we derive the
stress tensor for a system containing only three particles.Rewriting (3.64) for this
case, we have

Vint = V̂(x1,x2,x3) =
3∑

α=1

φα, (3.65)

where

φα =
1

3
V̂(x1,x2,x3) (3.66)
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is the potential energy assigned to particleα, equal to one-third of the total potential
energy. Substituting (3.65) into (3.36), we obtain

divx σv(x, t) = −
∑

α,β

〈W∇xα
φβ | xα = x〉

= −
∑

α,β
α6=β

〈W∇xα
φβ | xα = x〉 −

∑

α

〈W∇xα
φα | xα = x〉 .

(3.67)

Since the cluster of three particles is isolated, the net force on the cluster due to
internal interactions is zero. Therefore, from (3.65), we have

∇xα
φα = −

∑

β 6=α

∇xβ
φα. (3.68)

Using this relation, equation (3.67) simplifies to

divx σv(x, t) = −
∑

α,β
α6=β

〈
W (∇xα

φβ −∇xβ
φα) | xα = x

〉
. (3.69)

Let
f̄αβ := ∇xβ

φα −∇xα
φβ . (3.70)

Now, using the identity

〈
f̄αβW | xα = x

〉
=

∫

R3

〈
f̄αβW | xα = x,xβ = y

〉
dy,

and the definition given in (3.70), equation (3.69) takes theform

divx σv(x, t) =
∑

α,β
α6=β

∫

R3

〈
W f̄αβ | xα = x,xβ = y

〉
dy. (3.71)

Let us now study the definition of̄fαβ given in (3.70). From (3.66) we have

f̄αβ = −∇xα
φβ +∇xβ

φα =
1

3

[
− ∂V̂
∂xα

+
∂V̂
∂xβ

]
=

1

3
(f int

α − f int
β ). (3.72)

The above equation suggests how the forcef int
α is decomposed. For example,f int

1 is
decomposed as

f int
1 = f̄12 + f̄13 =

1

3
(f int

1 − f int
2 ) +

1

3
(f int

1 − f int
3 ). (3.73)

Rearranging this relation gives

f int
1 + f int

2 + f int
3 = 0, (3.74)

which is true since the cluster{1, 2, 3} is isolated.
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Fig. 3.2 (a) shows the force on each particle in a system consisting of3 particles which interact through
a 3-body potential given in (3.65). Since the potential is derived from an energy decomposition, we have
f int
1 + f int

2 + f int
3 = 0. (b) shows the force decomposition of eachf int

α such thatfαβ = −fβα, but
not necessarily parallel to the line joining particlesα andβ.

From (3.72) it is clear that̄fαβ is anti-symmetric with respect to its arguments.
Therefore, the integrand on the right-hand side of (3.71) satisfies all the necessary
conditions for the application of Lemma C.1 given in Appendix C. Conditions (1)
and (2) in Appendix C are satisfied through the regularity conditions on W. Therefore,
using Lemma C.1, we have

σ̄v(x, t) =
1

2

∑

α,β
α6=β

∫

R3

∫ 1

s=0

〈
−(∇xβ

φα −∇xα
φβ)W | xα = x+ sz,xβ = x− (1− s)z

〉
ds⊗ z dz.

(3.75)

The stress̄σv is non-symmetric in general becausef̄αβ , defined in (3.72), need not
be parallel to the line joining particlesα andβ as shown in Fig. 3.2. We therefore
have two expressions for the stress for the same three-body potential. The symmetric
expression in (3.62) and the non-symmetric expression in (3.75). We show next that
the non-central-force decomposition that led to the non-symmetric stress tensor is not
physically meaningful since it violates the strong law of action and reaction.

Weak and strong laws of action and reaction26

The following derivation hinges on the fact that in a material system the balance laws
of linear and angular momentum must be satisfied for any part of the body.

Consider a system ofN particles with massesmα (α = 1, . . . , N). The total
force on particleα is

fα = f ext
α +

∑

β
β 6=α

fαβ , (3.76)

26This derivation is due to Roger Fosdick [20].
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wheref ext
α is the external force on particleα, and, as above,fαβ is the contribution

to the force on particleα due to the presence of particleβ. No assumptions are made
regarding the termsfαβ or the interatomic potential from which they are derived.

A “part” ℘t of the system consists ofK ≤ N particles. We supposex0 is a fixed
point in space. LetF ext(℘t) denote the total force on the part℘t external to the part.
Let M ext(℘t;x0) denote the total external moment on℘t aboutx0. Let L(℘t) be
the linear momentum of the part℘t andH(℘t;x0) be the angular momentum of℘t

aboutx0.
We adopt the following balance laws, valid for all parts of the system:27

F ext(℘t) =
dL

dt
(℘t), (3.77)

M ext(℘t;x0) =
dH

dt
(℘t;x0). (3.78)

We now show that by applying these balance laws to particularparts of the system,
that the strong law of action and reaction can be established. As a first observation,
let ℘t consist of the single particleα. The external force and linear momentum for
℘t = {α} is

F ext({α}) = f ext
α (t) +

∑

γ
γ 6=α

fαγ(t), (3.79)

L({α}) = mαẋα(t) (no sum). (3.80)

The balance of linear momentum in (3.77) requires

f ext
α +

∑

γ
γ 6=α

fαγ = mαẍα. (3.81)

The external moment and angular momentum of℘t is

M ext({α};x0) = (xα(t)− x0)× (f ext
α +

∑

γ
γ 6=α

fαγ) = mα(xα(t)− x0)× ẍα(t),

(3.82)
where we have used (3.81), and

H({α};x0) = (xα − x0)×mαẋα(t). (3.83)

The balance of angular momentum in (3.78) is satisfied identically, since

mα(xα(t)− x0)× ẍα(t) =
d

dt
[(xα(t)− x0)×mαẋα(t)]

= ẋα(t)×mαẋα(t) + (xα(t)− x0)×mαẍα(t)

= mα(xα(t)− x0)× ẍα(t).

27The view that the balance of linear momentum and the balance of angular momentum are funda-
mental laws of mechanics lies at the basis of continuum mechanics. See, for example, Truesdell’s article
“Whence the Law of Moment and Momentum?” in [61].
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As a second observation, let℘t consist of the union of the two particlesα andβ.
The external force and linear momentum are

F ext({α, β}) = f ext
α + f ext

β +
∑

γ
γ 6=α6=β

(fαγ + fβγ), (3.84)

L({α, β}) = mαẋα +mβẋβ . (3.85)

The balance of linear momentum in (3.77) requires

f ext
α + f ext

β +
∑

γ
γ 6=α6=β

(fαγ + fβγ) = mαẍα +mβẍβ. (3.86)

Subtracting (3.81) for particlesα andβ gives

∑

γ
γ 6=α6=β

(fαγ + fβγ)−
∑

γ
γ 6=α

fαγ −
∑

γ
γ 6=β

fβγ = 0, (3.87)

from which
fαβ + fβα = 0. (3.88)

This relation is called theweak law of action and reaction[22]. It shows thatfαβ =
−fβα, but does not guarantee thatfαβ lies along the line connecting particlesα and
β.

Next, the external moment and angular momentum of℘t is

M ext({α, β};x0)

= (xα − x0)× (f ext
α +

∑

γ
γ 6=α6=β

fαγ) + (xβ − x0)× (f ext
β +

∑

γ
γ 6=β 6=α

fβγ)

= (xα − x0)× (mαẍα − fαβ) + (xβ − x0)× (mβẍβ − fβα), (3.89)

where we have used (3.81), and

H({α, β};x0) = (xα − x0)×mαẋα + (xβ − x0)×mβẋβ . (3.90)

The balance of angular momentum in (3.78) requires

(xα − x0)× (mαẍα − fαβ) + (xβ − x0)× (mβẍβ − fβα)

=
d

dt
[(xα − x0)×mαẋα + (xβ − x0)×mβẋβ ]

= ẋα ×mαẋα + (xα − x0)×mαẍα + ẋβ ×mβẋβ + (xβ − x0)×mβẍβ

= (xα − x0)×mαẍα + (xβ − x0)×mβẍβ , (3.91)

which simplifies to

(xα − x0)× fαβ + (xβ − x0)× fβα = 0,



34

and, after using (3.88), we obtain

(xα − xβ)× fαβ = 0. (3.92)

This shows thatfαβ must beparallel to the line joining particlesα andβ. This is
the strong law of action and reaction. We have shown that this law must hold for
any force decomposition, in order for the balance of linear and angular momentum to
hold for any subset of a system of particles.

The possibility of non-symmetric stress

Based on the proof given above for the strong law of action andreaction, we argue that
only force decompositions that satisfy the strong law of action and reaction provide
a physically-meaningful definition forfαβ . For example, the definition in (3.70) is
not physical because if it were used to compute the external moment acting on a sub-
system of particles, as is done above, the balance of angularmomentum would be
violated. For this reason, this decomposition and the corresponding non-symmetric
stress in (3.75) are discarded. The conclusion is thata pointwise stress tensor for a
discrete system of point masses without internal structurehas to be symmetric.

In the next section, we discuss the possibility of expandingthe class of solutions
resulting from Irving–Kirkwood–Noll procedure in a way that makes it possible to
obtain non-symmetric stress tensors for systems where the point particles have inter-
nal structure. This involves a relaxation of the assumptionthat the “bonds” connecting
two particles are necessarily straight.

3.6 Generalized non-symmetric pointwise stress for particles with internal structure

In Section 3.4, we saw that the Irving–Kirkwood–Noll procedure, when applied to
multi-body potentials, results in a symmetric non-unique pointwise stress tensor. We
now seek to find additional solutions to (3.61), which are notobtained using the
standard Irving–Kirkwood–Noll procedure. In arriving at (3.62) using Lemma C.1,
we can see that the contribution to the potential part of the stress at positionx is
due to all possible bonds,assumed to be straight lines, that pass throughx. The
question that naturally arises is to what extent can this assumption be weakened. In
other words, can Lemma C.1 be generalized in a suitable manner so that non-straight
bonds can be accommodated? Such a possibility was first discussed by Schofield and
Henderson [52], who used the Irving and Kirkwood approach with a series expansion
of the Dirac-delta distribution. It will be shown in this section, using Noll’s more
rigorous approach, that solutions giving rise to non-straight bonds are possible.

From a physical standpoint, non-straight bonds are possible for systems with in-
ternal degrees of freedom. An example would be the dipole-dipole interactions be-
tween water molecules resulting from the electrical dipoleof each molecule. The
possibility of internal degrees of freedom was already raised by Kirkwood in his
1946 paper [29]. The idea is to relate the shape of the non-straight bonds to the ad-
ditional physics associated with the internal degrees of freedom. This issue will be
further explored in future work. For now, we only investigate the possible existence
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of additional solutions other than that given by (3.62). We begin by describing the
shape of a bond in a more precise way through the following definition.

Definition 2 The “path of interaction” between any two interacting particlesα and
β is the unique contour that connectsα andβ, such that there is a non-zero contri-
bution to the potential part of the pointwise stress,σv, at any point on this contour.

In this section, the termsbondandpath of interactionare used synonymously.
Therefore, for the case of the pointwise stress tensor in (3.62), this path of interac-
tion is given by the straight line joiningα andβ. It is shown in Appendix C, that
under certain restrictions on the path of interaction, Lemma C.1 can be generalized
to Lemma C.2 given in Appendix C. Roughly speaking these restrictions are given
by the following conditions:

1. The shape of the bond connecting particlesα andβ only depends on the distance
betweenα andβ. 28

2. For any two pairs of particles(α, β) and(γ, δ) separated by the same distance,
the bondsα − β andγ − δ are related by a rigid body motion. In addition, if
xα − xβ = xγ − xδ then this rigid body motion involves only translation.

From condition 1, it is clear that the shape of the bonds can bedescribed by contours
Υl : [0, 1] → R

3, for l > 0, with Υl(0) = (0, 0, 0), Υl(1) = (l, 0, 0) along with some
mild restrictions. Hence, defining the contoursΥl for l > 0 is equivalent to defining
the paths of interaction between any two points inR

3. For a precise definition ofΥl

and the paths of interaction see Appendix C. Since all the necessary conditions for
the application of Lemma C.2 are same as those for Lemma C.1, we can use Lemma
C.2 in the Irving–Kirkwood–Noll procedure instead of LemmaC.1. In doing so, we
arrive at a definition for the generalized pointwise stress tensorσG

v , for given paths
of interaction with the above mentioned properties. This isgiven by

σG
v (x, t) =

1

2

∑

α,β
α6=β

∫

R3

∫ 1

s=0

〈fαβW | xα = x⊥ + sz,xβ = x⊥ − (1− s)z〉 ⊗QzΥ
′
‖z‖(s) ds dz,

(3.93)

wherefαβ is defined in (3.51), andx⊥(s,x, z) = x − sz − QzΥ‖z‖(s),Qz ∈
SO(3). Here,x⊥ represents the projection ofx onto the line joining the endpoints,
xα = x⊥+ sz andxβ = x⊥− (1− s)z, of the path of interaction being considered.
Qz represents the rotation part of the rigid body motion described in condition 2 that
maps the contourΥ‖xα−xβ‖ to the path of interaction that connectsxα andxβ.

Equation (3.93) is a general expression for the potential part of the pointwise
stress tensor, of which (3.62) is a special case. We discuss several key features of this
expression below:

28 This is in essence a constitutive postulate similar to the assumption in pair potentials that the energy
depends on only the distance between particles. A more general dependence of the shape of the path of
interaction on the environment of a pair of particles might be possible, but is not pursued here. See also
Definition 3 in Appendix C and following discussion.
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1. Equation (3.93) is unique only up to given paths of interaction for a given poten-
tial energy extension. It is a more general result than (3.62), since (3.62) can be
obtained from (3.93) by assuming that the path of interaction between any two
points is the straight line connecting them. For this special case it is easy to see
thatx⊥ = x andQzΥ

′
‖z‖(s) = −z.

2. σG
v is in general non-symmetric, whereas the stress obtained through the standard

Irving–Kirkwood–Noll procedure is always symmetric for any multi-body poten-
tial with an extension. Since the kinetic part of the stress tensorσk (see (3.35))
is symmetric, it follows that the total pointwise stress tensor obtained from the
generalized stress tensor is usually non-symmetric. Therefore, under the present
setting, the balance of angular momentum is satisfied only through the presence
of couple stresses. This suggests that non-straight bonds might correspond to sys-
tems with particles having internal degrees of freedom.

3. Since both (3.62) and (3.93) are valid definitions for the potential part of the
pointwise stress, the question of which one to choose depends on the presence of
internal degrees of freedom in each particle. In the absenceof internal degrees
of freedom only straight bonds are possible due to symmetry.The issue of the
pointwise stress being unique only up to a divergence-free tensor-valued function
is partially addressed here, since the expression given by the difference between
the two definitions is divergence-free.

4. The expression in (3.93) is very similar to (3.62). The pointwise stress atx is
a superposition of the expectations of the force of all possible bonds/paths of
interactionpassing throughx. The vectorz selects an orientation and the size of
the vector connecting the two ends of the bond, ands slides it throughx from
end to end as shown in Fig. 3.3.

3.7 Definition of the pointwise traction vector

In this section, we derive the formula for the pointwise traction vectort(x,n; t)
defined on the surface passing throughx, with normaln at time t. The following
derivation is based on [48] and it can be easily extended to curved paths of interaction.
As usual, letM denote our material system. LetΩ ⊂ R

3 be a domain in three-
dimensional space with continuously differentiable surfaceS, representing a part of
the body. By this definition, each of theN point masses described byM either belong
to Ω or in the space surroundingΩ, denoted byΩc. Let f denote the force exerted
by the particles inΩc on particles inΩ. We note that in continuum mechanicsf is
related tot by

f(t) =

∫

S

t(x,n, t) dS(x), (3.94)

wheren(x) is the outer normal atx ∈ S. Using the Cauchy relation,t(x,n, t) =
σ(x, t)n, we obtain

f(t) =

∫

S

σn dS(x). (3.95)
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(a)

(b)

(c)

Fig. 3.3 A schematic diagram helping to explain the vectors appearing in the inner integral of (3.93) for a
given pointx. The integral in (3.93) in an integral over all possible paths of interaction that pass through
the pointx. The inner integral with respect tos, with z fixed, is an integral over those paths, wherez is
the vector joining its endpoints. Frame (a) shows a path of interaction whens = 0. As s is increased the
path “slides” throughx. Frame (b) shows the path for an arbitrarys in the interval[0, 1]. The end points
are represented byx⊥ + sz andx⊥ − (1− s)z. Frame (c) shows the position of the path fors = 1.

Now, note that the net force exerted byΩc onΩ due to particle interaction, denoted
by fv(t), is given by

fv(t) =
∑

α,β
α6=β

∫

u∈Ω

∫

v∈Ωc

〈fαβW | xα = u,xβ = v〉 du dv, (3.96)
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wherefαβ is defined in (3.51). Since the integrand in (3.96) satisfies all the conditions
for the application of the lemmas in Appendix C, we can now usea special case of
Lemma C.3 by restricting to straight bonds.29 We therefore have,

fv(t) =
1

2

∑

α,β
α6=β

∫

S

∫

R3

∫ 1

s=0

〈−fαβW | xα = x+ sz,xβ = x− (1 − s)z〉 (z · n) ds dz dS(x).
(3.97)

We now note thatfv in (3.97) exactly satisfies

fv(t) =

∫

S

σvn dS(x), (3.98)

whereσv is given by (3.62). It is therefore clear thatfv describes the potential part of
the interaction forcef . Hence, it is natural to assign a potential part of the pointwise
traction vector,tv to fv, given by

tv(x,n; t) := σvn

=
1

2

∑

α,β
α6=β

∫

R3

∫ 1

s=0

〈−fαβW | xα = x+ sz,xβ = x− (1− s)z〉 (z · n) ds dz.

(3.99)

The above formula is conceptually quite simple.It gives the measure of the force
per unit area of all the bonds that cross the surface, where the force is calculated
with respect to a surface measure (see(3.97)). Using this viewpoint, we motivate
the definitions for the macroscopic traction vector and the stress tensor, when we
incorporate spatial averaging in the next section.

It is now natural to assign the kinetic contribution to the force across the surface
to the kinetic part of the pointwise stress tensor. Subtracting (3.98) from (3.95), we
obtain the kinetic contribution to the force across a surface,

fk(t) :=

∫

S

(σ − σv)n dS(x) =
∫

S

σkn dS(x).

Therefore the kinetic contribution to the pointwise traction vectortk is given by

tk(x,n; t) := σkn

= −
∑

α

mα

〈
vrelα (vrelα · n)W | xα = x

〉
. (3.100)

Finally, we note that the definitions oftv andtk are functions ofx andn alone.
Hence, this result is related to the work of Fosdick and Virga[21], who give a varia-
tional proof for the stress theorem of Cauchy in the continuum version. In that work

29Specifically, for straight bonds, we set:x⊥ = x andQzΥ ′
‖z‖

(s) = −z.
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the traction vector is allowed to depend on the unit normal and the surface gradient
and is shown to be independent of the surface gradient.

The fields defined and derived in this section are pointwise quantities. In the next
section, expressions for macroscopic fields are obtained byspatially averaging the
pointwise fields over an appropriate macroscopic domain.

4 Spatial averaging

In the previous section, the Irving–Kirkwood–Noll procedure was used to construct
pointwise fields from the underlying discrete microscopic system using the principles
of classical statistical mechanics. Although the resulting fields resemble the contin-
uum mechanics fields and satisfy the continuum conservationequations, they are
not macroscopic continuum fields. For example, the pointwise stress field in (3.62),
at sufficiently low temperature, will be highly non-uniform, exhibiting a criss-cross
pattern with higher stresses along bond directions, even when macroscopically the
material is nominally under uniform or even zero stress.

To measure the fields derived in the previous section in an experiment, one needs
a probe which can extract data only from a single point of interest in space. Since
this is not possible practically, there is no way we can correlate the experimental data
with theoretical predictions. Therefore a true macroscopic quantity is by necessity
an average over some spatial region surrounding the continuum point where it is
nominally defined.30 Thus, if f(x, t) is an Irving–Kirkwood–Noll pointwise field,
such as density or stress, the corresponding macroscopic field fw(x, t) is given by

fw(x, t) =

∫

R3

w(y − x)f(y, t) dy, (4.1)

wherew(r) is a weighting function representing the properties of the probe and its
lengthscale.

The important thing to note is that due to the linearity of thephase averaging in
the Irving–Kirkwood–Noll procedure, the averaged macroscopic functionfw(x, t)
satisfies the same balance equations as does the pointwise measuref(x, t).

Weighting function

The weighting functionw(r) is anR+-valued function with compact support so that
w(r) = 0 for ‖r‖ > λ, whereλ is a microstructural lengthscale. The weighting
function has units ofvolume−1 and must satisfy the normalization condition

∫

R3

w(r)dr = 1. (4.2)

30We do not include time averaging, because this is indirectlyperformed due to the presence ofW .
The reasoning for this comes from thefrequentist’sinterpretation of probability, wherein the probability
of a state is equal to the fraction of the total time spent by the system in that state.
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r/rw

Fig. 4.1 Three weighting functions for spatial averaging: uniform weighting (solid line) in (4.3); Gaussian
weighting (dashed line) in (4.4); Quartic spline weighting(dash-dot line) in (4.5). Note that the areas under
the curves are not equal because the normalization in (4.2) is according to volume.

This condition ensures that the correct macroscopic stressis obtained when the point-
wise stress is uniform. For a spherically-symmetric distribution,w(r) = ŵ(r), where
r = ‖r‖. The normalization condition in this case is

∫ ∞

0

ŵ(r)4πr2dr = 1.

The simplest choice for̂w(r) is a spherically-symmetric uniform distribution over a
specified radiusrw, given by

ŵ(r) =

{
1/Vw if r ≤ rw,
0 otherwise,

(4.3)

whereVw = 4
3πr

3
w is the volume of the sphere. This function is discontinuous at

r = rw . If this is a concern, a ”mollifying” function that smoothlytakesw(r) to zero
atrw over some desired range can be added [45].31 Another possible choice for̂w(r)
is a Gaussian function [23]

ŵ(r) = π− 3

2 r−3
w exp

[
−r2/r2w

]
. (4.4)

This function does not have compact support. However it decays rapidly with distance
so that a numerical cutoff can be imposed where its value drops below a specified
tolerance. Another possibility is a quartic spline used in meshless method applications
(where it is called akernel function[2]),

ŵ(r) =

{ 105
16πr3w

(1 + 3 r
rw

)(1− r
rw

)3 if r ≤ rw ,

0 otherwise.
(4.5)

This spline has the advantage that it goes smoothly to zero atr = rw, i.e.,ŵ(rw) =
0, ŵ′(rw) = 0, andŵ′′(rw) = 0. Fig. 4.1 shows the plots of the three weighting
functions given above.

31An example of a mollifying function is given later in equation (6.13).
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4.1 Spatial averaging and macroscopic fields

Continuum fields such as density and momentum density fields are defined using
(4.1) as the ensemble average via the probability density functionW , followed by a
spatial average via the weight functionw as follows:

ρw(x, t) :=
∑

α

mα

∫

R3

w(y − x)〈W | xα = y〉 dy, (4.6)

pw(x, t) :=
∑

α

mα

∫

R3

w(y − x)〈Wvα | xα = y〉 dy. (4.7)

It is straightforward to show that using definitions, (4.6) and (4.7), the macroscopic
version of the generalized pointwise stress tensor given by(3.93) divides into poten-
tial and kinetic parts as,

σw,v(x, t) =
1

2

∑

α,β
α6=β

∫

R3

w(y − x)
∫

R3

∫ 1

s=0

〈fαβW | xα = y⊥ + sz,xβ = y⊥ − (1− s)z〉 ⊗QzΥ
′
‖z‖(s) ds dz dy,

(4.8)

wherefαβ is defined in (3.51),y⊥ = y − sz −QzΥ‖z‖(s),Qz ∈ SO(3), and

σw,k(x, t) = −
∑

α

∫

R3

w(y − x)mα〈(vrelα ⊗ vrelα )W | xα = y〉 dy. (4.9)

We now intend to express the potential part of stress in a moreconvenient form. This
is done by two consecutive changes of variables. Under the assumption thatQz and
Υ‖z‖ are differentiable with respect toz and‖z‖, respectively, the Jacobian of the
transformation(s,y, z) 7→ (s,y⊥, z) is unity. Therefore,

σw,v(x, t) =
1

2

∑

α,β
α6=β

∫

R3

w(y − x)
∫

R3

∫ 1

s=0

〈fαβW | xα = y⊥ + sz,xβ = y⊥ − (1 − s)z〉 ⊗QzΥ
′
‖z‖ ds dz dy⊥,

(4.10)

wherey = y(s,y⊥, z). A second change of variables is introduced as follows

y⊥ + sz = u, y⊥ − (1− s)z = v, (4.11)

which implies,
z = u− v, y⊥ = (1 − s)u+ sv. (4.12)

The Jacobian of the transformation is

J = det

[
∇uz ∇vz

∇uy⊥ ∇vy⊥

]
= det

[
I −I

(1 − s)I sI

]
= 1. (4.13)
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x
rw

u

v

w((1 − s)u + sv − x)

s

0

1

b(x; u, v)

Fig. 4.2 The bond functionb(x;u,v) is the integral of the weighting function centered atx along the
line connecting pointsu andv. The graph shows the result for a quartic spline weighting function. The
bond function is the area under the curve.

Using (4.11), (4.12) and (4.13) to rewrite (4.10), we obtain

σw,v(x, t) =
1

2

∑

α,β
α6=β

∫

R3×R3

〈−fαβW | xα = u,xβ = v〉 ⊗ b(x;u,v) du dv,

(4.14)
where

b(x;u,v) := −
∫ 1

s=0

w(ŷ − x)Qu−vΥ
′
‖u−v‖ ds (4.15)

is called thebond vector, with

ŷ(s,u,v) = y(s,y⊥(s,u,v), z(u,v)).

For the special case of straight bonds, we have

ŷ = (1− s)u+ sv and Qu−vΥ
′
‖u−v‖(s) = −(u− v).

Therefore the bond vector simplifies to

b(x;u,v) = (u− v)
∫ 1

s=0

w((1 − s)u+ sv − x) ds

= (u− v)b(x;u,v), (4.16)

whereb(x;u,v) is commonly referred to as thebond function. The geometrical sig-
nificance of the bond function is explained in Fig. 4.2.

For the special case of straight bonds, equation (4.14) simplifies to

σw,v(x, t) =
1

2

∑

α,β
α6=β

∫

R3×R3

〈−fαβW | xα = u,xβ = v〉⊗(u−v)b(x;u,v) du dv.

(4.17)
The expressions for the potential and kinetic parts of the spatially-averaged stress
tensor in equations (4.9) and (4.17) are our main result and constitute the general
definitions for the macroscopic stress computed for a discrete system. It will be shown
in Section 5 that these relations reduce to the Hardy stress tensor [23] under suitable
approximations. The issue of the uniqueness of the stress tensor (in the sense that any
divergence-free field can be added to it) is deferred to Section 5.5.
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4.2 Comparison with the Murdoch–Hardy procedure

An alternative procedure of defining continuum fields to the one described above, due
to Murdoch [43, 46, 47] and Hardy [23], only involves spatialaveraging. We refer to
this approach as theMurdoch–Hardy procedure. Under the Murdoch–Hardy proce-
dure, continuum fields are defined as direct spatial averagesof microscopic variables
without incorporating statistical mechanics ideas. Therefore, the Murdoch–Hardy
procedure is purely deterministic in nature. For example, the density and momen-
tum density fields at a particular instant of time, corresponding to a given weighting
functionw, are defined as

ρ̃w(x, t) :=
∑

α

mαw(xα(t)− x), (4.18a)

p̃w(x, t) :=
∑

α

mαvα(t)w(xα(t)− x), (4.18b)

respectively, wherexα and vα are deterministic quantities. We denote spatially-
averaged variables obtained from the Murdoch–Hardy procedure with a superposed
tilde to distinguish them from quantities obtained in Section 4.1. Equation (4.18) is
used to “smear” a discrete system to form a continuum. The reasoning for abandon-
ing statistical mechanics is the lack of knowledge of the ensemble of the system as
explained by Murdoch and Bedeaux in [46]:

Physical interpretations of any given ensemble average clearly depends
on the definition of the ensemble. . . for example, if a container is filled to a
given level with water and then poured onto a surface, the lack of precision
with which the pouring is effected may result in many different macroscopic
flows. Here no single description is available within deterministic continuum
mechanics: in this case the ensemble (defined in terms of the water molecules
and limited knowledge of how the pouring takes place) relations involve aver-
ages associated with all possible flows. Clearly relations involving ensemble
averages are associated with a much greater variety of behavior than is de-
scribable in terms of deterministic continuum mechanics.

We share the same concern regarding the ambiguity in the definition of an ensemble.
For example, in an experiment where an austenite-martensite phase transformation
occurs, the resulting micro-structure consists of a complex spatial configuration of
martensitic variants, and this depends largely on the microscopic details of the sys-
tem, such as cracks, lattice defects, etc. Therefore, in this case, macroscopic variables
cannot completely describe the ensemble of interest. To avoid this difficulty, Mur-
doch proposes a time average in place of ensemble average. Nevertheless, it should
be noted that from classical statistical mechanics, the ensemble of interest and its
corresponding distribution existsin principle. Therefore the framework described in
Section 4.1 is a correct framework in which to phrase the problem. A practical calcu-
lation can then be performed, for example, by replacing the ensemble averages with
time averages in a molecular dynamics calculation (see Section 5). We stress the im-
portance of writing a continuum field variable as an ensembleaverage followed by
spatial average, rather than a spatial average followed by atime average, as is done
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in the Murdoch–Hardy procedure, because it helps to give a unified picture of all the
previous definitions for continuum fields and stress in particular. This is discussed in
the next section.

It is interesting to note that by relaxing the connection with statistical mechanics,
the Murdoch–Hardy procedure allows for a much wider class ofdefinitions for the
stress tensor [45] in addition to the non-uniqueness characterized so far, due to the
presence of multiple extensions for the potential energy and allowing non-straight
bonds. In this section we intend to systematize this procedure. The source of non-
uniqueness resulting from multiple definitions of the stress tensor is studied, thus
helping us to identify a much larger class of possible definitions. In this new system-
atic approach, the steps involved in the Murdoch–Hardy procedure are as follows:

1. Develop a continuum system by smearing out the discrete system using (4.18).
2. Introduce anon-localconstitutive law for the continuum that is consistent with

the discrete version of force balance given later in (4.19).
3. For each constitutive law, define a stress tensor, which satisfies the equation of

motion for the continuum.

To understand the above three steps, we explore the Murdoch–Hardy procedure
in more detail. The continuity equation is satisfied in a trivial way [44]. We now look
at the equation of motion.

Equation of motion

The motion of particleα is governed by Newton’s second law,
∑

β
β 6=α

fd
αβ(t) + b

d
α(t) = mαv̇α(t), (4.19)

wherefd
αβ(t) := fαβ(u(t)),fαβ(u) are the terms in the central-force decomposition

obtained from a multi-body potential with an extension (seeSection 3.4) andbdα(t)
is defined as

bdα(t) := −∇xα
Vext(x1(t), . . . ,xN(t)).

The superscript “d” in (4.19) and the above equation are used to the stress the fact that
the quantities are deterministic in nature. Equation (4.19) is a force balance equation
for the discrete system. We now design an analogous force balance equation for the
smeared continuum defined by (4.18), such that (4.19) alwaysholds.

For the sake of simplicity in notation, from here onwards we usefαβ to denote
bothfαβ(u) andfd

αβ(t), whenever it is clear from the context. The same goes with
the usage ofbα(t) for bdα(t).

Force balance for the smeared continuum

Multiplying (4.19) byw(xi − x) and summing over all particles, we have

f̃w + b̃w =
∑

α

mαv̇αw(xα − x), (4.20)
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where

f̃w(x, t) :=
∑

α,β
α6=β

fαβ(t)w(xα(t)− x), (4.21)

b̃w(x, t) :=
∑

β

bβ(t)w(xβ(t)− x). (4.22)

To arrive at a form similar to the equation of motion of continuum mechanics given
in (3.23), equation (4.20) is rewritten as

f̃w + b̃w =
∂

∂t

∑

α

mαw(xα − x)vα −
∑

α

mαvα(∇w(xα − x) · vα)

=
∂p̃w
∂t

+ divx
∑

α

mαw(xα − x)vα ⊗ vα. (4.23)

Similar to (3.16), we define the continuum velocity as

ṽw(x, t) :=
p̃w(x, t)

ρ̃w(x, t)
, (4.24)

and the relative velocity of a particle with respect to the continuum velocity as

ṽrelα (x, t) := vα(t)− ṽw(x, t). (4.25)

Using (4.18) and (4.25), we obtain

∑

α

mαṽ
rel
α w(xα(t)− x) = p̃w(x, t)− ρ̃w(x, t)ṽw(x, t)

= 0,

the last equality being true by the definition (4.24). From (4.25) and the above equa-
tion, it follows that

∑

α

mαw(xα − x)vα ⊗ vα =
∑

α

mαw(xα − x)ṽrelα ⊗ ṽrelα + ρ̃wṽw ⊗ ṽw.

Substituting this into (4.23) and rearranging, we have

f̃w − divx
∑

α

mα(ṽ
rel
α ⊗ ṽrelα )w(xα − x) + b̃w =

∂p̃w
∂t

+ divx(ρ̃wṽw ⊗ ṽw).

Comparing the above equation with the equation of motion, (3.23), we have

divx σ̃w(x, t) = f̃w(x, t)− divx
∑

α

mα(ṽ
rel
α ⊗ ṽrelα )w(xα − x), (4.26)
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whereσ̃w is the stress tensor corresponding to the weighting functionw. From (4.26)
it is clear that the kinetic part and the potential part of thestress tensor,̃σw,k andσ̃w,v,
respectively, are given by

σ̃w,k(x, t) = −
∑

α

mα(ṽ
rel
α ⊗ ṽrelα )w(xα − x), (4.27a)

divx σ̃w,v(x, t) = f̃w(x, t). (4.27b)

Any solution to (4.27b) is a valid candidate for the definition of σ̃w,v. Murdoch [45]
proposes several possible candidates, and highlights the possibility of having multiple
definitions. To understand the connection between the different possible definitions,
we look back at (4.20) and (4.21). Equation (4.20) is a force balance equation for
any “continuum particle” atx, andf̃w, defined in (4.21), is the force per unit volume
acting on it. It is not immediately clear from (4.21) how two continuum particles at
positionsx andy interact with each other. This interaction can be given by a non-
local constitutive law. The main idea is to recast (4.21) as

f̃w(x, t) =

∫

R3

g(x,y, t) dy, (4.28)

for someg(x,y, t), which we call thegenerator of the non-local constitutive law.
This function describes the interaction between the continuum particles atx andy. To
satisfy Newton’s third law, we also needg to be anti-symmetric with respect to its ar-
gumentsx andy. Unfortunately the representation given in (4.28) is not unique and,
since every choice ofg leads to a different stress definition, this is one of the sources
of non-uniqueness in the definition for the stress tensor in the Murdoch–Hardy pro-
cedure. We describe two different constitutive laws, whichlead to the Hardy stress
and the doubly-averaged stress (DA stress)32 [47].

For the case of Hardy stress, the generatorgH is given by the equation

gH(x,y, t) =
∑

α,β
α6=β

fαβw(xα − x)δ(xβ − xα + x− y), (4.29)

whereδ denotes the Dirac delta distribution.

The generatorgD for the DA stress is given by

gD(x,y, t) =
∑

α,β
α6=β

fαβw(xα − x)w(xβ − y). (4.30)

Fig. 4.3 shows the interaction between two continuum particles, with positionsx
andy, that are in a neighborhood of two interacting particlesα andβ respectively
and not in a neighborhood of any other particle in the system.In this setup, it is
clear from the generator for the Hardy stress, given in (4.29), that two continuum
particles atx andy interact only wheny − xβ = x − xα, as shown in Fig. 4.3(a).

32Murdoch [45] refers to this stress as “Noll’s choice”. To avoid confusion with the stress derived
through the Irving–Kirkwood–Noll procedure in Section 3, we name it the “DA stress”.
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-g(x, y, t)
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−g(x, y, t)
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y

-g(x, y, t)

(c)

Fig. 4.3 A continuum particlex interacts with: (a) only that continuum particle aty, which is identically
oriented toxβ asx is oriented toxα, when the interaction is given bygH; (b) any continuum particle
in the shaded region, when the interaction is given bygD; (c) any continuum particle on the shaded line,
when the interaction is given bygHD.

On the other hand, there is no such restriction on the generator for the DA stress,
described by (4.30) (see Fig. 4.3(b)).33 Although at this point there is no systematic
way of suggesting additional possible generators, we can suggest a third generator,
gHD, which has properties that lie in betweengH andgD. As shown in Fig. 4.3(c),
when interaction is governed bygHD, a continuum particlex interacts withy only
wheny lies on the line passing throughx and parallel toxα − xβ . In all the three
cases, the interaction force is always directed along the vectorxα − xβ . Therefore
by (4.28) we have three different integral representationsfor f̃w with generatorsgD,
gH, gHD.

Now, in each of the integral representations off̃w given by (4.29) and (4.30), the
integrand satisfies all the necessary conditions for the application of Lemma C.1 or
Lemma C.2 in Appendix C.34 For instance, using Lemma C.1 we obtain an expression
for the potential part of the stress tensor, given by

σ̃w,v(x, t) = −1

2

∫

R3

[∫ 1

s=0

g(x+ sz,x− (1 − s)z, t) ds

]
⊗ z dz. (4.31)

33Note that for the DA stress, the force between two continuum particles atx andy is not parallel to
x − y in general. This is not a violation of the strong law of actionand reaction, because the strong law
only applies to discrete systems. It has been used in this derivation by requiring thatfαβ = −fβα and
fαβ × (xα − xβ) = 0.

34The integrand should be continuously differentiable for Noll’s lemma to be applicable. AlthoughgH

is not continuously differentiable due to the presence of the Dirac delta distribution, this does not hinder
us from applying the lemma since we can replace the Dirac delta distribution by an appropriate infinitely
differentiable delta sequence and take a limit. See Appendix D for a rigorous derivation of this.
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Substituting (4.29) into (4.31), we have the potential partof the Hardy stress:

σ̃H
w,v = −1

2

∑

α,β
α6=β

∫

R3

[∫ 1

s=0

fαβw(xα − x− sz)δ(xβ − xα + z) ds

]
⊗ z dz

=
1

2

∑

α,β
α6=β

∫ 1

s=0

[−fαβw((1 − s)xα + sxβ − x)⊗ (xα − xβ)] ds. (4.32)

Substituting (4.30) into (4.31) we have the potential part of the DA stress:

σ̃DA
w,v =

1

2

∑

α,β
α6=β

∫

z∈R3

∫ 1

s=0

[−fαβw(xα −x− sz)w(xβ −x+(1− s)z)⊗ z] ds dz,

(4.33)
which was derived by Murdoch [47]. The conclusion is that thenon-uniqueness of
the generator in the systematized Murdoch–Hardy procedureleads to a non-unique
definition for the stress tensor. Further sources of non-uniqueness can by introduced
by having a different force decomposition corresponding toa different potential ex-
tension, or using curved paths of interaction instead of straight bonds and applying
Lemma C.2, which is a generalization of Lemma C.1 in AppendixC. We do not
pursue this generalization further here.

It is important to point out that the systematized Murdoch–Hardy procedure pre-
sented here doesnot describe all possible solutions to (4.27b). An example of a so-
lution that cannot be obtained via our systematized Murdoch–Hardy procedure is the
following definition suggested in [45]:

σ̃∗
w,v(x, t) :=

∑

α,β
α6=β

fαβ ⊗ (x− xα)â(‖x− xα‖), (4.34)

whereâ(u) := 1
u3

∫ u

0 s
2ŵ(s) ds. As is pointed out in [45], the expansion in (4.34) is

not a physically-relevant definition for stress due to the following test case. Consider
a stationary deformed body at zero temperature (i.e., wherethe particles occupy fixed
positions without vibrating). In this case, the net force acting on any particle is zero.
Sincefαβ is the only term in the summand of (4.34) which depends onβ, (4.34) is
equivalent to

σ̃∗
w,v(x, t) :=

∑

α

(
∑

β
β 6=α

fαβ)⊗ (x− xα)â(‖x− xα‖). (4.35)

In our case,
∑

β fαβ = fα = 0, for each particleα in the interior of the body
which is considerably away from the surface compared to the interatomic distance.
Hence, the only non-zero contribution to the stress is due tothose particles close to
the surface on which the net force due to other particles is non-zero. Moreover, al-
thoughâ(u) decays to zero asu increases,̂a(u) 6= 0 for all u 6= 0. Thus, there is a
non-zero stress at every pointx ∈ R

3 (even outside the body!) due to particles close
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to the surface of the body, which is obviously not physicallyreasonable. Neverthe-
less,σ̃∗

w,v is mathematically still a valid definition since it satisfiesthe force balance
equation [45]. However, it cannot be derived using the systematized Murdoch–Hardy
procedure proposed here. Thus, the systematized Murdoch–Hardy procedure does
not lead to all possible definitions that satisfy the force balance equation.

Finally, it is also worth noting that the fact that all balance laws are satisfied
under the Murdoch–Hardy procedure should not come as a surprise, sincew in (4.18)
serves the same purpose asW in (3.13). In this view,w is seen as a function defined
on a phase space, although one that does not evolve accordingto a flow described
by Hamilton’s equations of motion, but still satisfies (3.10).35 The corresponding
flow in phase space is described as follows. Continuing with our notation introduced
(3.1), letΞ(0) = (xs(0),vs(0)) = (xs

1(0), . . . ,x
s
N(0),vs1(0), . . . ,v

s
N (0)) denote

any arbitrary point in phase space. We add a superscript “s” to stress the fact that an
element in phase space is stochastic in nature. Consider theflow in phase space given
by the mapping

Ξ(0) = (xs(0),vs(0)) 7→(xs(0) + x(t)− x(0),vs(0) + v(t)− v(0))
= (xs(t),vs(t)) = Ξ(t), (4.36)

where the quantitiesx(t) = (x1(t), · · · ,xN (t)),v(t) = (v1(t), · · · ,vN (t)) denote
the position and velocity of the particle and these are assumed to be known. (Typically
these quantities are obtained from a molecular dynamics simulation.) Therefore the
Murdoch–Hardy procedure can be interpreted as a probabilistic model constructed
from the data,x(t) andv(t), obtained from a deterministic model – a molecular
dynamics simulation. Note thatxs andvs in (4.36) denote the positions and velocities
of the particles in the probabilistic model. Then it is easy to see that ifW (Ξ; t) is
given by

W (Ξ; t) = w(x1(t)− xs
1) · · ·w(xN (t)− xs

N), (4.37)

then the definitions given by (3.13), (3.15) and (4.18) are consistent andW given by
the above formula satisfies Liouville’s equation (see (3.10)), which was used in deriv-
ing the balance equations in Section 3. Note that unlike Section 3,W (Ξ; t) defined
in (4.37) isnota probability density function. (Its integral over phase space diverges,
since it is independent ofv.) The key difference between the two approaches is that
all quantities in the Irving–Kirkwood–Noll procedure are probabilistic, while this
is not true for the Murdoch–Hardy procedure, if the above probabilistic interpreta-
tion is adopted. For example,fαβ in the Murdoch–Hardy procedure is deterministic.
Therefore the structure inherent in (3.61) through the marginal densities is absent in
the Murdoch–Hardy procedure, thus giving additional non-uniqueness. It is shown in
Section 5 that the Hardy stress can be derived using both approaches, while the DA
stress is a result of the Murdoch–Hardy procedure alone.

35This is only a mathematical argument. No physical significance should be drawn from this analogy.
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4.3 Definition of the spatially-averaged traction vector

We close this section by defining the spatially-averaged traction vector,tw(x,n; t),
for a weighting functionw, at a pointx relative to a plane with normaln(x). One
possibility is to adopt the Cauchy relation using the spatially-averaged stress tensor,

tw(x,n; t) := σw(x, t)n. (4.38)

However, sinceσw is defined as a volume average, we immediately see that with
this definitiontw depends not only on the bonds that cross the surface, but alsoon
nearby bonds that do not cross it [44]. Hence, equation (4.38) does not appear to be
consistent with Cauchy’s definition of traction.

We therefore seek an alternative definition for the spatially-averaged traction vec-
tor. In Section 3.7, we showed that the pointwise traction vector at a point on a surface
is the expectation of the force per unit area of all the bonds that cross the surface, mak-
ing it a property of the surface. We would like the spatially-averaged traction to have
the same property. We therefore define it as an average over asurfacerather than
over a volume as for the stress. For simplicity, we consider the weighting function
wh, defined to be constant on the averaging domain, which is taken to be a gener-
alized cylinder of heighth, with its axis parallel ton and enclosingx. The traction
tw(x,n; t) is defined as

tw(x,n; t) := lim
h→0

σwh
(x, t)n, (4.39)

whereσwh
is the stress associated with the weighting function,wh. In a more general

case, an arbitrary averaging domain can be collapsed onto a surface passing through
x, in many ways. Although this can be made mathematically moreprecise, we do not
pursue that in this work. Definition (4.39) has a two-fold advantage over the definition
in (4.38):

1. The traction vector is defined to be non-local on a surface,thus making it a prop-
erty of the surface. This is physically more meaningful, andcloser to the contin-
uum definition.

2. The above definition differs from the traction definition in (4.38), because only
the bonds which cross the surface contribute to the tractionfield.

In Section 5.2, we use definition (4.39) to define the Tsai traction starting with the
spatial averaging discussed in Section 4.1 and in this way establish a link between
the Tsai traction and the Irving–Kirkwood–Noll procedure.

5 Derivation of different stress definitions and the issue ofuniqueness

In this section, we systematically derive various stress tensors commonly found in the
literature from the methods developed in Section 3 and Section 4. The stress tensors
discussed in this section are the Hardy, virial and DA stresstensors and the Tsai
traction.
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5.1 Hardy stress tensor

The Murdoch–Hardy procedure described in Section 4 was independently developed
by Murdoch [43] and Hardy [23]. The motivation for Hardy’s study was to test the
validity of the continuum description of phenomena in shockwaves. The formulas
suggested by Irving and Kirkwood were not useful due to the lack of knowledge re-
garding the probability density function and the infinite series expansion in the defini-
tion of the stress. As an alternative, Hardy used what we now term as the “Murdoch–
Hardy procedure” to propose an instantaneous definition forstress, for the special
case of pair potential, given by

σH
v (x, t) =

1

2

∑

α,β
α6=β

(xα(t)− xβ(t)) ⊗ (xα(t)− xβ(t))

‖xα − xβ‖
V ′
αβb(x;xα,xβ), (5.1a)

σH
k (x, t) = −

∑

α

w(xα(t)− x)mαv
rel
α (t)⊗ vrelα (t), (5.1b)

whereb is the bond function defined in (4.16) andvrelα is the velocity of particleα
with respect to the continuum velocity, as defined in (4.24).To simplify the notation,
the explicit dependence ofxα andvrelα on time is dropped from here onwards. Equa-
tions (5.1a) and (5.1b) may look familiar. They are similar to the spatially-averaged
generalized stress in (4.9) and (4.17) (for the special caseof a pair potential). If in
these relations, the ensemble average is replaced by a time average, we obtain a time-
averaged Hardy stress. However, in performing such an operation, we must note the
following:

1. Under conditions of thermodynamic equilibrium (see footnote 8 on page 10),
ensemble averages can be replaced by time averages providedthat the system is
assumed to be ergodic. Strictly speaking this time average should be done for
infinite time, but for practical reasons we are restricted tofinite time.

2. The Hardy stress tensor is valid under non-equilibrium conditions assuming that
the system is inlocal thermodynamic equilibrium36 at all points at every instant
of time. This is plausible only when there is a clear separation of time scales
between the microscopic equilibration time scaleτ and macroscopic times. Here,
τ is not being defined rigorously. Roughly speaking,τ must be sufficiently small
so that macroscopic observables do not vary appreciably over it.

36Local thermodynamic equilibrium is a weaker condition thanuniform thermodynamic equilibrium
(see footnote 8). The assumption is that the microscopic domain associated with each continuum particle
is locally in a state of uniform thermodynamic (or at least metastable) equilibrium. This is the reason why
concepts like temperature can be defined as field variables incontinuum mechanics. See for example [17].
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Under these assumptions, we may replace ensemble averages with time averages in
(4.9) and (4.17) to obtain

σw,k(x, t) = − 1

τ

∑

α

∫ t+τ

t

w(xα − x)mαv
rel
α ⊗ vrelα dt, (5.2a)

σw,v(x, t) =
1

2τ

∑

α,β
α6=β

∫ t+τ

t

[−fαβ ⊗ (xα − xβ)b(x;xα,xβ)]dt, (5.2b)

wherefαβ , corresponding to a given potential extension, is defined in(3.51), andτ
represents a microscopic time scale. We see that the Hardy stress is obtained through a
rigorous process beginning with the statistical mechanicsconcepts introduced in Sec-
tion 3. From here on, we will denote the stress in (5.2) as the “Hardy stress”, although
we note that this definition constitutes a generalization ofthe original Hardy stress
to arbitrary potentials and includes time averaging. Incidentally, the Hardy stress can
also be derived from the systematized Murdoch–Hardy procedure described in Sec-
tion 4.2. The kinetic part of the Hardy stress is the same as that obtained in the
Murdoch–Hardy procedure. The potential part of the Hardy stress is derived using
the generatorgH given in (4.29). This was done in Section 4 (see (4.32)).

Note that the Hardy stress tensor is symmetric. One could modify this to a general
form by choosing an arbitrary path of interaction, thus leading to a non-symmetric
form (see Section 4.2). Also note that the stress tensor resulting from the genera-
tor gHD (see Fig. 4.3) would be symmetric, because the interaction force between
two continuum particles is always aligned with the line connecting them. It is very
important to observe that under non-equilibrium conditions, where we assume a lo-
cal thermodynamic equilibrium at every instant of macroscopic time, we may assume
that the averaging domain centered at a positionxmoves with the continuum velocity
v(x, t). This fact will be used in Section 5.2.

5.2 Tsai traction

Cauchy’s original definition of stress emerges from the concept of traction acting
across the internal surfaces of a solid via the bonds that cross the surface. It is there-
fore natural to attempt to define traction at the atomic levelin a similar vein in terms
of the force in bonds intersecting a given plane. This approach actually goes back
to Cauchy himself as part of his effort in the 1820s to define the stress in crystalline
systems [5, 6], which is described in detail in Note B in Love’s classical book on
the theory of elasticity [35]. Cauchy’s derivation is limited to zero temperature equi-
librium where the atoms are stationary. This approach was extended by Tsai [63] to
the dynamical setting by also accounting for the momentum flux of atoms moving
across the plane. The expression for the traction given in [63] appears to be based on
intuition.

In this section, we show how the Tsai traction can be systematically derived from
the Hardy stress tensor, which itself was derived from the generalized stress tensor
defined in Section 4.1. We will see that the potential part of Tsai’s original definition
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agrees with the results of our unified framework. However, Tsai’s expression for the
kinetic part of the traction depends on the absolute velocity of the particles and there-
fore is not invariant with respect to Galilean transformations. We show below that the
correct expression for the Tsai traction vectort(x,n; t) across a planeP with normal
n is

tw(x,n; t) =
1

Aτ

∫ t+τ

t

∑

αβ∩P

fαβ
(xα − xβ) · n
|(xα − xβ) · n|

dt

− 1

Aτ

∑

α↔P

mαv
rel
α (t↔)(vrelα (t↔) · n)
|vrelα (t↔) · n| , (5.3)

whereτ indicates the microscopic time scale,
∑

αβ∩P indicates the summation over
all bondsα− β crossing the planeP ,

∑
α↔P indicates summation over all particles

that crossP in the time interval[t, t + τ ],37 vrelα denotes the local relative velocity
of particleα, andt↔ indicates the time at which the particle crosses the plane. The
correct form forvrelα is not immediately obvious. Below, we derive equation (5.3)and
obtain an explicit expression forvrelα .

We start with the Hardy stress in (5.2). Recall from Section 4.3 that if the averag-
ing domain is taken to be a generalized cylinderCh of heighth, the spatially-averaged
traction field,tw(x,n; t), on a surface passing throughx with normaln is

tw(x,n; t) = lim
h→0

σwh
n = lim

h→0
(σwh,vn+ σwh,kn) (5.4)

=: tw,v + tw,k.

Using (5.2), we rewrite the potential part and kinetic part of (5.4) as

tw,v(x,n; t) =
1

2τ
lim
h→0

∫ t+τ

t

∑

α,β
α6=β

[−fαβ ⊗ (xα − xβ)bh(x;xα,xβ)]dt, (5.5a)

tw,k(x,n; t) = − 1

τ
lim
h→0

∫ t+τ

t

∑

α

mαw(xα − x;h)vrelα (t;h)(vrelα (t;h) · n)dt,

(5.5b)

wherebh denotes the bond function for a generalized cylinder of height h. Also note
the dependence ofvrelα on h in (5.5b). Let us first consider the potential part of the
traction in (5.5a). Ash approaches zero, the generalized cylinder will no longer con-
tain complete bonds. Assuming a constant weighting function, the bond functionbh
equals the fraction of the length of the bond lying within thegeneralized cylinder per
unit volume:

bh(x;xα,xβ) =
1

hA

h

| (xα − xβ) · n|
=

1

A| (xα − xβ) · n|
, (5.6)

37A particle is counted multiple times if it crosses the plane multiple times.
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for any bondα− β crossing the cylinder. Therefore (5.5a) takes the form

tw,v(x,n; t) =
1

Aτ

∫ t+τ

t

∑

αβ∩P

[
−fαβ

(xα − xβ) · n
|(xα − xβ) · n|

]
dt. (5.7)

Note that the1/2 factor is dropped because of the definition of the summation in
the above equation. This is the first term in (5.3). Turning tothe kinetic part of the
traction in (5.5b), we interchange the summation and integral to obtain

tw,k(x,n; t) = − 1

τ
lim
h→0

∑

α∈Ch

∫ t2(α;h)

t1(α;h)

mαw(xα − x;h)vrelα (t;h)(vrelα (t;h) ·n)dt,

(5.8)
wheret1(α;h) andt2(α;h) are the times of entry and exit of particleα, respectively,
from a cylinder of heighth. The summation in the above equation is over all particles
that are in the generalized cylinder during the time interval [t, t + τ ], with a particle
countedk times if it enters and exits the cylinderk times. Multiplying and dividing
the above equation byt2(α;h) − t1(α;h) and substituting inw, we have

tw,k(n) = − 1

Aτ
lim
h→0

∑

α∈Ch

t2(α;h)− t1(α;h)

h

∫ t2(α;h)

t1(α;h)
mαv

rel
α (t;h)(vrelα (t;h) · n)dt

t2(α;h)− t1(α;h)

= − 1

Aτ

∑

α↔P

lim
h→0

t2(α;h)− t1(α;h)

h
mαv

rel
α (t↔)(vrelα (t↔) · n), (5.9)

where we have used the Lebesgue differentiation theorem [19] in the last equality.
Note that the interchange of limit and summation in the abovestep is valid since we
can assume that the summation for anyCh is a finite summation which is physically
meaningful. Since the averaging domain moves with a continuum velocity we note
that

lim
h→0

t2(α;h) − t1(α;h)

h
=

1

|vrelα (t↔) · n| . (5.10)

In words, this equality states that the net time spent by particle α in the cylinder,
divided by its height, is equal to the inverse of the velocityof particleα along the
axis of the cylinder. This is correct in the limit,h→ 0, where particles only enter and
exit the cylinder at its ends. Substituting (5.10) into (5.9), we have

tw,k(n) = − 1

Aτ

∑

α↔P

mαv
rel
α (t↔)(vrelα (t↔) · n)
|vrelα (t↔) · n|

= − 1

Aτ

∑

α↔P

mαv
rel
α (t↔)sign(vrelα (t↔) · n). (5.11)

This is the second term in (5.3). Note that

vrelα (t) = lim
h→0

vrelα (t;h) = vα(t)− lim
h→0

v(x;h). (5.12)

Hence, we have implicitly assumed thatlimh→0 v(x;h) is well-defined for our av-
eraging domain (planeP ) which is a limit of the generalized cylinderCh. In the
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following calculation, we show thatv(x;h) is well-defined and its exact form is de-
rived.

We know that for a generalized cylinder

v(x;h) :=
1
τ

∫ t+τ

t

∑
αmαw(xα(t)− x;h)vα(t)dt

1
τ

∫ t+τ

t

∑
βmβw(xβ(t)− x)dt

=

∑′

α

∫ t2(α;h)

t1(α;h)
mαvα(t)dt

∑′

β

∫ t2(β;h)

t1(β;h)
mβdt

=

∑′

αmα [xα(t2(α;h)) − xα(t1(α;h))]∑′

β mβ [t2(β;h)− t1(β;h)]
, (5.13)

where
∑′ indicates summation over those particles that crossP in the time interval

[t, t+ τ ], including multiple entries and exits.
Considering the limith → 0 of the first partial fraction of the last equation we

have

lim
h→0

mα
xα(t2(α;h))−xα(t1(α;h))

t2(α;h)−t1(α;h)∑′

β mβ
t2(β;h)−t1(β;h)
t2(α;h)−t1(α;h)

=
mαvα(t↔)

∑′

β mβ|vα(t↔) · n/vβ(t↔) · n|
, (5.14)

using the fact that in the limith → 0, (t2(β;h) − t1(β;h))/(t2(α;h) − t1(α;h)),
which is the ratio of the times spent by particlesβ andα in one of their sojourns into
the cylinder, is equal to the inverse ratio of their normal velocities. Using (5.14) and
taking the limith→ 0 of (5.13), we obtain

v(x) = lim
h→0

v(x;h) =
∑

α↔P

mαvα(t↔)
∑′

β mβ|vα(t↔) · n/vβ(t↔) · n|
. (5.15)

Note that the above expression for the continuum velocity isfar from intuitive. One
might expect the continuum velocity to be the average velocity of particles crossing
the surface, but this is not true. It is clear from the above equation that the averaging
is not trivial.

From the relationship between the Tsai traction in (5.3) andthe Hardy stress
tensor in (5.2), it is apparent that the Tsai traction is a more local quantity than the
Hardy stress tensor. The Tsai traction performs better thanthe Hardy stress in systems
with free surfaces. This was studied by Cheung and Yip [7] fora one-dimensional
case, in which virial stress and Tsai stress are compared (the virial stress is a special
case of Hardy stress as shown in the next section).

The Tsai traction definition can be used to evaluate the stress tensor at a point by
evaluating the traction on three perpendicular planes.38 However, it is not clear from
the perspective put forward by Tsai [63] whether the resulting stress tensor would

38For example, if the normals to the planes are aligned with theaxes of a Cartesian coordinate sys-
tem with basis vectorsei, thent(e1) would give the componentsσ11, σ21 , σ31, t(e2) would give the
componentsσ12, σ22 , σ32, andt(e3) would give the componentsσ13 , σ23, σ33 .
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be symmetric or even well-defined, i.e., it is not clear if another choice of planes
will give suitably transformed components of the same stress tensor. Our derivation
suggests that a stress tensor constructed from the Tsai traction should be well-defined
and symmetric, at least in a weak sense, since it is a limit of the Hardy stress, which
has these properties. The numerical experiments presentedin Section 6, suggest that
the Tsai traction is invariant with respect to the position of the Tsai planeP and the
resulting stress tensor is symmetric.

5.3 Virial stress tensor

In this section, we show that the virial stress tensor derived in Section 2 and in Ap-
pendix A can be re-derived from the time-averaged version ofthe Hardy stress given
in (5.2). The expression for the virial stress tensor is obtained from (5.2) as a special
case for a weighting function which is constant on its support. The bond function,b,
in (5.2) is evaluated approximately using its definition (4.16) by only counting those
bondsα − β that lie entirely within the averaging domain and neglecting the bonds
that cross the averaging domain. Hence,b(x;xα,xβ) is given by

b(x;xα,xβ) =

{
1/ vol(Ωx) if bondα− β ∈ Ωx,
0 otherwise,

(5.16)

whereΩx denotes the averaging domain centered atx. Substituting (5.16) into (5.2),
we have

σ(x, t) =
1

τ vol(Ωx)

∫ t+τ

t

[
−

∑

α∈Ωx

mαv
rel
α ⊗vrelα +

1

2

∑

α,β∈Ωx

α6=β

[−fαβ⊗(xα−xβ)]

]
dt,

(5.17)
which is identical to (A.27) in Appendix A. It is clear from this that the virial stress
tensor is only an approximation and tends to the Hardy stressas the volume of the
averaging domain is increased. This is because the ratio of the measure of bonds that
cross the surface to those which are inside the averaging domain decreases as the
size of the domain increases. The difference between the virial stress tensor and the
Tsai traction was analytically calculated for a one-dimensional chain by Tsai (see
[63]). Since, taking the averaging domain size to infinity isequivalent to taking the
thermodynamic limit in this context, the Hardy and virial stress expressions become
identical in this limit. Since the virial theorem was also derived in Section 2 for the
case of equilibrium statistical mechanics, it follows thatthe Irving–Kirkwood–Noll
procedure is consistent with the results of equilibrium statistical mechanics in the
thermodynamic limit.

5.4 DA stress tensor

It was seen in Section 4.2, that the DA stress tensor, defined in (4.33), is derived using
an appropriate generator in the systematized Murdoch–Hardy procedure. However,
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unlike the Hardy stress, the DA stress cannot be derived fromthe Irving–Kirkwood–
Noll procedure. It is also worth noting that the stress tensor given by (4.33) is in
general non-symmetric, and only under very special conditions yields a symmetric
tensor [45].

5.5 Uniqueness of the macroscopic stress tensor

Three possible sources of non-uniqueness for the stress tensor have been identified in
our discussion:

1. Given that there are multiple potential extensions (see Page 24), different force
decompositions are possible and hence different pointwisestress tensors can be
obtained.

2. For a given pointwise stress tensor, a new pointwise stress, which also satisfies
the balance of linear momentum, can be obtained by adding on an arbitrary tensor
field with zero divergence.

3. The generalization of the Irving–Kirkwood–Noll procedure in Section 3.6 to arbi-
trary “paths of interaction” leads to the possibility of non-symmetric expressions
for the pointwise stress tensor.

We address the first two issues in this section. The third source of non-uniqueness
is only possible in systems where the discrete particles making up the system pos-
sess internal structure, such as internal polarization or spin. For systems of discrete
particles without internal structure only straight bonds are possible due to symmetry
arguments. We leave the discussion of particles with internal structure to future work.

Uniqueness and potential energy extensions

The first source of non-uniqueness of the stress tensor is related to the potential en-
ergy extension discussed in Section 3.4. We show below that the macroscopic stress
tensor, calculated as a spatial average of the pointwise stress tensor with constant
weighting function, is always unique in the thermodynamic limit (see footnote 1 on
page 5), i.e., the difference between the spatially-averaged pointwise stress tensors
resulting from two different extensions tends to zero, as the volume of the averaging
domain is increased.

The discussion below is limited to 5-body potentials since it can be easily ex-
tended to any interatomic potential. We first show that the contribution due to any
cluster of5 particles within the averaging domain is zero. Without lossof generality,
we may assume that our system consists of5 particles interacting with an interatomic
potential energy given by

Vint = V̂(x1, . . . ,x5). (5.18)
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Fig. 5.1 A cluster of5 particles that lie completely inside the averaging domain,does not contribute to the
ambiguity in the stress tensor.

LetVint(ζ12, . . . , ζ45) andV∗
int(ζ12, . . . , ζ45) be two different extensions ofVint from

the shape spaceS to R
10 (see Section 3.4), and for anys = (r12, . . . , r45) ∈ S, let

fαβ(x1, . . . ,x5) :=
∂Vint

∂ζαβ
(s)
xβ − xα

rαβ
, (5.19)

f∗
αβ(x1, . . . ,x5) :=

∂V∗
int

∂ζαβ
(s)
xβ − xα

rαβ
, (5.20)

be their corresponding force decompositions. Letσ andσ∗ denote the resulting
pointwise stress tensors in the Irving–Kirkwood–Noll procedure fromVint andV∗

int,
respectively. LetΩx denote the averaging domain39 centered atx that is used to cal-
culate the Hardy stress tensor. Using (5.2b) and noting thatall the bonds lie withinΩ,
the difference between the Hardy stress tensors resulting from these two representa-
tions, for the special case of a constant weighting function, is given by

∆σ(x, t) := σw − σ∗
w =

1

2τ vol(Ωx)

∑

α,β
α6=β

∫ t+τ

t

[−∆fαβ ⊗ (xα − xβ)]dt, (5.21)

where∆fαβ := fαβ − f∗
αβ .

We would like to show that∆σn1 = 0, wheren1 is the normal vector as shown
in Fig. 5.1. The essential idea to is to interchange the integration and summation in
(5.21) and split the terms appearing in the summation into fractions, such that each
fraction yields a zero contribution to∆σn1. In order to show this, we partition the av-
eraging domain into regions such that no region contains a particle in its interior and
the partition surfaces are perpendicular to the normal (seeFig. 5.1). LethP denote
the width of the partitionP . Using (5.21), we can now write∆σn1 as

∆σn1 =
1

2τ vol(Ωx)

∫ t+τ

t

∑

P

∑

αβ∩P

[
−∆fαβ(xα − xβ) · n1

hP
|(xα − xβ) · n1|

]
,

=
1

2τ vol(Ωx)

∫ t+τ

t

∑

P

hP∆FP , (5.22)

39For simplicity assume that the averaging domain is convex.
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where
∑

αβ∩P denotes the summation over the bonds crossing partitionP , and

∆FP =
∑

αβ∩P

[
−∆fαβ

(xα − xβ) · n1

|(xα − xβ) · n1|

]
(5.23)

is thenet force on particles on one side of the partition due to particles on the other
side. Since both representations give the same total force on each particle, the force
difference, or net force, on each particle is zero and therefore,∆FP = 0. For exam-
ple, for the partition shown in the figure,

∆FP = −2(∆f51 +∆f43). (5.24)

Since∆f45 = −∆f54, we have

∆FP = −2(∆f51 +∆f43 +∆f45 +∆f54)

= −2(∆f43 +∆f45)− 2(∆f51 +∆f54)

= −2∆f int
4 − 2∆f int

5 = 0+ 0 = 0. (5.25)

Hence,∆σn1 = 0. Undertaking a similar argument in the other directions, wesee
that∆σni = 0. These results together imply that∆σ = 0. Given this, we can con-
clude that any cluster of particles that lies entirely within the averaging domain does
not contribute to the spatial average of the difference between two stress definitions.
Consequently, the only non-zero contribution comes from those clusters for which
the bonds connecting its particles cross the averaging domain. Since this contribution
scales as surface area, it tends to zero as volume tends to infinity.

Uniqueness and the addition of a divergence-free field to thestress

The second source of non-uniqueness of the stress tensor involves the addition to it
of a divergence-free field. This issue is partly addressed bythe result (shown in Sec-
tion 5.3) that the spatially-averaged pointwise stress converges to the virial stress in
the thermodynamic limit (see footnote 1 on page 5). Considerthe pointwise stress,σ,
obtained through the Irving–Kirkwood–Noll procedure, which satisfies the balance
of linear momentum, and a new pointwise stress,σ̂ = σ + σ̃, wheredivx σ̃ = 0.
Clearly,σ̂ also satisfies the balance of linear momentum and is therefore also a valid
solution. The spatially-averaged stress obtained from thenew definition is

σ̂w(x, t) =

∫

R3

w(y−x)σ̂(y, t) dy =

∫

R3

w(y−x)(σ(y, t)+σ̃(y, t)) dy. (5.26)

We showed in Section 5.3 that in the thermodynamic limit, thespatially-averaged
pointwise stress,σ, converges to the virial stress. We also expectσ̂w to equal the
virial stress in this limit (since any macroscopic stress must converge to this value
under equilibrium conditions). Therefore, (5.26) reducesto

lim
TD

∫

R3

w(y − x)σ̃(y, t) dy = 0, (5.27)

wherelimTD refers to the thermodynamic limit. Equation (5.27) places astrong con-
straint on allowable forms for̃σ, the implications of which are left for future work.
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Fig. 6.1 The virial pressure as a function of time is plotted for an isolated cube of aluminum at300K. The
total pressure/virial pressure is the sum of the kinetic andpotential pressures.

6 Numerical Experiments

In this section, we describe several numerical experiments, involving molecular dy-
namics and lattice statics simulations, conducted to capture differences in the spatially-
averaged stress measures derived in Section 5. We consider the Hardy stress defined
in (5.2), the Tsai traction defined in (5.3), the virial stress defined in (5.17) and the
DA stress defined in (4.33). We will sometimes refer to these as the “microscopic
definitions” or the “microscopically-based stress tensors”.

6.1 Experiment 1

We begin with the study of the kinetic part of the stress tensor. From the discussion
in Section 5, it is clear that unlike the definition for the potential part of the stress
tensor, there is no ambiguity in the definition for the kinetic part of stress. However,
the kinetic part of the stress may appear to be at odds with thecontinuum definition
of stress that is stated solely in terms of the forces acting between different parts of
the body. The need for the kinetic part of stress becomes apparent when considering
an ideal gas, where the potential interaction term is zero bydefinition and therefore
it is the kinetic term that is wholly responsible for the transmission of pressure.

To demonstrate that the kinetic term in the stress tensor does indeed exist, we
perform the following constant energy molecular dynamics simulation of an isolated
cube. The cube, consisting of4000 aluminum atoms in a face-centered cubic (fcc)
arrangement (10×10×10unit cells), is floating freely in a vacuum. The atoms interact
according to an EAM potential for aluminum due to Ercolessi and Adams [16]:

VEAM
int =

1

2

∑

α,β
α6=β

Vαβ(rαβ) +
∑

α

Uα(ρα), ρα =
∑

β
β 6=α

fβ(rαβ). (6.1)
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HereUα, called theembedding function, is the energy required to embed particleα in
the electron density,ρα, due to the surrounding particles, andfβ(rαβ) is the electron
density of particleβ atxα. The initial positions of the atoms are randomly perturbed
by a small amount relative to their zero temperature equilibrium positions and the
system is evolved by integrating the equations of motion. The initial perturbation
is adjusted so that the temperature of the cube is about300K (small fluctuations in
temperature are expected since temperature is not controlled in the simulation). Since
the block is unconstrained, we expect the stress,σ, in the box and consequently the
pressure, defined byp = − 1

3 trσ, to be zero. The virial expression for calculating
the pressure follows from (A.23) as

p =
1

3V

[
∑

α

mα‖vα‖2 −
1

2

∑

α,β
α6=β

‖fαβ‖rαβ
]
, (6.2)

where

fαβ =
∂VEAM

int

∂rαβ

xβ − xα

rαβ
. (6.3)

The three curves shown in Fig. 6.1 are the potential and kinetic parts of the pres-
sure and the total pressure as a function of time, calculatedusing (6.2). As expected
the total pressure tends to zero as the system equilibrates.However, the potential
and kinetic parts arenon-zero, converging to values that are equal and opposite such
that their sum is zero. More interestingly, the kinetic partis not insignificant for our
system. This clearly shows that kinetic part cannot be neglected even when consid-
ering solid systems. This can be quantified by noting that thekinetic part in (6.2)
is simply the temperature per unit volume given by the equipartition theorem [26],
kBT = 2T /3N , whereT is the kinetic energy. Therefore (6.2) reduces to

p =
1

V

[
NkBT − 1

6

∑

α,β
α6=β

V ′
αβrαβ

]
. (6.4)

For example at 300 K,kBT = 0.02585 eV. The lattice spacing for the system consid-
ered is equal to4.032Å. Hence, the volume per atom isV/N = 4.0233/4 = 16.387Å
and the kinetic pressure is1.577 meV/Å. This translates to252.394 MPa, which is a
considerable stress.

6.2 Experiment 2

It is clear from Section 6.1, that the kinetic stress is a sizable quantity and cannot be
neglected. In this experiment, we further explore the interplay between the potential
and kinetic parts of the stress.

Consider a crystalline solid at a relatively low temperature under uniform stress.
The atoms will vibrate about their mean positions with an amplitude that is small rel-
ative to the nearest-neighbor spacing. Now imagine placinga Tsai planeP between
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Fig. 6.2 The effect of the position of the Tsai plane on the potential and kinetic parts of stress. Frames (a)
and (b) show schematic diagrams of a two-dimensional triangular lattice with (a) the Tsai plane positioned
midway between the lattice planes and (b) the Tsai plane positioned almost on top of a lattice plane. The
open circles correspond to the ideal lattice positions. Theblack circles are atoms that are shown in mid-
vibration relative to the lattice site as indicated by the arrow. The Tsai plane is indicated by a vertical
dashed line. The bonds crossing it appear as dotted lines. Frame (c) shows the plot of the kinetic part of
stressσk

11 , potential part of stressσv
11 and the total stressσ11, as a function of the normalized position

sP = (xP − xL)/∆x of the Tsai plane P, wherexP is the position ofP , xL is the position of the lattice
plane, and∆x is the spacing between the lattice planes.

two crystal lattice planes and measuring the traction across it. If P is midway between
the lattice planes (see Fig. 6.2(a)), we expect that relatively few atoms will crossP
and that consequently the kinetic stress will be small or even zero. In contrast, ifP
is close to the lattice plane there will be many such crossings and the kinetic stress
will be large in magnitude. This seems to suggest that the traction will change as a
function of the position ofP , which would be incorrect since the system is under uni-
form stress. The reason that this does not occur is that everytime an atom crossesP ,
the bonds connected with it reverse directions with respectto P , changing a positive
contribution to the contact stress to a negative one and viceversa (see the bonds con-
nected with atomA in Fig. 6.2(a) and Fig. 6.2(b)). This effect on the potentialpart
of the stress exactly compensates for the change in magnitude of the kinetic stress
leaving the total stress constant. This is demonstrated numerically in Fig. 6.2(c). This
graph shows the results obtained from a molecular dynamics simulation of the sys-
tem described in Section 6.1, with periodic boundary conditions. The periodic length
of the box is set based on the zero temperature lattice spacing. Consequently upon
heating by a temperature change of∆T , a compressive stress is built up in the box
according to

ǫ = s : σ + IαT∆T = 0, (6.5)

wheres is the elastic compliance tensor andαT is the coefficient of thermal expan-
sion. Inverting this relation for an fcc crystal with cubic symmetry oriented along the
crystallographic axes, we have

σ11 = σ22 = σ33 = −(c11 + 2c12)∆T = σ, (6.6)
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with the rest of the stress components zero. In (6.6),cij are the elastic constants of the
material. Substituting in the appropriate values for Ercolessi-Adams EAM aluminum
[16] (c11 = 118.1 GPa,c12 = 62.3 GPa,αT = 1.6 × 10−5K−1) and∆T = 310K,
givesσ = −1.2GPa. We see that the total stress in Fig. 6.2(c) is constant regardless of
the position of the Tsai plane and equal to the expected valueof −1.2 GPa computed
above. However, the kinetic and potential parts change dramatically. When the Tsai
plane is away from the lattice planes (sP = ±0.1), the kinetic stress is zero and the
entire stress is given by the potential part of the stress. Asthe Tsai plane moves closer
to a lattice plane (|sP | → 0), the kinetic stress becomes more negative (increasing
in magnitude) and the potential part of stress increases in exactly the right amount
to compensate for this effect. When the Tsai plane is right ontop of a lattice plane
(sP = 0), both the kinetic stress and potential stress are maximum in magnitude, but
their sum remains equal to the constant total stress. This isa striking demonstration
of the interplay between the kinetic and potential parts of the stress tensor.

6.3 Experiment 3 and 4

In this section, the predictions of the microscopically-based stress tensors are com-
pared with analytical solutions from elasticity theory fortwo simple boundary-value
problems. This is a revealing test, since stress is a continuum concept and therefore
the microscopic definitions should reproduce the results ofa continuum theory under
the same conditions. We perform two numerical experiments.In each experiment, an
atomistic boundary-value problem is set up, and the values computed from the dis-
crete system are compared with the “exact” result computed from elasticity theory
for the same problem using material properties predicted bythe interatomic potential
used in the atomistic calculations. The numerical experiments are conducted at zero-
temperature since there is no controversy regarding the form of of the kinetic stress
which is the same for all stress definitions. Therefore, a comparison at zero tempera-
ture is sufficient to probe the differences between the stress measures, at least under
equilibrium conditions. The properties we are interested in studying are:

1. Symmetry of the stress tensor.
2. Convergence of the stress tensor to the continuum value with the size of the av-

eraging domain (a three-dimensional volume in the case of virial, Hardy and DA
stresses and a plane in the case of the Tsai traction).

Inter-atomic Model

The numerical experiments in this section are carried out using a Lennard-Jones po-
tential. The exact choice of material parameters is unimportant, since the objective
of the experiment is to compare the values obtained from the microscopically-based
stress for the discrete system with the “exact” values obtained from the continuum
elasticity theory for the same material. The Lennard-Jonesparameters,ǫ andσ, are
therefore arbitrarily set to 1. The potential has the following form:

φ(r) = 4

[
1

r12
− 1

r6

]
− 0.0078r2 + 0.0651. (6.7)
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Note that the above equation has been rendered dimensionless by expressing lengths
in units ofσ and energy in units ofǫ. As seen in the above equation, the Lennard-
Jones potential is modified by the addition of a quadratic term. This is done to ensure
that φ(rcut) = 0 andφ′(rcut) = 0, wherercut = 2.5, denotes the cutoff radius
for the potential. We refer to this as the “modified Lennard-Jones potential”. The
ground state of this potential is an fcc crystal with a lattice constant ofa = 1.556
and elastic constants,c11 = 87.652, c12 = c44 = 50.379. The conventional elastic
moduli associated with the cubic elastic constants are [34]:

E = (c211 + c11c12 − 2c212)/(c11 + c12) = 50.877, (6.8)

µ = c44 = 50.379, (6.9)

ν = c12/(c11 + c12) = 0.365, (6.10)

whereE is Young’s modulus,µ is the shear modulus, andν is Poisson’s ratio. (In the
above, elastic constants are given in units ofǫ/σ3. Poisson’s ratio is dimensionless.)

Experiment 3: Dependence of the microscopically-based stress on the averaging do-
main size

The main aim of this experiment is to study the dependence of the stress given by var-
ious definitions (Hardy, Tsai, virial and DA) on the size of the averaging domain. We
consider the special case of uniform uniaxial loading withσ11 = 1 (all other stress
components zero). Our system is a cube of10× 10× 10 unit cells (4000 atoms) with
periodic boundary conditions applied in all directions. Toimpose the uniaxial load-
ing, the periodic lengthsli (i = 1, 2, 3) in the three directions are modified according
to the linear elastic solution for uniform straining:

l1 = 10a(1 + σ11/E) = 10.197, (6.11)

l2 = l3 = 10a(1− νσ11/E) = 9.928. (6.12)

We then compute the stress at the center of the periodic cell,while increasing the size
of the averaging domain. In comparing the different stress definitions, the domain
size is set by the Tsai plane which is taken to be a square normal to the 1-direction
with the same dimensionw in the 2 and 3-directions. The averaging domain for the
Hardy, virial and DA stresses is a sphere of diameterd = w. The weighting function,
w(r), for the Hardy stress is taken to be constant with a suitable mollifying function,

w(r) =





c if r < R− ǫ
1
2c

[
1− cos

(
R−r
ǫ π

)]
if R− ǫ < r < R

0 otherwise
, (6.13)

wherec is chosen appropriately to normalizew. The results are presented in Fig. 6.3,
where the stressσ11 is plotted as a function of the normalized domain size,s =
w/10a. (Recall that the applied value isσ11 = 1.) We make the following qualitative
observations based on these results:

1. The Hardy stress converges to the exact value most quicklyof all stress definitions
and has the least noise.
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Fig. 6.3 Plot showing the dependence ofσ11 , calculated using different definitions on the averaging do-
main size. The variables represents the ratio of the domain size to the length of the system (10 unit cells).

2. The normal stress computed from the Tsai traction oscillates about the exact value
with a fluctuation amplitude that decays rather slowly with domain size. The os-
cillations reflect the symmetry of the crystal as new bonds enter the calculation
with increasing plane size.

3. The virial stress is always smaller than the Hardy and Tsaistresses since it does
not take into account the bonds that cross out of the averaging domain. It appears
to be converging towards the exact value, but convergence isslow and even at the
maximum domain size studied, the virial stress still has a significant error.

4. The DA stress is much smaller than all other stresses due togreater averaging.

Experiment 4: A plate with a hole under tension

We now consider one of the classical elasticity boundary-value problems: an infinite
plate with a hole subjected to uniaxial tensionσ∞ at infinity. This is traditionally
named theKirsch problem for an isotropic material model. Our objective is tocom-
pare the microscopically-based stresses computed for a discrete system set up for the
Kirsch problem with the exact solution. A complication in making this comparison
is that the fcc Lennard-Jones material we are considering iscrystalline with cubic
symmetry and is not isotropic. We must therefore compare thediscrete solution with
the more general solution for the Kirsch problem from the theory of elasticity for
anisotropic media [34]. For anisotropic materials, the stress concentration40 at the
hole is no longer3 (as it is for an isotropic material), but depends on the elastic con-
stants of the material. For the elastic constants of the Lennard-Jones model in (6.7),
we obtain a stress concentration of2.408. In addition to the overall stress concentra-
tion, the analytical solution provides the complete stressfield about the hole. We can
therefore compare the microscopically-based stress fieldswith the continuum result.

40The stress concentration is defined as the ratio of the maximum stress to the applied stressσ∞. The
maximum stress for the Kirsch problem occurs at the circumference of the hole.
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Fig. 6.4 Normalizedσ11 component of the stress along thex1 = 0 line for an anisotropic plate with
a hole subjected to uniaxial tension in the 1-direction. Thex2 coordinate is normalized by the heighth
of the atomistic model. The exact solution for an infinite plate obtained from anisotropic linear elasticity
(black solid line) is compared with the results obtained from the three microscopic definitions in the three
columns: Hardy, Tsai and virial. The four rows correspond tofour different averaging domains constituting
1%, 2.5%, 5% and10% of h.

In order to model an infinite elastic space, we consider a large square plate ori-
ented along the crystallographic axes consisting of367,590 atoms, with a hole of
radius25a, wherea is the lattice constant. The plate is constructed by stacking
100 × 100× 10 unit cells and excluding the atoms that lie withing the radius of the
hole. The relatively large system size helps to ensure that the variation of the contin-
uum stress is small on the lengthscale of the lattice spacingand minimizes boundary
effects near the hole. The atoms interact according to the modified Lennard-Jones
potential given in (6.7).

As before, the averaging domain size is set by the length and width of the Tsai
plane, with the Hardy, virial and DA stress using a sphere of diameter equal to the
length of the Tsai plane. The system is loaded byσ11 = σ∞, by displacing the
atoms according to the exact solution from continuum mechanics for linear elastic



67

anisotropic media [34]. The applied stress is sufficiently small, so that the assump-
tion of material linearity and the small strain approximation inherent in the elasticity
theory provide a good approximation for the behavior of the system. After the atoms
are displaced, the stress tensor is evaluated on a uniformly-distributed grid of points
on the mid-plane of the plate located atx3 = 0. A grid of 100× 100 points is chosen
to evaluate the virial, Tsai and Hardy expressions and a gridof 30 × 30 is chosen
to evaluate the DA stress tensor. A coarser grid is used for the DA stress due to the
higher computational cost of this calculation.

First, we consider theσ11 component of the stress along thex1 = 0 line, where
we expect the maximum value at the hole surface. The results are plotted in Fig. 6.4,
which shows a comparison between the exact value and the three microscopic stress
definitions (Hardy, Tsai and virial) for four different averaging domains ranging from
1% to 10% of the heighth of the atomistic model. We see that the Hardy and Tsai
stresses faithfully follow the exact solution, but then drop-off as their averaging do-
main overlaps with the hole. This drop-off reflects the fact that the microscopically-
based stress measures are bulk expressions. The smaller theaveraging domain, the
closer the microscopic measures can approach the exact stress concentration at the
hole surface, however, this increased fidelity comes at the cost of significantly large
fluctuation about the exact value. The virial stress is identically zero for the smallest
averaging domain because it is too small to contain completebonds. For the same
reason, the Hardy stress experiences very large fluctuations and a nearly constant av-
erage value. For larger averaging domains, the Hardy stresshas smaller fluctuations
than the other stress definitions.

The reason that the drop-off effect described above is so pronounced in this sim-
ulation, is that the system is very small by continuum standards. If instead of a hole
with a radius of25a, we studied a plate with a hole100 or 1000 times larger, using
the same-sized averaging domain, the spatially-averaged expressions would get much
closer to the correct value before dropping off over the samelengthscale as seen in
Fig. 6.4. However, microscopic stress measures are often computed for small sys-
tem sizes and therefore the difficulties presented in the figure are typical of realistic
atomistic simulation.

Next, we explore the stress field over the entire plane. The color density plots
given in Fig. 6.5, show variation ofσ11 in the mid-plane of the plate. It can be seen
that the stress within the hole is zero. Comparing the plots for σ11 of the virial stress
(Fig. 6.5(b)), Tsai stress (Fig. 6.5(c)), Hardy stress (Fig. 6.5(d)) and the DA stress
(Fig. 6.5(e)) with the exact solution (Fig. 6.5(a)), we see that the first three defini-
tions capture the overall variation inσ11, whereas the DA stress does not. However,
it is clear that the microscopically-based stress in all of the cases is smeared relative
to the stress given by the exact solution and none reach the exact stress concentration
of 2.408. This is a result of the averaging procedure involved in all the definitions
as explained above. Although the DA stress tensor plotted inFig. 6.5(e)41 captures
the variations in the field, it is much smaller in magnitude compared to the exact so-
lution. This is because of the greater degree of averaging involved in the DA stress

41Fig. 6.5(e) and Fig. 6.8 are generated from a much coarser grid compared to the other plots due to
the computational expense of the DA stress definition.
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Fig. 6.6 Color density plots of error inσ11 , defined as the absolute value of(σ11 − σexact
11 )/σexact

11 ,
whereσ11 is the stress calculated using (a) virial (b) Tsai and (c) Hardy stress definitions.

tensor. Overall, the Hardy stress is less noisy than the virial or Tsai definitions due to
the smoothing afforded by the weighting function. (This is hard to see in the figure.)
The stress computed from the Tsai traction, in particular, is more noisy since the av-
eraging is limited to a plane compared with the volume averaging of the Hardy and
virial definitions. However, this more localized definitionenables the Tsai stress to
approach the exact stress concentration most closely of allof the microscopic defini-
tions. Similar results were observed by Cheung and Yip [7] for the stress near a free
surface.

The relative error inσ11 for the three microscopic definitions is shown in Fig. 6.6.
Of the three definitions, the stress computed from the Tsai traction is generally more
accurate, followed by the Hardy stress and then the virial stress. As noted above, the
Tsai stress does particularly well in capturing the variations in the stress field close
to the hole where the fact that it is localized in one direction is particularly helpful.
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Fig. 6.8 Color density plots of the DA shear stress components, (a)σ12 and (b)σ21, plotted on a common
scale.

It is also interesting to examine the shear stress components. Fig. 6.7 shows the
exact result from the continuum solution and theσ12 andσ21 components of the stress
tensor computed from the Tsai traction from two different planes, one normal to the
1 direction and the other normal to the2 direction. We see that the Tsai stress repro-
duces the exact distribution and appears generally symmetric. This suggests that the
symmetry of the Hardy stress is preserved while taking the limit to arrive at the Tsai
traction. The DA stress tensor is in general non-symmetric [45], but from Fig. 6.8(a)
and Fig. 6.8(b) we observe that in this case,σ12 andσ21 appear similar. Interestingly,
in contrast to the normal stress, the magnitude of shear stress is captured by the DA
stress definition, at least for the case studied here. The reason for this is not obvious.

Overall, we can summarize our results as follows. Of the three definitions studied,
the Hardy stress is generally preferred. It tends to be the smoothest and provides good
accuracy away from surfaces as long as the lengthscale over which the continuum
fields vary is large relative to the atomic spacing. In situations where either of those
conditions break down, the Tsai traction provides a better localized measure of stress.
The virial stress is less accurate than both. From a computational standpoint, the
virial stress has the advantage of being easiest to compute.The evaluation of the
bond function in the Hardy stress makes it slightly more expensive to compute, but
comparable to the virial stress. The Tsai traction is most difficult and time consuming



70

to compute, since it requires the detection of bonds and atoms that cross a given plane
during the averaging process. Furthermore, this evaluation must be performed for
three separate planes in order to obtain the full stress tensor in three dimensions.

7 Summary and future work

In this paper, we provide a unified interpretation and possible generalization of all
commonly used definitions for the stress tensor for a discrete system of particles. The
macroscopic stress in a system under conditions of thermodynamic equilibrium are
derived using the ideas of canonical transformations within the framework of classical
statistical mechanics. The stress in non-equilibrium systems is obtained in a two-step
procedure:

1. The Irving–Kirkwood–Noll procedure [27, 48] is applied to obtain apointwise
(microscopic) stress tensor. The stress consists of a kinetic partσk and a poten-
tial partσv. The potential part of the stress is obtained for multi-bodypotentials
which have a continuously differentiable extension from the shape space of the
system to a higher-dimensional Euclidean space.42 This generalizes the original
Irving–Kirkwood–Noll approach that was limited to pair potentials. This general-
ization is obtained based on the important result that for any multi-body potential
with a continuously differentiable extension, the force ona particle in a discrete
system can always be expressed as a sum ofcentral forces. In other words, the
strong law of action and reactionis always satisfied.

2. The pointwise stress obtained in the first step is spatially averaged to obtain the
macroscopic stress.

This two-step procedure provides a general unified framework from which various
stress definitions can be derived includingall of the main definitions commonly used
in practice. In particular, it is shown that the two-step procedure leads directly to the
stress tensor derived by Hardy in [23]. The traction of Cauchy and Tsai [5, 6, 63] is
obtained from the Hardy stress in the limit that the averaging domain is collapsed to
a plane. The virial stress of Clausius and Maxwell [8, 40, 41]is an approximation of
the Hardy stress tensor for a uniform weighting function where bonds that cross the
averaging domain are neglected. The Hardy stress and virialstress become identical
in the thermodynamic limit. In this manner, clear connections are established between
all of the major stress definitions in use today.

The unified framework described above yields asymmetricstress tensor forall
interatomic potentials which have an extension, when used with the standard Irving–
Kirkwood–Noll procedure. However, there are materials in nature, such as liquid
crystals, which can have non-symmetric stress tensors. In order to explore the pos-
sibility of non-symmetric stress, the Irving–Kirkwood–Noll procedure is generalized
to curved paths of interactionas suggested in [52]. This involves the generalization
of Noll’s lemmas in [48], originally derived for straight bonds, to arbitrary curved
paths as defined in this paper. These generalized lemmas, lead to a non-symmetric

42Most practical interatomic potentials satisfy this conditions.
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stress tensor when applied within the Irving–Kirkwood–Noll procedure. It is pos-
tulated that curved paths of interaction may be important insystems with internal
degrees of freedom, such as liquid crystals and objective structures [28]. This is left
for future work.

One of the key points addressed in this paper is the uniqueness of the stress ten-
sor. Three possible sources of non-uniqueness of the stresstensor are identified and
addressed:

1. Different pointwise stress definitions can be obtained for different potential en-
ergy extensions. This is demonstrated through a simple one-dimensional exam-
ple. We also show that regardless of the uniqueness of the pointwise stress tensor,
themacroscopicstress tensor obtained through a procedure of spatial averaging
is unique since the difference resulting from alternative pointwise stress tensors
tends to zero as the volume of the averaging domain is increased.

2. The pointwise stress tensor is obtained by solving the balance of linear momen-
tum,divx σv = h(x), whereσv is the potential part of the stress tensor, andh(x)
is a known function. The Irving–Kirkwood–Noll procedure leads to a closed-form
solution to this problem. However, an arbitrary tensor fieldσ̃ with zero divergence
can be added toσv without violating the balance of linear momentum. We argue
that in the thermodynamic limit, the non-equilibrium stress obtained through our
unified two-step process must converge to the virial stress of equilibrium statis-
tical mechanics. This is similar to the argument made by Wajnryb et al. [64].
This condition is satisfied by the general stress expressionthat we obtain. Any
divergence-free stress̃σ added to this stress must therefore also disappear under
equilibrium conditions. This greatly restricts the allowable forms ofσ̃.

3. The generalization of the Irving–Kirkwood–Noll procedure from straight bonds
to arbitrary curved paths of interaction implies the existence of multiple stress
tensors for a given system. However, the existence of curvedbonds implies the
existence of internal structure for the discrete particles, a possibility already dis-
cussed by Kirkwood in [29]. For a system of point masses without internal struc-
ture, only straight bonds are possible due to symmetry arguments, and therefore
this source of non-uniqueness is removed. The general case of non-symmetric
stress must be addressed within the context of an appropriate multipolar theory
as discussed by Pitteri [49]. We leave this to future work.

In addition to the unified framework described above which isbased on the
Irving–Kirkwood–Noll procedure, we also investigated theMurdoch–Hardy proce-
dure [23, 43] of defining continuum fields as direct spatial averages of microscopic
quantities. We demonstrate that this approach can be systematized by adopting a
non-local continuum perspective and introducing suitablegenerator functions. The
various stress definitions resulting from the Murdoch–Hardy procedure, such as the
Hardy, virial and the “double-averaged” stress (suggestedby Murdoch in [47]) can
be derived from this unified framework. Although we share theconcern regarding
the ambiguity of the probability density functions used in the Irving–Kirkwood–Noll
procedure that led Murdoch to develop the direct spatial averaging approach [46],
we feel that since these probability density functions exist in principle, the Irving–
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Kirkwood–Noll formalism is the correct framework to phrasethe problem in with
approximations introduced later to derive practical expressions.

Finally, numerical experiments involving molecular dynamics and lattice statics
simulations are conducted to study the various stress definitions derived in this paper.
It is generally observed that the Hardy stress definition appears to be most accurate
and converges most quickly with the averaging domain size. In situations where a
more localized measure of stress is needed, such as near surfaces or defects, the Tsai
traction can be used instead. The virial stress is less accurate than the other two def-
initions and converges most slowly with averaging domain size. Its main advantage
is its simple form and low computational cost. One of the mostinteresting results,
which requires further study, comes from Experiment 2 of a crystalline system under
uniform hydrostatic stress. Fig. 6.2(c) shows that although the potential and kinetic
parts of the Tsai traction largely depend on the position of the Tsai plane between two
adjacent lattice planes, the total stress remains constant. This calculation provides a
striking demonstration of the interplay between the kinetic and potential parts of the
stress tensor.



73

A Derivation of the virial stress tensor

The original virial theorem was a scalar equation credited to Clausius [8], which gives a definition for the
pressure in a gas. Maxwell [40] extended this result to a tensor version which gives a definition for stress.
We present here a more modern version of the virial theorem partly based on the derivation by Marc and
McMillan [38].

Consider a system ofN interacting point masses. The position of each point mass isgiven by

xα = x+ rα, (A.1)

wherex is the position of the center of mass of the system of particles andrα is the position of each point
mass relative to the center of mass. From Newton’s second law, we have

fα = ṗα, (A.2)

wherefα is the force acting on particleα, andpα is its linear momentum given by

pα = mα(ẋ + ṙα) = mα(ẋ+ vrel
α ). (A.3)

In (A.3), mα is the mass of particleα andvrel
α = ṙα is its relative velocity with respect to the center of

mass. Since the position of the center of massx is given by

x =

∑
α mαxα∑
α mα

, (A.4)

we have the following identities which will be used later:

∑

α

mαrα = 0,
∑

α

mαv
rel
α = 0. (A.5)

Next, we apply a tensor product withrα to both sides of (A.2) to give

rα ⊗ fα = rα ⊗ ṗα. (A.6)

On using the identity
d

dt
(rα ⊗ pα) = vrel

α ⊗ pα + rα ⊗ ṗα, (A.7)

equation (A.6) becomes
d

dt
(rα ⊗ pα) = Wα + 2T α, (A.8)

whereWα = rα ⊗ fα is thevirial tensor andT α = 1
2
(vrel

α ⊗ pα) is thekinetic tensorof particle
α. Equation (A.8) is called thedynamical tensor virial theorem. This “theorem”, which is simply an
alternative form for the balance of linear momentum, becomes useful in a modified form after making
the assumption that the atoms in the system are instationary motion. This means that there exists a time
scaleτ , which is short relative to macroscopic processes but long relative to the characteristic time of the
atomic system, over which the atoms remain close to their original positions with bounded positions and
velocities. This condition is satisfied for a system of atomsundergoing thermal vibrations about their mean
positions as expected in a solid at moderate temperature. Toexploit this property of the system, we define
the time average of any quantityf over the timeτ as

f̄ =
1

τ

∫ τ

0
f(t)dt (A.9)

and apply this averaging to (A.8):

1

τ
(rα ⊗ pα)

∣∣∣∣
τ

0

= Wα + 2T α. (A.10)

Assuming thatrα ⊗ pα is bounded, and a separation of time scales between microscopic and continuum
processes exists, the term on the left-hand side can be made as small as desired by takingτ sufficiently
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large. Therefore the above equation is reduced toWα = −2T α. Summing over all particles gives the
tensor virial theorem:

W = −2T , (A.11)

whereW is the time-averaged virial tensor of the system,

W =
∑

α

rα ⊗ fα, (A.12)

andT is the time-averaged kinetic tensor of the system,

T =
1

2

∑

α

mαvrel
α ⊗ ẋα. (A.13)

The expression forT can be simplified by substituting in (A.1) and noting that dueto separation of time
scalesẋ is constant on the atomistic time scaleτ , so that

T =
1

2

∑

α

mαvrel
α ⊗ vrel

α +

[
∑

α

mαvrel
α

]

⊗ ẋ. (A.14)

The term in the square brackets is zero due to (A.5), and thus

T =
1

2

∑

α

mαvrel
α ⊗ vrel

α . (A.15)

It is important to note that the virial theorem in (A.11) applies equally to continuum systems at rest as
well as those that are not in macroscopic equilibrium and aretherefore in a state of motion. This statement
hinges on the separation of scales assumption according to which continuum motion occurs so slowly rel-
ative to atomistic processes so as to be essentially constant on that time scale.

The virial theorem leads to a definition for stress by considering the idea that the forces on the particles
in the system can be divided into two parts: an internal part,f int

α , resulting from the interaction of particle
α with other particles in the system and an external part,fext

α , due to its interaction with atoms outside
the system and due to external fields,

fα = f int
α + fext

α . (A.16)

In terms of continuum variables, the external part of the force can be identified with the traction,t, that the
surrounding medium applies to the system of particles and the body force,ρb, acting on it, whereρ is the
mass density andb is body force per unit mass.43 Substituting (A.16) into (A.12), divides the virial tensor
for the system into internal and external parts,

W = W int +Wext =
∑

α

rα ⊗ f int
α +

∑

α

rα ⊗ fext
α . (A.17)

Rewriting the external virial as44

Wext =
∑

α

rα ⊗ fext
α :=

∫

Ω
x⊗ ρb dV +

∫

∂Ω
x⊗ t dA, (A.18)

whereΩ is the domain occupied by the system of particles and∂Ω is a continuous closed surface bounding
the particles and separating them from surrounding particles. The variablex is a position vector within

43These density, traction and body forces arepointwisecontinuum fields, i.e., they are defined at all
points but do not include the spatial averaging implicit in the macroscopic continuum description. See
Section 3.1 for more details on pointwise fields.

44We accept this step as an ansatz due to the many assumptions involved, one of which being thatΩ is
large enough to express the external forces acting onΩ in the form of the continuum tractiont.



75

Ω and on the surface∂Ω. Substituting the Cauchy relation,t = σn, whereσ is the pointwise Cauchy
stress, into the above equation and applying the divergencetheorem, we have

Wext =

∫

Ω
[x ⊗ ρb + divx(x⊗ σ)] dV =

∫

Ω

[
σT + x⊗ (divx σ + ρb)

]
dV. (A.19)

We assume that the pointwise fields satisfy the same balance laws as the macroscopic continuum fields.
Therefore, the term(divx σ + ρb) is zero under equilibrium conditions (see (3.23)). We therefore have
that

Wext = V σT, (A.20)

where we have defined the continuum stress field as the averagevalue ofσ over the domainΩ:

σav :=
1

V

∫

Ω
σ dV, (A.21)

HereV is the volume ofΩ.45 Substituting (A.20) into (A.17) and then into the virial theorem in (A.11)
gives

σav = − 1

V

[
W int + 2T

]T
. (A.22)

Substituting in (A.15) and the definition ofW int from (A.17), we have

σav = − 1

V

[
∑

α

f int
α ⊗ rα +

∑

α

mαvrel
α ⊗ vrel

α

]

. (A.23)

This is the virial stress tensor. It is an expression for the Cauchy stress tensor given entirely in terms of
atomistic quantities. Finally to demonstrate the symmetryof the virial stress, we rewritef int

α as the sum
over its decomposition:

f int
α =

∑

β
β 6=α

fαβ , (A.24)

wherefαβ are the terms in the central-force decomposition corresponding to a potential energy extension
as explained in Section 3.4. Substituting (A.24) into (A.23), we obtain

σav = − 1

V

[
∑

α,β
α6=β

fαβ ⊗ rα +
∑

α

mαvrel
α ⊗ vrel

α

]

. (A.25)

Now recalling thatfαβ = −fβα, we have the following identity

∑

α,β
α6=β

fαβ ⊗ rα =
1

2

∑

α,β
α6=β

(
fαβ ⊗ rα + fβα ⊗ rβ

)
=

1

2

∑

α,β
α6=β

fαβ ⊗ (rα − rβ). (A.26)

Substituting (A.26) into (A.25), we have

σav = − 1

V

[
1

2

∑

α,β
α6=β

fαβ ⊗ (rα − rβ) +
∑

α

mαvrel
α ⊗ vrel

α

]

. (A.27)

This expression shows that the virial stress is symmetric, sincefαβ is parallel torα − rβ .

45The definition of this volume is somewhat arbitrary. One can possibly defineV as the total volume
of the Voronoi cells of the atoms lying withinΩ.
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B Distance geometry

In Section 3.4, we saw that the interatomic potential energy, Vint, of a set ofN particles can be defined
as a function on a3N − 6 dimensional manifold embedded inRN(N−1)/2 , where each point on this
manifold represents anN(N − 1)/2-tuple of real numbers which correspond to the distances between
theN particles inR3. We also noted that theseN(N − 1)/2 distances must satisfy certain geometric
constraints in order to be physically meaningful (see footnote 19). In this appendix, we discuss the nature
of these geometric constraints.

An entire field of geometry, referred to asdistance geometry, has emerged to describe the geometry
of sets of points in terms of the distances between them. The subject was first treated systematically by
Karl Menger in the early twentieth century and summarized inthe book by Blumenthal [3]. More recent
references include [4, 10, 11, 25, 56]. Our discussion belowis partly based on [50], which provided a
particularly clear explanation of the subject.

The key function in distance geometry is theCayley-Menger determinant, χ : RN(N−1)/2 → R,
which is defined as

χ(ζ12, . . . , ζ1N , ζ23, . . . , ζ(N−1)N ) = det





0 s12 s13 · · · s1N 1
s12 0 s23 · · · s2N 1
s13 s23 0 · · · s3N 1

...
...

...
...

...
s1N s2N s3N · · · 0 1
1 1 1 · · · 1 0





, (B.1)

where
sαβ = ζ2αβ . (B.2)

For a system ofN points,{x1, . . . ,xN}, embedded inR3, the Cayley-Menger determinant evalu-
ated at the point,(r12, . . . , r(N−1)N )), whererαβ = ‖xα − xβ‖, is related to the volumeVN−1 of a
simplex ofN points in an (N − 1)-dimensional space through the relation:

χ(r12, . . . , r(N−1)N ) =
2N−1((N − 1)!)2

(−1)N
V 2
N−1(x1, . . . ,xN ). (B.3)

ForN = 2,
χ(r12) = 2L2, (B.4)

whereL =
√
s12 is the length of the segment defined by the two points. ForN = 3,

χ(r12, r13, r23) = −16A2, (B.5)

whereA is the area of the triangle defined by the three points. ForN = 4,

χ(r12, . . . , r34) = 288V 2, (B.6)

whereV is the volume of the tetrahedron defined by the four points. For N ≥ 5, we must have

χ(r12, . . . , r(N−1)N ) = 0, (B.7)

for points inR3 since any simplex with five or more points has zero volume in three-dimensional space.46

We now seek to go in the opposite direction. Rather than computing the squared distances{sαβ}
from a set of points and using the Cayley-Menger determinants to compute volumes, we seek to verify that
a set of distances actually corresponds to a set of points in three-dimensional space. In technical terms, we
want the points associated with the distances to beembeddablein R

3. In order for this to be the case the
following conditions must be satisfied:47

46This is easier to visualize in two-dimensional space. In that case, a simplex with four vertices (a
tetrahedron) would have zero volume since its vertices would be confined to a plane. The same applies to
higher-order simplexes and the corresponding higher-order volumes.

47Actually, a somewhat stronger theorem can be proved. If the points are numbered in such a way that
the first four points satisfy conditions 1 and 2, then conditions 3 and 4 need only be applied to groups of
points that include these four points. See [3] for details.
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1 2 3

4 5

(5)

r45

(r45)

Fig. B.1 A cluster of 5 particles. The cluster is shown projected ontothe plane normal to the plane defined
by particles 1, 2 and 3 shown as a horizontal line. Atom 4 lies above this plane. There are two possible po-
sitions for atom 5 (at the same height above or below the 1-2-3plane), where the distances{r12, . . . , r35}
are all the same and only distancer45 differs. The alternative position of atom 5 and corresponding dis-
tancer45 are shown in parentheses. Based on Fig. 2 in [39].

1. χ(rαβ , rαγ , rβγ) ≤ 0, ∀α < β < γ,
2. χ(rαβ , rαγ , rαδ, . . . , rγδ) ≥ 0, ∀α < β < γ < δ,
3. χ(rαβ , rαγ , rαδ, rαǫ, . . . , rδǫ) = 0, ∀α < β < γ < δ < ǫ,
4. χ(rαβ , rαγ , rαδ, rαǫ, rαζ , . . . , rǫζ) = 0, ∀α < β < γ < δ < ǫ < ζ.

For example, Condition 1 states that the Cayley-Menger determinants computed for all distinct triplets of
points must be negative or zero. Conditions 2-4 apply similarly to sets of four, five and six points. The
above conditions are easy to understand in terms of (B.4)-(B.7). They enforce the correct sign of areas and
volumes in three-dimensional space and the degeneracy condition in (B.7).

As an example, let us see how this is applied for a cluster ofN = 5 particles. There are(5× 4)/2 =
10 distances, and only3×5−6 = 9 degrees of freedom. There is therefore one more interatomicdistance
than is needed to describe the configuration and indeed thereis one Cayley-Menger determinant coming
from condition 3:

χ(r12, . . . , r45) = det





0 s12 s13 s14 s15 1
s12 0 s23 s24 s25 1
s13 s23 0 s34 s35 1
s14 s24 s34 0 s45 1
s15 s25 s35 s45 0 1
1 1 1 1 1 0




= 0.

This expression can be expanded out leading to the followingexplicit expression [39]:48

− 1

24

5∑

α=1

5∑

β=1

5∑

γ=1

5∑

δ=1

5∑

ǫ=1

[
24sαβsβγsγδsδǫ − 6sαβsβγsγδsδα

− 8sαβsγδsδǫsǫγ − 12(sαβ)
2sγδsδǫ + 3(sαβ)

2(sγδ)
2
]
= 0, (B.8)

where in the above equationsαβ = sβα wheneverα > β. For a given set of nine squared distances, say
{s11, . . . , s35}, (B.8) provides a quadratic equation for the tenth squared distance,s45,

A(s45)
2 + Bs45 + C = 0, (B.9)

48Note that Martin [39] has a small typographical error in his relation.
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whereA,B andC are functions of the other squared distances. (See [30] for explicit expressions forA, B
andC.) This means that there are two possible solutions fors45 (and hence also forr45) when the other
distances are set. This situation is demonstrated in Fig. B.1.

The above example shows that although only 9 degrees of freedom are necessary to characterize a
cluster of 5 particles, selecting a subset of 9 distances is not sufficient. For this reason, any interatomic
potential energy extension (see Section 3.4) must be expressed as a function ofN(N − 1)/2 arguments
and not just an arbitrary subset of3N − 6 of them.

C Useful lemmas

In his 1955 paper on the ”Derivation of the fundamental equations of continuum thermodynamics from
statistical mechanics” [48], Walter Noll proves two lemmasthat play an important role in his derivation.
In this section, for completeness, we derive Noll’s first lemma and then extend it to arbitrary curved “paths
of interaction”. We then derive Noll’s second lemma for thismore generalized case.

Let f(v,w) be a tensor-valued function of two vectorsv andw, which satisfies the following three
conditions:

1. f(v,w) is defined for allv andw and is continuously differentiable .
2. There exists aδ > 0, such that the auxiliary functiong(v,w), defined through

g(v,w) := f(v,w)‖v‖3+δ‖w‖3+δ, (C.1)

and its gradients∇vg and∇wg are bounded.
3. f(v,w) is antisymmetric, i.e.,

f(v,w) = −f(w,v). (C.2)

Lemma C.1 Under the conditions mentioned above, the following equation holds:49

∫

y∈R3

f(x,y) dy = −1

2
divx

∫

z∈R3

[∫ 1

s=0
f(x+ sz,x− (1− s)z) ds

]
⊗ z dz. (C.3)

Proof Conditions (1) and (2) guarantee absolute convergence and allow the order of integration to be
swapped. From (C.2) we have

∫

y∈R3

f(x,y)dy = −
∫

y∈R3

f(y,x)dy. (C.4)

Introduce new integration variables: on the left replacey with z = x− y and on the right replacey with
z = y − x. Thus, ∫

z∈R3

f(x,x − z)dz = −
∫

z∈R3

f(x + z,x)dz. (C.5)

Note that a minus sign on the left-hand side is dropped by formally reversing the integration bounds. The
two terms in (C.5) are equal to

∫
y∈R3 f(x,y)dy, we can therefore write

∫

y∈R3

f(x,y)dy =
1

2

∫

z∈R3

[f(x,x− z)− f(x+ z,x)] dz. (C.6)

Next, from the chain rule, we have

∇xf(x+ sz,x− (1− s)z) = ∇vf +∇wf , (C.7)

wheres ∈ R. Similarly,

d

ds
f(x+ sz,x− (1− s)z) = (∇vf +∇wf)z. (C.8)

49The expression in Noll’s paper appears transposed relativeto (C.3). This is because the gradient and
divergence operations used by Noll are the transpose of our definitions. See end of Section 1.
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〈Q | c〉

Fig. C.1 The property of apath of interactionas mentioned in the definition is illustrated in this figure.
Two paths of interaction for the pairs(u, v) and(ũ, ṽ) are shown in the figure.

Combining (C.7) and (C.8), we have

[∇xf(x+ sz,x− (1 − s)z)] z =
d

ds
f(x+ sz,x− (1− s)z). (C.9)

Integrating the above equation with respect tos from 0 to 1 gives

[
∇x

∫ 1

s=0
f(x+ sz,x− (1 − s)z)ds

]
z = f(x+ z,x)− f(x,x− z). (C.10)

Substituting (C.10) into (C.6), and using the identity

(∇xT )a = divx(T ⊗ a), (C.11)

whereT (x) is a tensor of any order anda is a vector which is not a function ofx, gives (C.3). ⊓⊔

Lemma C.1 provides us a solutionF (x), to the equation
∫

y∈R3

f(x,y) dy = divx F (x). (C.12)

It is clear thatF (x) is only a single solution out of an infinite set of solutions that differ from it by a
divergenceless second-order tensor field. The following lemma extends Lemma C.1 to accommodate other
possible solutions of which the solution given in (C.3) is a special case. Before that we give the following
definition:

Definition 3 For anyu andv ∈ R
3, the “the path of interaction” ofu andv is a contour that joinsu

andv such that for anỹu andṽ in R
3, where‖u−v‖ = ‖ũ− ṽ‖, the path of interaction of pairs(u, v)

and(ũ, ṽ) are related by a rigid body transformation〈Q | c〉, for someQ ∈ SO(3) andc ∈ R
3, with

Q(u− v) = ũ− ṽ andQ = I, wheneveru− v = ũ− ṽ. See Fig. C.1.

Basically, this definition enforces the condition that the “path of interaction” is a contour whose shape is
only a function of the distance between the points that it connects. The shape of the contour for a given
distance is assumed to be dictated by the nature of bonding inthe material. Here we assume this shape to
be known. (See also footnote 28 on page 35).

Let (e1,e2,e3) be a basis ofR3. For everyl > 0, let Υl : [0, 1] → R
3 be a continuously differen-

tiable contour inR3 such that
Υl(s) · e1 = sl, 0 ≤ s ≤ 1, (C.13a)

Υl(0) = (0, 0, 0); Υl(1) = (l, 0, 0). (C.13b)

Fig. C.2 describes the properties of the contourΥl mentioned above.

By the definition of thepath of interaction, it is clear that the shape of any path of interaction can be
described by the contourΥl. Moreover, from its properties it is possible to explicitlydefine the path of
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(a) (b)

Fig. C.2 Frame (a) shows an admissible contour and frame (b) shows an inadmissible contour which
violates property (C.13a) ofΥl.

〈Qz | c〉

Fig. C.3 The contourΓ (.; s̄,x, z) passes throughx and the vectorz is the difference between the two
end points of the contour. It is related to the contourΥ‖z‖, such that any pointΥ‖z‖(s) is mapped to
Γ (s; s̄,x, z) (shown above as a hollow dot) by a rigid body motion〈Qz |c〉, whereQz represents rotation
andc = x−QzΥ‖z‖(s̄), represents translation.

interaction as a function ofΥl, a given pointx through which it passes, and a vectorz which connects its
end points. More precisely, for any0 ≤ s̄ ≤ 1, x ∈ R

3 andz ∈ R
3, let Γ (· ; s̄,x, z) : [0, 1] → R

3

denote a path of interaction inR3, such that

Γ (s; s̄,x, z) = x+Qz

[
Υ‖z‖(s) − Υ‖z‖(s̄)

]
, (C.14)

for someQz ∈ SO(3), satisfying

Qze1 = − z

‖z‖ , (C.15)

as shown in Fig. C.3. Let us now verify thatΓ qualifies as a path of interaction. It is clear from (C.14) that
the contoursΓ (s; s̄,x, z) andΥ‖z‖(s) are related through a rigid body transformation, such that

Γ (s̄; s̄,x,z) = x, (C.16a)

Γ (1; s̄,x, z)− Γ (0; s̄,x, z) = −z. (C.16b)

Fig. C.3 describes the properties mentioned above.

From (C.16a), it follows thatΓ passes through the pointx and from (C.16b) it is clear thatz is the
vector joining its endpoints. MoreoverQz in (C.14) is made independent ofs̄ to ensure that the condition
Qz = I wheneverx− y = u− v, in the definition of the path of interaction, is satisfied.



81

For anyx ∈ R
3, let

Cx = {Γ (·; s̄,x,z) : 0 ≤ s̄ ≤ 1,z ∈ R
3}, (C.17)

denote the set of all paths of interaction that pass throughx. Now for everyy on a contourΓ ∈ Cx, lety⊥

denote the projection ofy on the line joining the end points of the path. It is easy to seethaty⊥(s; s̄,x, z)
is given by

y⊥(s; s̄,x, z) = x+Qz

[
s‖z‖e1 − Υ‖z‖(s̄)

]
. (C.18)

Therefore, from (C.16a) we have

x⊥(s̄,x, z) = y⊥(s̄; s̄,x, z) = x+Qz

[
s̄‖z‖e1 − Υ‖z‖(s̄)

]
. (C.19)

Using (C.15) this simplifies to

x⊥(s̄,x, z) = x− s̄z −QzΥ‖z‖(s̄). (C.20)

We now generalize Noll’s Lemma C.1 to arbitrary paths of interaction.

Lemma C.2 For given paths of interaction onR3 × R
3, and under conditions 1-3 onf(v,w) given at

the start of this appendix, the following equation holds:

∫

y∈R3

f(x,y) dy =
1

2
divx

∫

z∈R3

[∫ 1

s̄=0
f(x⊥ + s̄z,x⊥ − (1− s̄)z)

]
⊗QzΥ

′
‖z‖(s̄) ds̄ dz,

(C.21)
wherex⊥(s̄,x, z) is given by (C.20).

Proof From (C.6) we have
∫

y∈R3

f(x,y) dy =
1

2

∫

z∈R3

[f(x,x− z)− f(x+ z,x)] dz. (C.22)

Next, from the chain rule, we have

∇xf(x⊥ + s̄z,x⊥ − (1 − s̄)z) = (∇vf +∇wf)∇xx⊥, (C.23)

wheres̄ ∈ R. From (C.20) we have∇xx⊥ = I. Therefore

∇xf(x⊥ + s̄z,x⊥ − (1− s̄)z) = ∇vf +∇wf . (C.24)

Similarly,
d

ds̄
f(x⊥ + s̄z,x⊥ − (1− s̄)z) = (∇vf +∇wf)

(
dx⊥

ds̄
+ z

)
. (C.25)

From (C.20), we have
dx⊥

ds̄
= −z −QzΥ

′
‖z‖(s̄). (C.26)

Substituting (C.26) into (C.25), we have

d

ds̄
f(x⊥ + s̄z,x⊥ − (1− s̄)z) = − (∇vf +∇wf)QzΥ

′
‖z‖(s̄). (C.27)

Combining (C.24) and (C.27), we have

d

ds̄
f(x⊥ + s̄z,x⊥ − (1− s̄)z) = − [∇xf(x⊥ + s̄z,x⊥ − (1 − s̄)z)]QzΥ

′
‖z‖(s̄). (C.28)

Integrating both sides over the intervals̄ ∈ [0, 1], we have

f(x⊥(1,x, z) + z,x⊥(1,x, z))− f(x⊥(0,x, z),x⊥(0,x,z)− z) =

−
∫ 1

s̄=0
[∇xf(x⊥ + s̄z,x⊥ − (1− s̄)z)QzΥ

′
‖z‖(s̄) ds̄.

(C.29)
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Using (C.20), (C.15), and property (C.13b) ofΥl, we have

x⊥(0,x, z) = x ; x⊥(1,x, z) = x. (C.30)

Substituting, (C.30) into (C.29) and using the identity (C.11), we have

f(x+z,x)−f(x,x−z) = − divx

∫ 1

s̄=0
f(x⊥ + s̄z,x⊥ − (1− s̄)z)⊗QzΥ

′
‖z‖(s̄) ds̄. (C.31)

If we now substitute the above equation into (C.22), the lemma is proved. ⊓⊔

Lemma C.3 LetΩ ⊂ R
3, with a piecewise smooth surfaceS. For given paths of interaction onR3×R

3,
and under the conditions 1-3 onf(v,w) given at the start of this appendix, the following equation holds:

∫

x∈Ω

∫

y∈Ωc

f(x,y) dy dx

=
1

2

∫

S

∫

z∈R3

∫ 1

s̄=0
f(x⊥ + s̄z,x⊥ − (1− s̄)z)(QzΥ

′
‖z‖(s̄) · n) ds̄ dz dS(x), (C.32)

wherex⊥(s̄,x, z) is given by (C.20) andΩc := R
3\Ω.

Proof We immediately see that due to antisymmetry off(v,w), we have

∫

x∈Ω

∫

y∈Ω
f(x,y) dy dx = 0. (C.33)

Therefore, we have
∫

x∈Ω

∫

y∈Ωc

f(x,y) dy dx =

∫

x∈Ω

∫

y∈R3

f(x,y) dy dx. (C.34)

From Lemma C.2, we have ∫

y∈R3

f(x,y) dy = divx g(x), (C.35)

with

g(x) =
1

2

∫

z∈R3

∫ 1

s̄=0
f(x⊥ + s̄z,x⊥ − (1− s̄)z) ⊗QzΥ

′
‖z‖(s̄) ds̄ dz, (C.36)

wherex⊥(s̄,x, z) is given by (C.20). From the divergence theorem we have

∫

x∈Ω
divx g(x) dx =

∫

S
g(x) · n(x) dS(x). (C.37)

Using (C.34)-(C.37), we obtain (C.32). ⊓⊔

D Derivation of the Hardy stress from the Murdoch–Hardy procedure

The Hardy stress,̃σH
w,v , was derived in Section 4.2 subject to the condition:

divx σ̃H
w,v(x, t) =

∑

α,β
α6=β

fαβw(xα − x). (D.1)

Recall that the expression for̃σH
w,v given in (4.32) was obtained by using the generator functiongH

(see (4.29)), which is actually a distribution. Due to the inherent obstacles present in this procedure (see
footnote 34 on page 47), we now derive the expression for the Hardy stress given in (4.32), by avoiding
the use of the Dirac delta distribution.



83

Definition D.1 Consider the following definitions for the functionη(x) and associated functions taken
from [18]:
1. Define a mollifierη ∈ C∞(R3) by

η(r) :=

{
Cexp

(
1

‖r‖2−1

)
if ‖r‖ < 1,

0 if ‖r‖ ≥ 1,
(D.2)

where the constantC > 0 is selected so that
∫
R3 η dr = 1.

2. For eachǫ > 0, set

ηǫ(r) :=
1

ǫ3
η
(r

ǫ

)
. (D.3)

The family of functionsηǫ areC∞ and satisfy
∫

R3

ηǫ dr = 1. (D.4)

The support ofηǫ is contained in a ball of radiusǫ centered at0.
3. If the functionh : R3 → R is locally integrable, define its mollificationhǫ(r) as

hǫ(r) :=

∫

R3

ηǫ(r − y)h(y) dy. (D.5)

We use the following property of mollifiers in our derivation:

hǫ → h almost everywhere asǫ → 0. (D.6)

For the proof of (D.6), refer to [18]. Equation (D.1) can be rewritten as

divx σ̃H
w,v(x, t) =

∑

α,β
α6=β

fαβ

√
w(xα − x)w(xα − x), (D.7)

sincew(xα − x) > 0. Now, since
√

w(xβ − y) is locally integrable, using property (D.6), we have

√
w(xα − x) = lim

ǫ→0

∫

R3

√
w(xβ − y)ηǫ(xβ − xα + x− y) dy, (D.8)

where referring to (D.5),h(y) =
√

w(xβ − y) andr = xβ − xα + x. Using (D.8), (D.7) can be
rewritten as

divx σ̃H
w,v(x, t) = lim

ǫ→0

∑

α,β
α6=β

∫

R3

fαβ

√
w(xα − x)w(xβ − y) ηǫ(xβ − xα + x− y) dy

=: lim
ǫ→0

∑

α,β
α6=β

∫

R3

gǫ
αβ(x, y, t) dy. (D.9)

Now, note that the functiongǫ
αβ is anti-symmetric with respect to its arguments,x andy, for eachǫ > 0

and satisfies all the necessary conditions for the application of Lemma C.1 in Appendix C. Therefore, from
C.3 it follows that

divx σ̃H
w,v(x, t) = lim

ǫ→0

∑

α,β
α6=β

(
−1

2
divx

∫

R3

[∫ 1

s=0
fαβ

√
w(xα − x− sz)w(xβ − x+ (1− s)z)

× ηǫ(xβ − xα + z) ds

]
⊗ z dz

)

= lim
ǫ→0

∑

α,β
α6=β

(
−1

2

∫

R3

∫ 1

s=0
∇x

(
fαβ

√
w(xα − x− sz)w(xβ − x+ (1− s)z)

)

× ηǫ(xβ − xα + z)z ds dz

)
, (D.10)



84

where in the last equality we have used the identity given in (C.11) and the fact thatηǫ is independent of
x in the above equation. Sincew is positive, and ifw ,s a continuously differentiable function, it follows
that

∇x

(
fαβ

√
w(xα − x− sz)w(xβ − x + (1 − s)z)

)
z (D.11)

is a locally integrable function ofz. Therefore, by property D.6 and using the property,ηǫ(r) = ηǫ(−r),
we have

divx σ̃H
w,v(x, t) = −1

2

∑

α,β
α6=β

∫ 1

s=0
∇x

[
fαβw(xα − x− s(xα − xβ))

]
(xα − xβ) ds

= divx

[
1

2

∑

α,β
α6=β

∫ 1

s=0
−[fαβw((1 − s)xα + sxβ − x)⊗ (xα − xβ)] ds

]

,

(D.12)

where referring to (D.5),r = xα − xβ , y = z, andh(z) is given in (D.11). Comparing both sides of
(D.12), we arrive at the expression for the Hardy stress tensor given in (4.32).
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