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Abstract The microscopic definition for the Cauchy stress tensor bags lexamined
in the past from many different perspectives. This has latifferent expressions for
the stress tensor and consequently the “correct” definlittabeen a subject of debate
and controversy. In this work, a unified framework is set ugvimich all existing def-
initions can be derived, thus establishing the connecti@tseen them. The frame-
work is based on the non-equilibrium statistical mechapicgedure introduced by
Irving, Kirkwood and Noll, followed by spatial averagingh& Irving—Kirkwood—
Noll procedure is extended to multi-body potentials witmtmouously differentiable
extensions and generalizedrton-straight bondswvhich may be important for parti-
cles with internal structure. Connections between this@ggh and the direct spatial
averaging approach of Murdoch and Hardy are discussed aniitindoch—Hardy
procedure is systematized. Possible sources of non-umgsef the stress tensor,
resulting separately from both procedures, are identififetl addressed. Numerical
experiments using molecular dynamics and lattice statiesanducted to examine
the behavior of the resulting stress definitions includimgjrt convergence with the
spatial averaging domain size and their symmetry propertie
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1 Introduction

Continuum mechanics provides an efficient theoretical &aork for modeling ma-
terials science phenomena. To characterize the behavioatgrials constitutive re-

lations serve as an input to the continuum theory. These consgtumigdels have
functional forms which must be consistent with materiathfeaindifference and the
laws of thermodynamics and include parameters that ard fitteeproduce exper-
imental observations. With the advent of modern computioggr, atomistic sim-
ulations through “numerical experiments” offer the poignfor studying different

materials and arriving at their constitutive laws from fpshciples. This could make
it possible to design new materials and to improve the ptagseof existing mate-
rials in a systematic fashion. To use the data obtained fro@temistic simulation
to build a constitutive law, which is framed in the languageantinuum mechan-
ics, it is necessary to understand the connection betweatimoam fields and the
underlying microscopic dynamics.

Another arena where the connection between continuum amaistic concepts
is important is the field ofultiscale modelingThis discipline involves the develop-
ment of computational tools for studying problems where dwenore length and/or
time scales play a major role in determining macroscopi@biein. A prototypical
example is fracture mechanics where the behavior of a ceantritrolled by atomic-
scale phenomena at the crack-tip, while at the same timerange elastic stress
fields are set up in the body. Many advances have been madeandh of multiscale
modeling in recent years. Some common atomistic/contincempling methods are
quasicontinuuni[53,59], coupling of lengthscaled [5jstér quasicontinuurh [31],
bridging domain[[65], coupled atomistics and discreteatiations[[54], and hetero-
geneous multiscale methods[15], to name just a few. Reff&8icfor a comparison
of some prominent atomistic/continuum coupling multisaalethods. In a multiscale
method, a key issue involves the transfer of informatiomvieen the discrete model
and the continuum model. It is therefore of practical indéte understand how to
construct definitions of continuum fields for an atomististeyn, to ensure a smooth
transfer of information between the discrete and contindomains.

In this paper, we focus on just one aspect of the continuwmiatic connection,
namely the interpretation of the (Cauchy) stress tensor diserete system. This
guestion has been explored from many different perspectorenearly two hundred
years and this has led to various definitions that do not apgpdae consistent with
each other. As a result, the “correct” definition for the séreensor has been a subject
of great debate and controversy. We begin with a brief hsibsurvey.

A brief history of microscopic definitions for the stresssian

Interest in microscopic definitions for the stress tensteslhack at least to Cauchy
in the 18205%,6] with his aim to define stress in a crystaltinlid. Cauchy’s original
definition emerges from the intuitive idea of identifyingests with the force per unit
area carried by the bonds that cross a given surface. A cdrapse&/e derivation
of Cauchy’s approach is given in Note B of Love’s classic bookthe theory of
elasticity [35]. Since this approach is tied to the par@icdurface being considered,



it actually constitutes a definition for theaction (or stress vectgrand not for the
stress tensor. The first definition of stress as a tensoretity follows from the
works of Clausius[[8] and Maxwell [40,41] in the form wirial theorem Clausius
states the virial theorem as

The mean vis viva of a system is equal to its virial.

By “vis viva” (literally “living force”), Clausius means kietic energy, while the term
“virial” comes from the Latin “vis” (pl. “vires”) meaning frce. The virial theorem
leads to a definition for pressure in a gas. Maxwell [40, 4i¢eded Clausius’ work
and showed the existence of a tensorial version of the thiedrem (see Appendix
[B). The virial stressresulting from the virial theorem is widely used even today i
many atomistic simulations due to its simple form and eassofputation. Unlike
Cauchy’s original definition for stress, the virial stresslides a contribution due
to the kinetic energy of the particles. This discrepancy addressed by Tséli [63],
who extended the definition given by Cauchy to finite tempeeaby taking into
consideration the momentum flux passing through the surfaeteus refer to this
stress vector as thEsai traction

An alternative approach for defining the stress tensor waisegred in the land-
mark paper of Irving and Kirkwood [27]. Irving and Kirkwoocedved the equa-
tions of hydrodynamics from the principles of non-equiliion classical statistical
mechanics and in the process established a pointwise dwfifidr various contin-
uum fields including the stress tensor. Although their wodswndeed noteworthy,
the stress tensor obtained involved a series expansioreditiac delta distribution
which is not mathematically rigorous. Continuing their woNoll [48] proved two
lemmas, which allowed him to avoid the use of the Dirac dek&idution, and thus
arrive at a closed-form expression for the stress tensochwdbes not involve a se-
ries expansion. We refer to the procedure introduced bydreénd Kirkwood and
extended by Noll as th&ving—Kirkwood—Noll procedureSchofield and Hender-
son [52] highlighted the non-uniqueness present in thestensor derived by Irving
and Kirkwood, and pointed out that it could result in a nomsgyetric stress tensor.
There have been several attempts to improve on the Irvindgakad/ood procedure.
In particular, Lutsko[[36] reformulated this procedure iouFier space. An error in
Lutsko’s derivation was corrected by Cormier etfal. [9].

Due to the stochastic nature of the Irving and Kirkwood stresany difficulties
arise when one tries to use their expression in atomistialsitions. To avoid these
difficulties, Hardy and co-workers [23,24] and independelturdoch [43+47] de-
veloped a new approach that bypasses the mathematicalexqtyf the Irving and
Kirkwood procedure. This is done by defining continuum fieddglirect spatial av-
erages of the discrete equations of motion using weightimgtions with compact
support. In particular, this approach leads to the so-ddflardy stresg23] often
used in molecular dynamics simulations. MurdocH_in [45vides an excellent de-
scription of the spatial averaging approaches currentiygoesed and discusses the
non-uniqueness of the stress tensor resulting from theaspatraging procedure.
We refer to the direct spatial averaging approach astheloch—Hardy procedure

Another approach, which leads to a stress tensor very sitalthat obtained
by Irving and Kirkwood is the reformulation of elasticitygbry using peridynam-



ics [55]. Lehoucq and Sillindg [33] have recently shown thatl solution is a mini-
mum solution in a variational sense. Morante et all [42] psmul a new approach for
defining the stress tensor using the invariance of partitiontion under infinitesimal
canonical point transformations. However, their approadimited to equilibrium
statistical mechanics and involves taking derivativesasfeddistributions.

We can summarize the “state of the art” for the microscopiind®n of the
stress tensor as follows. There are currently at least tteéaitions for the stress
tensor which are commonly used in atomistic simulations:Minial stress, the Tsai
traction, and the Hardy stress [68]. The importance of thiadr and Kirkwood for-
mulation is recognized, however, it is not normally usedractice and its connection
with the other stress definitions is not commonly understdbeé difference between
pointwisestress measures and temporal and/or spatially-averageditigs is often
not fully appreciated. The result is that the connectiomieen the Cauchy stress ten-
sor defined in continuum mechanics and its analogue, deforem discrete system,
remains controversial and continues to be a highly-dehatalem.

A unified framework for the microscopic definition for thees tensor

In this paper, a unified framework based on the Irving—KirkaeNoll procedure is
established whicleads to all of the major stress definitiotiscussed above and iden-
tifies additional possible definitions. Since all of the digifims are obtained from a
common framework the connections between them can be expdord analyzed and
the uniqueness of the stress tensor can be established.efview of the approach
and the organization of the paper are described below.

Before turning to the general framework, we begin in Sed®avith a derivation
of the virial stress tensor within the framework of equilibn statistical mechanics
using the technique of canonical transformations. Althotlgs derivation is quite
different from the Irving—Kirkwood—Noll procedure, it prinles insight into how the
geometric ideas of mechanics can be used to derive the $tnessr. It also pro-
vides a limit to which the general non-equilibrium stressstar must converge under
equilibrium conditions in the thermodynamic limit. Thisused later to establish the
unigueness of the stress tensor obtained from our gendfigdiframework.

Next, we turn to the construction of the new unified framewdnkSection B,
we extend the Irving—Kirkwood-Noll procedufe [27] 48],ginally derived for pair
potential interactions, to multi-body potentials. Due he invariance of the poten-
tial energy function with respect to the Euclidean groumah be shown that any
multi-body potential can be expressed as a function of wiists between particles.
When expressed in this form, we note that for a system of niae 4 particles, this
function is only defined on a manifold since th§ N — 1)/2 distances betweeN
particles inR? are not independent fa¥ > 5. To apply the Irving—Kirkwood—Noll
procedure to multi-body potentials, we recognize that theemtial energy function
must beextendedrom its manifold to a higher-dimensional Euclidean spaseaa
continuously differentiable function. We show that if suanh extension exists, then
an infinite number of equivalent extensions can be congdugsingCayley-Menger
determinantswhich describe the constraints that the distances betpaicles em-
bedded inR? must satisfy. Then for multi-body potentials that possesgiouously



differentiable extensions (which is the case for most firatinteratomic potentials),
we establish the key result that due to the balance of linedaagular momentum,
the force on a particle in a discrete system can always bermdposed as a sum of
central forces between particleise., forces that are parallel to the lines connecting
the particles. In other words, tis¢rong law of action and reactiois always satisfied
for such multi-body potentials. We show, that although teefarce on a particle cal-
culated usinginyextension is the same, its decomposition into central Bicgen-
erally different for different extensions. Using this riésue show that the pointwise
stress tensor resulting from the Irving—Kirkwood—Noll pedure is non-unique and
symmetric. We also show, that a generalization of Noll'sieas [48] tonon-straight
bondsgives a non-symmetric stress tensor that may be importamaidicles with
internal structure, such as liquid crystals.

The macroscopicstress tensor corresponding to the pointwise stress telesor
scribed above is obtained in Sectldn 4 through a procedwspaifal averaging. The
connection between this stress and the stress tensors@itaa the direct spatial
averaging procedure introduced by Murdoth] [43—47] and ¥§28)] is explored
and in the process the Murdoch—Hardy procedure is systeatadind generalized to
multi-body potentials using the results of Secfidn 3. The-naiqueness of the stress
tensor, inherent in the Murdoch—Hardy procedure is studiedia general class of
possible definitions under this procedure are identified ddnnection between the
non-uniquenessin the Murdoch—Hardy procedure and thainanteness mentioned
in Sectior B is addressed.

In Sectior b, various stress definitions including the Hatdgss, the Tsai traction
and the virial stress are shown to be special cases of theostpic stress tensor de-
rived from the extended Irving—Kirkwood—Noll procedureSectiorf#. The original
definitions for these measures are generalized in this mamnaulti-body potentials.
The existence of different extensions for the potentiatgyéunction, which led to
non-unigueness of the pointwise stress tensor discussgddtior 8, also result in
the non-uniqueness of these definitions. However it is shilnahthe difference in
the macroscopic stress tensor resulting from this nonuerigss tends to zero in the
thermodynamic linflt Another source of non-uniqueness explored in this sedion
that given any definition for the stress tensor, a new degimjtivhich also satisfies the
balance of linear momentum, can be obtained by adding toathitrary tensor field
with zero divergence. It is shown that in the thermodynaimiitlthe macroscopic
stress tensor obtained in Sectidn 4 converges to the viredsderived in Sectidd 2.

To address practical aspects of the different definitiontiainbd within the unified
framework, Sectiohl6 describes several “numerical expamist involving molecular
dynamics and lattice statics. These simulations are deditimexamine the behavior
of these stress definitions, including their convergendh averaging domain size
and their symmetry properties. Our conclusions and doastfor future research are
presented in Sectidd 7.

1 The thermodynamic limit is the state obtained as the numbganticles, N, and the volumey’, of
the system tend to infinity in such a way that the ratigV” is constant.



Notation

In this paper, vectors are denoted by lower case letters loh foat and tensors of
higher order are denoted by capital letters in bold font. Tresor product of two
vectors is denoted by the symbaob™ and the inner product of two vectors is denoted
by a dot “”. The inner product of two second-order tensors is denotett’b A
second-order tensor operating on a vector is denoted bggostition, e.g.T'v. The
gradient of a vector fieldy(x), is denoted by ,v(x), which in indicial notation
is given by[V,v];; = dv;/0x,. The divergence of a tensor field(x), is denoted
by div,, T'(x). The divergence of a vector field is defined as the trace ofédignt.
The divergence of a second-order tensor field in indiciabtion (with Einstein’s
summation convention) is given iyliv,, T'|; = 0T;;/0x;. The notation described
above is followed unless otherwise explicitly stated.

2 Stress in an equilibrium system

In this section, we obtain expressions for the Cauchy sireas equilibrium sys-
tem using the technique of canonical transformations. Tasiclphilosophy behind
canonical transformation is explained in the next section.

2.1 Canonical transformations

Consider a system consisting 8fpoint masses whose behavior is governed by clas-
sical mechanics. Lej, (t) andp,(t) (a« = 1,2,..., N) denote the generalized coor-
dinates and momenta of the syst&ifor brevity, we sometimes uggt) andp(t) to
denote the vector&g (t), g2(t), ..., gn(t)) and(p1(t), p2(t),...,pn(t)), respec-
tively. The time evolution of the system can be studied thiothree well-known
approaches, referred to as tNewtonian formulationthe Lagrangian formulation
and theHamiltonian formulation The first approach is used in molecular dynamics
simulations, while the latter two approaches are more eltegyad can sometimes be
used to obtain useful information from systems in the abs@ficlosed-form solu-
tions.

In the Lagrangian formulation, a system is characterizethbyectorg(¢) and a
Lagrangian functior, given by

L(q,¢;t) = T(q) —V(q), (2.1)

whereT is the kinetic energy of the system,is the potential energy of the system,
andq(t) represents the time derivative @ft). It is useful to think ofg as a pointin
a 3N-dimensionakonfiguration spaceThe time evolution of(¢) in configuration
space is described by a variational principle cattamilton’s principle Hamilton’s

2In a general theory of canonical transformatiogs,andp.. need not denote the actual position and
momentum of particlev.



principle states that the time evolution @ft) corresponds to the extremum of the
action integral defined as a functionalg@by

to
Algl = | L(g,g;t)dt, 2.2
t1
wherety, t2, g(t1) andgq(t2) are held fixed with respect to the class of variations
being considered[32, Section V.1]. In mathematical temmsequire that

0A =0, (2.3)
while keeping the ends fixed as described above. The Eulgrahge equation aris-
ing from (2.3) is

d (0L oL
2= 2= . 2.4
dt (3%) 9qa 0 (4)

The Lagrangian formulation is commonly used as a calculdtol in solving simple
problems.

Next, we note that the Lagrangian is the Legendre transfdrimeoHamiltonian
H, [32, Section VI.2],

L(q,q;t) = Sl;p[p -q—M(p,q;1)]. (2.5)

The Hamiltonian is the total energy of the system. Using tlenHtonian, equa-
tion (2.3) can be rewritten as

to

0 t [p-q—H(p,g;t)] dt = 0. (2.6)
Note that in[[Z:B), the variation is only with respectgowhereas in[{216), the func-
tional depends on the functiomsand p, and variations are taken with respect to
both ¢ andp independently. In both cases,, 2, g(t1) andg(t2) are held fixed.
The variational principle given ii_(2.6) is commonly refegiras thenodified Hamil-
ton’s principle[22] or simply as the “Hamiltonian formulation”. The advage of
the Hamiltonian formulation lies not in its use as a caldatatool, but rather in the
deeper insight it affords into the formal structure of metbs. The Euler—Lagrange
equations associated wifh (R.6) are

do = Vp H, (2.7)
Pa = —Vg. H, (2.8)

commonly called Hamilton’s equations. The above equatimasalso referred to as
thecanonical equations of motign

It is important to note that the Hamiltonian formulation i®ma general than the
Lagrangian formulation, since it accords the coordinatesraomenta independent
status, thus providing the analyst with far greater freedioselecting generalized

3The term “canonical” in this context has nothing to do witke #tmnonical ensemble of statistical
mechanics. The terminology was introduced by Jacobi teatdithat Hamilton’s equations constitute the
simplest form of the equations of motion.



coordinates. We now think dfy, p) as a point in &/N-dimensionaphase spaceas
opposed to th8 N-dimensional configuration space of the Lagrangian fortiania
The choice ofg andp is not arbitrary, however, since the selected variablest mus
satisfy the canonical equations of motion. For this reasandp are calleccanonical
variables

The requirement that the generalized coordinates and mamaust be canoni-
cal means that new sets of generalized coordinates can vediéiom a given set
through a special kind of transformation defined below.

Definition 1 Any transformation of generalized coordinates that pressithe canon-
ical form of Hamilton’s equations is said to be a canonicaltsformatiorfl

The construction of canonical transformations is fad#itbby the introduction of
generating functionas explained below.

Generating functions

Consider two sets of canonical variablggd, P) and (g, p), related to each other
through a canonical transformation given by

Q= Q(Qapvt)a P = P(qvpa t)' (2.9)

Since the variables are canonical, they satisfy the modii@ahilton’s principle in
29
to

6| [p-qg—H(p gt)dt=0, (2.10)

t1

5/%2 [P-Q—?%(P,Q;t) dt

ty

0, (2.11)

where?{ is defined later as part of the canonical transformation. ifitegyrands of

(2.10) and[(2.71) can therefore only differ by a quantity sé@ariation after inte-
gration is identically zero. A possible solution is

to . R to dG
5/ [p-Q—P-Q—(H—H)} dtzé/ T, (2.12)
. ¢, dt
where G is an arbitrary scalar function of the canonical variabled #ime, with

continuous second derivatives. The integral on the riglunly evaluated at fixed
integration bounds and its variation is zero. This is notiobs since there is no
restriction on the variation of the momenta at the ends. Waras this to be true to
avoid the introduction of differential forms. For a matheirally rigorous argument

refer to [1, Section 48] The difference between the integrandsof (2.10) &nd12.11)
therefore satisfies,

dG —p-dg+ P -dQ + (1 — H)dt = 0. (2.13)

4This definition suffices for our purpose, but a more corrediniion can be found in[]i] using
differential forms

5Briefly the proof is based on the symmetry present in the gégnwé any Hamiltonian system
commonly calledsymplectic geometry



Now, consider the case whete= G1(q, Q. t). The total differential of7 is then

dG = VoG - dg + VG - dQ + %dt. (2.14)
Substituting[(Z.14) intd (2.13) gives
0G4 -
(VoGi —p)-dg+(VoGi + P)-dQ + (- +H—# ) di=0. (2.15)

Sinceq, Q andt are independent, the above equation is satisfied provided th

(’)G1 8G1 ~ aGl
_ p, =2 EPTINCIY
9qn 50, Tt

The above relations define the canonical transformatiomceSiz; generates the
transformation, it is commonly called tlyenerating functiomf the canonical trans-
formation. Note that if7; does not depend on timethen? = .

The generating functions of the ford,= G1(q, Q, t), does not generate all pos-
sible canonical transformations. In general, there aregdamary classes of generat-
ing functions where the functional dependendgi®Q), (¢, P), (p, Q) and(p, P)ﬁ
We have already encountered the first class, where G1(q, Q, t). The remaining
classes can be obtained from the first through Legendretramations. Consider for
example, the following definition,

G =Gs3(p,Q.,t) +q-p. (2.17)

The total differential of this expression is

Pa (2.16)

oG
dG:v,,Gg~dp+vQG3~dQ+8—t3dt+q~dp+p~dq. (2.18)

Substituting the above equation info (2.13) gives

oG ~
(VpGs+4q)-dp+ (VoGs + P) - dQ + (a—; +H - 7—[) dt =0, (2.19)

which leads to the following canonical transformation:

_ 0Gs _0Gs .. 0Gs
= Pempgn  ReHE (2.20)

da

The other two classes of transformation can be derived imadasiway.

Finally, an important property of a canonical transformatis that it preserves
the volume of any element in phase space, d@dp = dQdP [22, page 402]. This
means that for a change of variables betwgery) and(P, @), the Jacobian of the
transformation is unity.

61n addition to these four classes of transformation, it isgilnle to have a mixed dependence, where
each degree of freedom can belong to a different class [22].
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2.2 A derivation of the stress tensor under equilibrium dtoats

In this section, we use the method of canonical transfoomatio derive an expres-
sion for the Cauchy stress tensor. In continuum mechantesdg is identified with

a regular region of Euclidean spa€eeferred to as the reference configuration. Any
point X € Bis referred to as a material point. The bdglys deformed via a smooth,
one-to-one mapping : £ — £, which maps eaclX € B to a point,

x = p(X), (2.21)

in the deformed configuratidhwhere we have assumed that the deformation is inde-
pendent of time. The deformation gradidiis defined as

F(X)=Vxe. (2.22)

The mappingp is assumed to satisfy the condition tlat F' is strictly positive. The
Cauchy stressr, is defined by([37]

B 1
 det F

wherey) (T, F) is the Helmholtz free energy density function relative te teference
configuration. We are only focusing on a conservative eldsidy.

A system in thermodynamic equilibridﬁman by definition only support a uni-
form staée of deformation. Therefore, our material systemeformed via the affine
mappin

o(T,F) Ve FT, (2.23)

g = FQ,. (2.24)

"We adopt the continuum mechanics convention of denotinigivies in the reference configuration
with upper-case letters, and variables in the deformed gorgiion with lower-case letters.

8 A system is said to be in a state of thermodynamic equilibrivinen all of its properties are inde-
pendent of time and all of its intensive properties are iedelent of positior [65]. To stress this, the term
uniform state of thermodynamic equilibriusisometimes used to describe this state.

9To understand this mapping, consider a systeV gfarticles with positiongy., (o = 1,2, ..., N)
confined to a parallelepiped container defined by the threzatly independent vectols, 1> andls,
which need not be orthogonal. This selection is done for enience and does not limit the generality of
the derivation as explained below. The position of a particlthe container can be expressed in terms of
scaled coordinate&® € [0, 1] as

qo = &L, @]
where Einstein’s summation convention is applied to spatdices. The deformation of the container is
defined relative to a reference configuration where the egltors areL;, Lo and L3. The current and
reference cell vectors are related through an affine mapjefiged byF',

l;=FL;. (%)

Equations[(¥) and(*¥) can be combined to relate the positianof particlec in the deformed configura-
tion with its position in the reference configuratioh, ,

qo =& (FL;) = F(§'L;) = FQa. **

This is exactly the mapping defined [0D_(2124). It provides r@direlationship between the positions of
particles in the reference configuration and their positiothe deformed configuration. Note that the
assumed (parallelepiped) shape of the container does tet ieto the relationg, = F'Qq., which
means that this relation holds for a container of any shape.
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It is clear that if we enforce this mapping on our system, withchange in the
momentum coordinates, then the newly obtained variablésnei satisfy Hamil-
ton’s equations. Therefore any change of variables shailgoverned by a canoni-
cal transformation. The following generator function do®s the desired canonical
transformation

= pa FQ.. (2.25)
Substituting this generating function info (2.20) gives
0G5 0GS3 T »
o = — = F as PO[ = — = F %) - . 226
q Opn Q 20, p H="H (2.26)

The first relation in the above equation is the desired tangition in [2.24). The
second relation is the corresponding transformation thetmomentum degrees of
freedom must satisfy, so that the new set of coording@esP) are canonical. The
third relation refers to the Hamiltonian of the system, Wihig assumed to be given

by

+V ql,...,qN)7 (227)

N
whereV denotes the potential energy of the system. Expressedms tef the refer-
ence variables| (2.27) becomes

H(P,Q.F)=H(p(Q,P,F),q(Q, P, F))

B ZN: F'P,.-F"P,
o - 2Mme,

V(FQ,...,FQy). (2.28)

We now proceed to derive the expression for the Cauchy sieessr using[{2.23).
The Helmholtz free energy density for the canonical enseristgiven by([26]

71€BT1DZ

U(IF) = PR

(2.29)

wherekp is the Boltzmann'’s constari; is the absolute temperaturig, is the vol-
ume of the body in the reference configuration, aid’, F) is thepartition function
defined as

1

Z(T.F) = sy

/ e H/ET 1PyQ, (2.30)

It is important to note thaf ™) doesiot impose a kinematic constraint that dictates the position of
particle « in the deformed configuration based on its position in theregfce configuration (as does the
Cauchy-Born rule used in multiscale methdds! [58]). We vék sater that this will merely be used as a
change of variables, where, instead of integrating overdgfermed configuration with the variables
the integration is carried out over a given reference cordiipn using the variable®. In both cases the
same result is obtained. However, by using the referenéieables the dependence on the deformation
gradient is made explicit.
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whereh is Planck’s constant antl, denotes the phase space in the reference con-
figuration. With this definition, the statistical mechanitsse average of a function
A(P, Q) in the canonical ensemble is

A(TF) = [ AP.QW.P.QT.F)PQ, (2.31)
Iy
where
1 0 )
WC(P, Q,T, F) = me H(P.Q.F)/kpT (232)

is the canonical distribution function. Substituting @).2nd [2.3D) into[{2.23), we
obtain
kT

1 N
- B GLZFT =~ FT 2.33
7= A Pz T v <VFH> : (2.33)

where in the last step we have used the ideffity: (det F')V;, and where

_ 9 1 —H/kpT
VrZ = F {N!h3N /Foe dQdP

1

T /F VeHe H/kET 4QdP. (2.34)
: 0

Next, we computeVH—Al. In our derivation, we make use of indicial notation and
the Einstein summation rule. To accommodate for the spmtifites, we pushy
representing the particle to the superscript positionlokehg this adjustment, we
have

oH 0 U . ol 1 o, OV Og
OF,;  OFy, — 2m® V(@) = za: me oF;,; 'k g2 OF; 5|
(2.35)
From [2.26), we have
Oqi; _ 0 oy _ 5 oo
o, — 9, [k QL) = 0uQj, (2.36)
9 k 9 - (e — — o -1 _«
3}%} = aF”(FLklpL) = _F.]leLilpL = _FJklpi ) (2.37)
where in[[2.3]), we have used the following identity:
F_l
aapf'j = —F;'Fpl. (2.38)

Substituting[(2.36) and(2.87) into (2]135), we have

OH p‘-’F;klpg int
- Pilyk Pk rintya 2
o -3 [T ] 239
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wherefint = —9V /dr,, is the internal force, defined in the deformed configuration,
on particlea In direct notation, we have
. o ® F1p, .
ver=- Y [P2EE e g (2.40)
« ma
Substituting the above equation infg (4.33) and uding 226 obtain an expression
for the Cauchy stress:

1 (&3 (&3 in
a(T,F>=—VZ<&+fJ®qa>, (2.41)

M

where the phase averaging is now being performed with régp#e variablep and

g. The switch from phase averaging ov@randQ@ in (2.31) top andq above can be
made because canonical transformations preserve the g@lement in phase space
as explained at the end of Section]2.1.

The expression il (2.41) for the Cauchy stress tensor isctétlevirial stress A
simpler derivation of the virial stress, based on time ayesais given in Appendix
[Al Although, the derivation here made use of the canonicsgeble, it is expected to
apply to any ensemble in the thermodynamic limit (see fo{dloon pag€l5) where
all ensembles are equivalent. Continuum mechanics alsouslthat the Cauchy
stress tensor is symmetric, something that is not evidem fthe above equation.
Discussion of the symmetry of the stress tensor, which lsrgean important prop-
erty of it is postponed to Sectidm 5.

[e3

The virial stress defined above corresponds to the macrissinpss tensor only
under conditions of thermodynamic equilibrium in the thedynamic limit. We now
show that this expression for the stress tensor, as welllaghar expressions in
common use, can be derived as limiting cases of a more geoenallation which
begins with the Irving—Kirkwood—Noll procedure. We referthis as the “unified
framework” for the stress tensor.

3 Continuum fields as phase averages

In this section, we discuss the Irving and Kirkwood procedi@7], which laid the
foundation for the microscopic definition of continuum figltbr non-equilibrium
systems. This work was later extended by Walter NB_HI@,SWho showed how
closed-form analytical solutions can be obtained for thiind®n of certain contin-
uum fields, which otherwise involved a non-rigof&iseries expansion of the Dirac

10There is a subtle point here. Since we are using the canaemsaimble, the HamiltoniaH neglects
the interaction term of the system with the surrounding theegh”. This means that the potential energy
V in H only includes thenternal energy of the system and, therefore, its derivative witipeesto the
position of particlex gives the forcefi** on this particle due to its interactions with other partdie the
system.

11An English translation of this article appears in the curissue of thelournal of Elasticity

12The derivation is non-rigorous in the sense that expreghiagtress tensor as a series expansion is
only possible when the probability density function, whistused in the derivation, is an analytic function
of the spatial variable§148].
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delta distribution in the original procedure. We refer te fhrocedure proposed by
Noll in [48] as thelrving—Kirkwood—Noll procedureThe derivation presented in this
section largely follows that of Noll[48], but extends it toone general atomistic
models.

Consider a system\1 modeled as a collection df point masses/particles, each
particle referred to as (o« = 1,2, ..., N). We use the terms “particle” and “atom”
interchangeably. The position, mass and velocity of particare denoted by,
me andwv,, respectively. The complete microscopic state of the syséeknown, at
any instant of time, from the knowledge of position and viloof each particle in
R3. Hence, the state of the system at timenay be represented by a poitt) in
a6./N-dimensional phase spadelet I" denote the phase space. Therefore any point
Z(t) € I', can be represented as,

N}

(t) = (:El(ﬁ), Il?g(t), ce ,IBN(ﬁ); ’Ul(f), ’Ug(f), ce ,’UN(t))
= (2(t);0(1)). (3.1)

In reality, the microscopic state of the system is never kmeovus, and the only
observables identified are the macroscopic fields as defingzhtinuum mechanics.
We identify the continuum fields with macroscopic obsereahibtained in a two-
step process: (1) a pointwise field is obtained as a staistiechanics phase average;
(2) a macroscopic field is obtained as a spatial average begydintwise field. The
phase averaging in step (1) is done with respect to a pratyadéinsity functioni?” :
I' xRt — R* of classC' defined on all phase space for&a{lV,, defined in[[2.3P),
is an example of a stationary (time-independent) proldgilsiénsity function defined
for the canonical ensemble). The explicit dependendé’ ain timet, indicates that
our system need not be in thermodynamic equilibrium.

As discussed in Sectidd 2, the evolution®ft) in the phase space is given by
the following set oR2 N first-order equations (Hamilton’s equations[of {2.[)J)R.8

p=—VzH, (3.2a)
T = VpH, (3.2b)
wherep := (p1,p2,...,PN), Po denotes the momentum of each particle, and

H(p, x) is the Hamiltonian of the system.

The basic idea behind the original Irving and Kirkwood prdae is to pre-
scribe/derive microscopic definitions for continuum fieldach that they are con-
sistent with the balance laws of mass, momentum and enes@yrive at these defi-
nitions, we repeatedly use the following theorem, commeoefigrred to a&iouville’s
theoremwhich relates to the conservation of volume in phase space.

As a system evolves, the phase spateés mapped into itself at every instant
of time, and this mapping is governed Hy (3.2).g}f denotes this mapping, then
Liouville’s theorem essentially says that for any subiSeof 7, the volume ofU
remains invariant under the mappigg This can be be formally stated as,

13The usual convention is to represent the phase space viiopesind momenta of the particles. For
convenience, in this section, we represent the phase sgapesitions and velocities of the particles.
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Liouville'sTheorem ForanyU C I, volume is preserved under the one-parameter
group of transformations of phase spage; U — I, given by the mapping

(2(0),p(0)) = (2(t), p(t)),

wherez(t) andp(t) are solutions of the Hamilton’s system of equati@@®3g), i.e.,
vol(U) = vol(g.U). (3.3)

Proof Let vol(étU) denote the material time derivative afl(g;U) in the sense that
Z(0) is held fixed while performing this differentiation. Then Wave,

vol(g:U) = / dE(t) = / (det F)d=o,
g:U U
WhereF(Eo,ﬁ) = VE'OE(EO; t), E(Eo, t) = gt(EO) and=, = E(O) USing the
fact that i .
det F = (det F)tr(FF™1),
we obtain .
vol(g:U) = / (det F) tr(FF~1)dE,. (3.4)
U

Let -
il 35
7 (3.5)

Eo=g; (2)

V=E,=FF ' (3.6)

Eo=g; " (2)

Thereforeliv = = tr(FF~1). Equation[[3}4) can now be rewritten as
Vol(g:U) = /U (det F)(div &) |2()-g:(z.) 1Z0. 3.7)
But from (3.1) and[(3]2) we also have,
div E = divg @ + divy p = dive (VpH) — divy(VeH) = 0.
Thereforexm = 0 for arbitrary¢. Thus [3.8) holds. O

Let W (= t) denote the probability density function defined@(l”). Hence, we
have

/ W(E(t): )dE(t) = / W (Z0: 0)(det F)dSo. (3.8)
gtU U

As a consequence of Liouville’s theorem, we hale, F' = 1. Therefore

d = . = _
= /gtU W(E(t): t)dE(t) = 0. (3.9)
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Since [3) holds for alll C I, we haveiV (Z(t); t) = 0. Hence, the time evolution
of the probability density function is given by
N
%—Vf + g Ve W + 04 - Vo, W] = 0. (3.10)

a=1

The above equation can be rewritten as

N
8_W_|_ [’l’a'vwaW—M'V%W =0, (3.11)
o = Mg
where, as before)(x1,xo,...,zy) denotes the potential energy of the system.

Equation[[3.I11) is calletiouville’s equation

3.1 Phase averaging

Under the Irving—Kirkwood—Noll procedure, pointwise figldre defined as phase
averages. This phase averaging is expressed via weighteginaladensities. For
example, the pointwise mass density field is defined as

plx,t) = Zma/ Wé(x, — x) dedv, (3.12)

- R3N xR3N
where the integral represents a marginal density defind®®o@ denotes the Dirac
delta distribution, and _  denotes summation from = 1 to V. To avoid the Dirac
delta distribution and for greater clarity we adopt Nolltation as originally used
in [48]. Hence[(3.IR) can be rewritten as

plx,t) = Zma/Wd:cl codxo_1dxayy ... deydo
=: Zma (W |z =2x), (3.13)

where(W | z, = ) denotes an integral ¥ over all its arguments excejt, and
x,, IS substituted withe. Now consider the continuum velocity field. Unlike the defi-
nition of pointwise density field, which appears unambiggjdiie pointwise velocity
field can be defined in different ways. It may seem more natardéfine the contin-
uum velocity in an analogous fashion to the density field, i.e

Yoo Woy |y =)

Za <W | Lo = $> '
Alternatively, the pointwise velocity field can be defined #he momentum density
field, p(x, t), as follows:

p(x,t) = Zma Wuo, | o =), (3.15)

v(x,t) =

(3.14)

_ pl=,1)
v(x,t) = @D (3.16)
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Note that definitions[{3.14) anf (3]16) are equivalent foingle species material,
but are not so in general. The definition given by (8.16) isdhe used in practice.
There are two reasons for this. First, the definition[in_(Bh@kes more physical
sense since, following spatial averaging, it associatsaohntinuum velocity with the

velocity of the center of mass of the system of particles.o8d¢cthe definition in

(]3]) satisfies the continuity equation as shown in Seffi@nwheread (3.14) does
nott4

3.2 Regularity assumptions for the probability densitydhion

It is clear from the definitions iM(3.13). (3115) and (3.6t the integrals in these
equations converge under appropriate decay conditiond’ohe following two
conditions are sufficient for the convergence of all thegras and the validity of the
results in this section [48]:

1. There exists a > 0 such that the function
N N
W(Z;t) [T lzal ™ ] lvsl®° (3.17)
a=1 B=1

and its first derivatives are bounded by a constant that agpedds on time.
2. V(x1,x2, - -z ) is a bounded’ function defined on the phase space, and hav-
ing bounded first derivativés.

Conditions[(1) and{2) ensure the convergence of all theyiate considered in this
section and swapping of integration and differentiatiamtirermore, leG(Z; t) be
any vector or tensor-valued function of class defined on the phase space fortall
and which, for suitable functiongt) andh(t), satisfies the condition

N
sup (G 1 dive, G, || dive, GI) < g(t) [T lvsll* + ®),
B=1

x1ER3,x2€R3,--- ,xyER

(3.18)
where|| - || refers to the norm defined through the inner product. Sineesgtace of
all tensors has a natural inner product defined as

ST =1tr(S™T), (3.19)

141t would be interesting to explore how the equation of cauitin fails for the definition in[3.14)
by identifying the regions that act as sinks and sourcess iBhdifficult to do for a generalN particle
system because the continuity equation quickly becomeselaw Even for the much simpler case of a
two-particle system, the answer is not trivial. A quick exaation shows that the distribution of sinks and
sources depends not only on the ratio of the masses but albe gnobability density functiom”.

151f any two particles overlap, we would normally expéét— oo. By specifying additional decay
conditions forl/, the case of unboundad can be handled. For simplicity, we assuiméo be bounded.
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we have||S|| = v/S : S. Under these conditions a&(=; t), we havd
G Vo Wdxe=— | Wdive, Gdza, (3.20a)
R3 R3

G-V, Wdv, = — W div,, G dv,. (3.20b)
RS RS

The above identities are repeatedly used in deriving thatgmuof continuity and
the equation of motion in the following sections.
3.3 Equation of continuity

Let us demonstrate that the pointwise fields defined in Sa@fib satisfy the equation
of continuity. The equation of continuity from continuum ehanics is given by [37]

9p + divg(pv) = 0. (3.21)

ot
From [3.IB) we have
Ty = m> .

ap B ow
a(m,t) ;ma<ﬁ

Using Liouville’s equation in[(3.11), we have

dp _ Va,V —
E(w,t) = ;ma <; (—vﬂ Ve, W+ s -VvBW) T, = :B>

Now, consider the summand on the right-hand side of the abguation for a fixed
. From [3.20b), itis cIearthe(tV;‘;v : VDBW’ Ty = a:> =0,forg=1,2,---N,

and from [3:20a), we also haves - Vo, W | o = =) = 0, for 8 # . Therefore
the above equation simplifies to

Ip
a(m,t) = fza:ma (Vo Ve W lxs =1x).

Using the identity,
divg(aw) = Vga - w, (3.22)

wherea(z) is anyC! scalar function ofe, andw is any vector independent af we
obtain
dp

o7 (@) == ;ma divy, (Wog | o =) .

181f G is a second-order tensor or higher, then the dot productates tensor operating on a vector.
Note that in [3.2D), in the interest of brevity, we are bregkour notation of denoting a second-order
tensor operating on a vector by juxtaposition.
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Using [3.I5) and(3.16) for the definition of the pointwisememtum density field,
we have 5

a—f(x, t) + divg(pv) = 0,
which is the continuity equation. We have established thatdefinitions given in
(3.12) and[(3.15) identically satisfy conservation of mass

3.4 Equation of Motion

The equation of motion from continuum mechanics is giveridy} [

% + dive(pv @ v) = dive o + b. (3.23)

Here we identifyo with the pointwise stress tensor. Frdm (3.15), we have

Jp B ow B
E(m,t) = ;ma <vaﬁ T, = :l:>

Again, using[(3.111) we obtain,

op Vi,V
. t) = (o' « — Ve : Voo
at(m, ) Ea m <v g ( Ve, W-vg + e \Y BW)

B

Ve,V
St 3 (= (00 805) T, W+ (000 2220 ) 9,0
B
a B

a:am>
maa:>.

(3.24)

Now, consider the summand on the right-hand side of the abguation for fixedy
andg. Using [3:20R), we havf(v, ® vg)Va, W | xo = ) = 0, for 3 # a. From
(3:20B), we havé (v, ® V4, V)V, W | o =) = 0, for 8 # «, and for3 = «,
we have

(Vo @ Ve VIV W |y =) = — (Va VIV | 2o = ),

using the fact thadiv,, (v ® w) = w, for any vectoru and for any vectotw inde-
pendent ofu. Therefore[(3.24) simplifies to

%(m,t) = —za:ma (Vo @ Vo)V W | 2o =) — ; WV V| xa=2).
(3.25)
Using the identity,
divg(aT) = TV za, (3.26)

wherea(zx) is anyC'! scalar function ofc, andT is any tensor independent of we
can rewrite[(3.25) as

(@, 1) = —dive Y Mo (Ve @v)W [@o =) = > (WVs, V| @0 = ).
: : (3.27)
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Now, note that the term, ® v, can be written as

Vo Vo = (V4 — V)@ (Vo — V) + VR Vo + V4 @V — VRV
=0 QU v QU+ VRV — VR, (3.28)

wherev'®! is the velocity of particlex relative to the pointwise velocity field. Con-

sider the first term on the right-hand side [0f (3.27). Subtitiy (3.28) into this ex-
pression we have,

— divg Zma (Vo @ V)W | Xy, = )

=— Zma dive (V' @ VYW | 2o = ) — divy, Z [v®@ma (VW | o =)

+ Mo (VW | o =) @V — Mg (W | o =) v @ V]
= —div, Z Mo (V' @ VW | 2o = ) — dive(pv @ v), (3.29)

where we have used (3113}, (3.15) and (B.16) in the last Sigpstituting[(3.29) into
(3.21), we obtain

?;t) (x,t) + divg (pv ® v) Z M divg (V2 @ vEYW | 2 = )
- Z WV V| @y =2x). (3.30)

The left-hand sides of (3:B0) arld (3.23) are identical. &fwe, the right-hand sides
must also be equal. Hence

diVm o+b=— Zma lew <(v;el ® ,U;el)W | Ty = m>_z <vaav | Ty = CB) )

(3.31)
To proceed, we divide the potential enedgf,, xo, ..., x ) into two parts:

1. Anexternalpart,Vext, associated with long-range interactions such as gravity o
electromagnetic fields.

2. Aninternal part,Vyy;, associated with short-range particle interactions.

It is natural to associafig.,; with the body force field in (3.31). We therefore define
b(x,t) as

b(x,t) ==Y (WVa Vext | 0 = ). (3.32)

Substituting[(3.32) intd(3.31), we have
divy o = — Zma divg (v @ ViYW | & = m>fz WV, Vint | o =) .

(3.33)
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From [3.33B), we see that the pointwise stress tensor hasdmtoilsutions:
o(x,t) = ox(x,t) + oy (x,t), (3.34)

whereoy andeo, are, respectively, thkinetic and potential parts of the pointwise
stress. The kinetic part is given by

or(@,t) ==Y ma (V' QU YW |20 =) . (3.35)

It is evident that the kinetic part of the stress tensor ismsgtnic. The presence of
a kinetic contribution to the stress tensor appears at oditistiie continuum defi-
nition of stress that is stated solely in terms of the foraeithg between different
parts of the body. This discrepancy has led to controverslyarpast about whether
the kinetic term belongs in the stress definitionl [67]. Thefasion is related to the
difference between absolute velocity and relative vejoaéfined in[(3.2B)[63]. The
kinetic stress reflects the momentum flux associated witlvithrational kinetic en-
ergy portion of the internal energy.

Continuing with [3:3B), the potential part of the stress nsasisfy the following
differential equation:

divg ov(@,t) = > (W | zo =), (3.36)
where '
FI = =V, Vi, (3.37)

is the force on particler due to internal interactions. Equatidn (3.36) needs to be
solved in order to obtain an explicit form fer,. In the original paper of Irving and
Kirkwood [27], this was done by applying a Taylor expansioithte Dirac delta dis-
tribution appearing in the right-hand side of the equatlarcontrast, Noll showed
that a closed-form solution far, can be obtained by recasting the right-hand side
in a different form and applying a lemma proved [in1[48]. We qzed with Noll's
approach, except we place no restriction on the nature ointeeatomic potential
energyVi,;. The potential energy considered(in[27] and [48] is limiteghair poten-
tials.

General interatomic potentials

In general, the internal part of the potential energy, atdted theinteratomic poten-
tial energy depends on the positions of all particles in the system:

~

Vint = Vint(€1, 22, ..., TN), (3.38)
where the “hat” indicates that the functional dependencaiabsolute particle posi-
tions (as opposed to distances later on). We assum&ihatR>*Y — R is a contin-

uously differentiable functiof] This function must satisfy the following invariance
principle:

1"Note that this assumption may fail in systems undergoing-dirder magnetic or electronic phase
transformations.
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The internal energy of a material system is invariant witspeet to the Eu-
clidean groupy := {z — Qz +c | x € R?,Q € O(3),c € R3}, where
O(3) denotes the full orthogonal group.

To exploit this invariance, let us consider the actiog@nR>", i.e., the action of any

combination of translation and rotation (proper or impmpe&hich is represented by
an elemeny : x — Qx + cin G, on any configuration oV particles represented by
avector(zy, ..., zy) € R3N:

g (x1,...,zn) = (Qx1 +c¢,...,Qxy + ). (3.39)
This action splitdR3" into disjoint sets of equivalence classes| [14], which we now
describe. For any = (z,...,zy) € R3V, letO,, C R*" denote an equivalence

class which is defined&
Oy :={g-ulgeqg}, (3.40)

whereg - u denotes the action gfonu defined in[[(3.3B). In other word§),, repre-
sents the set of all configurations which are related to tidigorationu by a rigid
body motion and/or reflection. Due to the invariance of theeptial energy, we can
view the functionV;,,; as a function on the set of equivalence classes, i.e.,

Vint (On) = Vint (w), (3.41)

because

~

Vint(0) = Vg (w) Vo € O (3.42)
Now, consider a sef ¢ RY(W-1/2 defined as

S :={(r12,713, ... ,F1N, 723, .., T(N=1)N) |
Tap = ||Ta — x|, (x1,...,2N) € R?V ] (3.43)

In other words, the s& consists of all possibl&/ (N — 1)/2-tuples of real numbers
which correspond to the distances betw@émparticles inR3 9 In technical terms,
the coordinates of any point ifi are said to bembeddablén R3. Note thatS is a
proper subset dRV (N —1)/2 as it consists of only thos® (N — 1) /2-tuple distances
which satisfy certain geometric constraints. In fact, teeSsrepresents 83N — 6)-
dimensional manifold iRN (V=1)/2 commonly referred to as trehape space

Let ¢ be the mapping taking a point in configuration space to theesponding
set of distances i, i.e.,¢ : R*N — S : (x1,...,@Nn) — (r12,...,7"(N_1)N),
wherer,s from here onwards is used to dendjte, — x||. Since the Euclidean
group preserves distances, it immediately follows thantiap

¢ : {Equivalence classg¢s— S, (3.44)

18The notation {g - u | g € G}” should be read as “the set of gll u, such thay is in the Euclidean
groupg”.

19The key here is that not alV (N — 1) /2 combinations of real numbers constitute a valid set of physi
cal distances. The distances must satisfy certain geanuetnistraints in order to be physically meaningful
as explained below.
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defined asp(0,) = ¢(u), is a bijection (one-to-one and onto mapping) from the
set of equivalence classes to the S&f This essentially means that for every set of
equivalent configurations, i.e., configurations relate@doh other by a rigid body
motion and/or reflection, there exists a unighi¢N — 1)/2-tuple of distances and
vice versa. Fromi(3.41) anf(3144), it immediately followattthe potential energy
of the system can be completely described by a funafign: S — R, defined as

Vine(8) == Vi (67 (s))  VseS. (3.45)

We now restrict our discussion to those systems for whictetkgists a contin-
uously differentiable extension %, defined on the shape spacel[&i‘i(N‘l)/2
This is justifiable because of the fact that all interatoniteptials used in prac-
tice, for a system ofV particles, are either continuously differentiable fuans on
RN(N-1)/2 or can easily be extended to one. For example, the pair p@itand the
embedded-atom method (EAM) potentiall[12] are continupdgferentiable func-
tions onRYN (V=172 while the Stillinger-Weber [57] and the Tersdff [60] potiais
can be easily extended ®"(V—1)/2 py expressing the angles appearing in them
as a function of distances between particles. Therefor@sseme that there exist a
continuously differentiable functioti,,, : RN(N-1/2 _ R, such that the restriction
of Vine to S is equal toVi:

.

Vint(s) = Vint(s) Vs = (7“127 ceey T(Nfl)N) €Ss. (3-46)

An immediate question that arises is whether this exterisianique in a neigh-
borhood ofs € S. Note that forN < 4, 3N — 6 = N(N — 1)/2. Therefore, for
N < 4, for every points € S, there exists a neighborhoodi¥ (N =1)/2 which lies
in S. However, forN > 4, there may be multiple extensions ;.

As noted above, the reason we are considering an extensiomé&fine the par-
tial derivative of the potential energy with respect to eaobrdinate of a point in
RN(N=1)/2 This will be used later to define the stress tensor. For elentipe

partial derivative ofVin:(Ci2, ..., {v—1)n) With respect to¢;» at any points =
(ri2,...,r(v—1n) € S, defined as
Win (o Vint(r12 + €., 'v(v-1)/2) = Vint(r12, -+, "N (N -1)/2)
dC12 o e—0 € ’
(3.47)

requires us to evaluate the function at non-embeddableéoin

204 is surjective (onto) by the definition &. The proof that it is injective (one-to-one) is similar to
the proof of thebasic invariance theorerfor the simultaneous invariants of vectors due to Cauchyclvh
can be found in[62, Section 11].

21The extension is necessary sinég; is defined in[[3.25) only on the s&t We need to extend the
definition toall points inRY (N =1)/2 'whether they correspond to a set of physical distances toimo
order to be able to compute derivatives as explained latérdrtext. This issue has been overlooked in
the past (see for example_]13]), which leads to the conatuhat the stress tensor is always symmetric.
It turns out that this conclusion is correct (at least fornpanasses without internal structure), but the
reasoning is more involved as we show later.
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It will be shown later that the quantity evaluatedin (3.4 @yndiffer for different
extensions. On the other harid,,_ Vi, is uniquely defined for any extension. This
is because

Vo Vint(8) = V
= Va, Vint(6 ' (5))
V. Vint (w), (3.48)

where¢~1(s) = O,, which implies¢(u) = s4 and we have use@(3M6], (345)
and [3.41) in the first, second and the last equality respadygti

We next address the possibility of having multiple extensifor the potential en-
ergy by studying the various constraints that the distabeéween particles have to
satisfy in order to be embeddablelki. We demonstrate, through a simple example,
how multiple extensions for the potential energy can leaa non-unique decompo-
sition of the force on a particle, which in turn leads to a nmigque pointwise stress
tensor.

Central-force decomposition and the possibility of alemextensions

We will now show that the force on a particle can always be dgmmsed as a sum of
central forces. The force on a particle due to internal aggons is defined i (3.87).
Therefore, for any configuratiom € R3Y, we have

£ (1) = ~ Vi, Viue (). (3.49)
Using [3.48),[(3.219) takes the form
f(ilnt ('U,) = _V:z:avint(sﬂs:d)(u)
= Z faﬁ(u)v (3-50)
B
BFa
wheres = ¢(u) = (r12,...,7(n—1)ny) and

zg:i{;a . (3.51)

e
Fap(u) = { o’

is the contribution to the force on particledue to the presence of partigte

Note thatf,s is parallel to the directioms — x, and satisfiesfos = — fza-
We therefore note the important result that thiernal force on a particle, for any
interatomic potential that has a continuously differebt@aextension, can always be
decomposed as a sum of central forces, i.e., forces patalidirections connecting

22Note that the vecton appearing in[(3.48) can be replaced by ang O.,.
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the particle to its neighbo We will see later in Sectiop 3.5 that the central-force
decomposition is the only physically-meaningful partiiiog of the force.

The remaining question is how different potential energiersions affect the
force decomposition il (3.50). We have already establishg8.48) and[(3.49) that
the force fi** is independent of the particular extension used. Howeverskow
below that the individual terms in the decompositigs, arenot unique. These
terms depend on the manner in which the potential energyyetefdon the shape
space, is extended to its neighborhood in the higher-dirneabEuclidean space.

In order to construct different extensions, we use the géarneonstraints that
the distances have to satisfy in order for them to be embeedai? 24 The nature
of these constraints is studied in the fielddidtance geometrywhich describes the
geometry of sets of points in terms of the distances betwesm (see Append[xIB).
One of the main results of this theory, is that the constsa@mé given byCayley-
Menger determinanfsvhich are related to the volume of a simplex formed Xy
points in anN — 1 dimensional space.

For simplicity let us restrict our discussion to one dimensit is easy to see that
in one dimension the number of independent coordinate®/arel and forN > 2
the number of interatomic distances exceeds the numbedepandent coordinates.
Therefore, let the material systei consist of three point masses interacting in one
dimension. The standard pair potential representatiorhigrsystem, which is an
extension of the potential energy to the higher-dimendiBnalidean space, is given
by

Vint (C12, 13, C23) = V12(Ci2) + Vi3(Cis) + Vaz(Cas). (3.52)
Since the calculation gets unwieldy, let us consider theiapease when the particles
are arranged to satisfy; < x5 < w3, for whichry3 = r15 + ro3. Using [3.50), the
internal force fi™t, evaluated at this configuration, is decomposed as
dVint dViz  dVi3

int
719,713, T23) = =
fi¥(r12, r13, r23) dz, o dz,

= Vio(r12) + Viz(r13)
=: f12 + f13. (353)

23 The result that the force on a particle, modeled using amyammic potential with a continuously
differentiable extension, can be decomposed as sum ofatdatces may seem strange to some readers.
This may be due to the common confusion in the literature afguthe term “central-force models” to
refer to simple pair potentials. In fact, we see that due éoitivariance requirement stated on Page 21,
all interatomic potentials (including those with explicit libangle dependence) that can be expressed as
a continuously differentiable function as described intthe, are central-force models. By this we mean
that the force on any particle (say can be decomposed as a sum of terjfys;, aligned with the vectors
joining particlea with its neighbors and satisfying action and reaction.

The difference between the general case and that of a paintutis that for a pair potential, fos||
dependonly on the distance, 3 between the particles, whereas for a general potentiakl¢pendence

is on a larger set of distancel§fos|| = ggin; (12,713, .., 7(N—1),n). e, | fas| depends on the

environmentof the “bond” betweernx and 3. For this reasonf, s for a pair potential is a property of
particlesa and 8 alone and can be physically interpreted as the “force exenteparticlea by particle
3". Whereas, in the more general case of arbitrary interatgrotentials, the physical significance of the
interatomic force is less clear and at best we can sayfthatis the “contribution to the force on particle
« due to the presence of partighg.

24We thank Ryan Elliott for suggesting this line of thinking.
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We now provide an alternate extension to the standard p&engial representation
given in [3.52). The Cayley-Menger determinant corresjrantb a cluster of three
points (see[(BI16)) is identically equal to zero at every poimthe shape space. This
is because the shape space corresponds to a configuratioreefcollinear points,
and the area of the triangle formed by three collinear pagntgro. Thus, we have

X(T127T13,7“23) = (7“12 —T13 — T23)(T23 — T2 — 7“13)
X (rig —rog — m12)(r12 + 713 + 723)
=0. (3.54)

Using the identity in[(3.54), an alternate extensigf is constructed:

VA (G2, Gi3, C23) = Vi (G2, Gz, Ca3) + x(Cr2, Ci3, Co3).- (3.55)
Note thatyA

4 is indeed an extension because frém (B.54) it is cleanttfais equal
to V., at every point on the shape space of the system and it is contsty differen-
tiable becausg ({12, (13, (23), being a polynomial, is infinitely differentiable. Let us
now see how the internal forcgit, for the special configuration considered in this
example, is decomposed using the new extension:

o VA dx
! d:l?l d$1 d$1
ox , 02 Ox , 03
_ [y _ 19X 9513
— (Ve @520 + (V- s @G
= (fi2 — 8riaraz(ri2 + 723)) + (f13 + 8ri2ra3(r12 + 723))
=: fi2 + fus, (3.56)

Itis clear from [3.5B) and(3.56) that the central-forceataeposition is not the same
for the two representations, i.efyo # fu and fi3 # flg, however the force on
particle 1,fi*t, is the same in both cases as expected.

Itis very interesting to note that?, is nota pair potential (based on the definition
of a pair potential), but it is equivalent to a pair potentia., it agrees with a pair
potential on the shape space. Thus, the set of continuoiffdyehtiable extensions
of a given interatomic potential function form an equivaerlass. It is not clear at
this stage if these equivalence classes can be fully exgdésserms of the Cayley-
Menger determinant constraints.

Although the above example is quite elementary, this pces be extended
to any arbitrary number of particles in three dimensionsy given potential can be
altered to an equivalent potential by adding a function ef@ayley-Menger determi-
nants corresponding to any cluster of 5 or 6 particles (sgeeAgiXB). This function
must be continuously differentiable and equal to zero wheoféds arguments are
zero. For example, a new representation in three dimensiam$e constructed by
adding a linear combination of the Cayley-Menger determisia

Vi = Vint (Gras 5 {vmnyn) + D Mk, (3.57)
k=1
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where there aren constraints defined by the Cayley-Menger determingptsand
)\, are constan{d

From this point on, we abuse our notation slightly, and wigtenys = (r12, . . .
T(N—I)N) e S:

3

8Vint aVin‘n
f
8Ta5 or 8Ca5

(s). (3.58)

Also, we assume that there exists a continuously diffeabigi extension whenever
we write f,3 and sometimes refer to a continuously differentiable esitanas an
extension.

Derivation of the pointwise stress tensor

We now return to the differential equation in_(3.36) for tleggmtial part of the point-
wise stress tensor. Substituting the force decompositi@ndn (3.50) corresponding
to a continuously differentiable extension, info (3.36¢ @btain

divg oy (x,t) = Z<Wfa6 | xo = x). (3.59)

af
a#p

On using the identity

3

(fapW | =) = /]R (fapW |20 =z, x5 = y) dy, (3.60)

equation[(3.59) takes the form

divg oy (x,t) = E /]R3 (Wfap | o =z, 23 =vy) dy. (3.61)
a,f
a#pB

We now note that, being anti-symmetric, the integrand inriflet-hand side of the
above equation satisfies all the necessary conditions éoagplication of Lemma
given in Appendix A. Conditions (1) and (2) in Appendix feaatisfied through
the regularity conditions ofi’. Therefore, using Lemnla .1, which was proved by

25Note that[3.5l7) has the same form as a Lagrangian with\ttegms playing the role of Lagrange
multipliers. For a static minimization problem, we seek tmimize V" , without violating the physical

int’
constraints relating the distances to each other. (Thigus/alent to minimizing)/;,; with respect to the
positions of particles.) Thus, the original constrainediimization ofV;,,; is replaced by the problem of
finding the saddle points af*

int"
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Fig. 3.1 A schematic diagram helping to explain the vectors appegarirthe pointwise potential stress
expression in(3.62). The bongd-3 is defined by the vectoz. Whens = 0, atoma is located at poinie,
and whens = 1, atomg is located ate.

Noll in [48], we have
oy (x,t) (3.62)

1 1
:_Z/ / <7fa5W|ma:$+sz,$g:ﬂff(1*5)z>ds@zdz
R3 Js=0

1 / z®z/1 <8Vint >
:—E Wlxa=x+sz,xg=a— (1 —5)z ) dsdz,
32 Jo TR Joco \ s ety

a#B
(3.63)

where in passing to the second line, we have Used](3.51) andehtityz, — 3 =
x+ sz — [x — (1 — s)z] = z. For the special case of a pair potent@W,;/0r.z =
V!,5(ras), and [3.6P) reduces to the expression originally given 8}.[4

[e3

The expression for the potential part of the pointwise sttessor in[(3.62) is
a general result applicable to all interatomic potentisife. make some important

observations regarding this expressions below:

1. Although the expression far, appears complex, it is actually conceptually quite
simple.o, at a pointz is the superposition of the expectation values of the forces
in all possible bonds passing through The variablez selects a bond length
and direction and the variableslides the bond through from end to end (see
Fig.[32).

2. o is symmetric. This is clear because the tetrr® z is symmetric. Since the
kinetic part of the stress if_(3.85) is also symmetric, thectasion is that the
pointwise stress tensor is symmetric for all interatomitepials

3. Sinceo, depends on the nature of the force decomposition and diffepden-
sions of a given potential energy can result in differentéalecompositions, we
conclude that the pointwise stress tensaras-uniquéor all interatomic poten-
tials (including the pair potential). We show in Secfion that the difference due
to any two pointwise stress tensors, resulting from difiéextensions for the in-
teratomic potential energy, tends to zero as the volumesofittimain over which
these pointwise quantities are spatially averaged tendtitoty. Therefore, as
expected, the macroscopic stress tensor, which is defindn ithermodynamic
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limit (see footnotéll on padé 5), is always unique and is irddpnt of the po-
tential energy extension.

4. Another source of non-uniqueness is that any expresgitmedorm, o, + &,
wherediv, & = 0, also satisfies the balance of linear momentum and is there-
fore also a solution. We address this issue in Seéfioh 5.&revive show that
in the thermodynamic limit under equilibrium conditionsetspatially averaged
counterpart tar, converges to the virial stress derived in Secfibn 2.

The above results hinge on the use of the central-force deasition in [3.50).
One may wonder whether othapon-centraldecompositions exist, and if yes, why
are these discarded. This is discussed in the next section.

3.5 Non-central-force decompositions and the strong lamctibn and reaction

In the previous section, we showed that as a consequence iofivéiriance of the po-
tential energy with respect to the Euclidean group, for agratomic potential with
a continuously differentiable extension, the force on diglarcan always be repre-
sented as a sum of central forces. In this section, we showotharnon-central-
force decompositionare possible, however that these violate streng law of ac-
tion and reactionwhich we prove below, and therefore do not constitute piaisi-
meaningful force decompositions.

A proposal for a non-symmetric stress tensor for a threeytmtential

As an example, let us now consider the case of a three-bodwntait For simplicity,
we assume that the potential only has three-body terms apdréitles are identical.
Under these conditions, the internal potential energy is

Vint = Z 9(%0” w57 wv)7 (364)

a, B,y
a<fpB<y

Whereﬁ(ma,mﬁ,mv) is the potential energy of an isolated clustgw, 3,~}, and
> B represents a triple sum. We know that a central-force deositipn can

(o7
be 0<bBt§iWned by following the procedure outlined in the pragisection and that this
leads to a symmetric pointwise stress tensdrin (3.62) ridtively, anon-symmetric
three-body stress tensor is derived as follows. To keegsh@imple, we derive the
stress tensor for a system containing only three parti®esvriting [3.64) for this
case, we have

3
Vit = V(T1, @2, T3) = Y _ Pa, (3.65)
a=1

where

~

gf)a = §V(:L'1,:1:2,:1:3) (366)
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is the potential energy assigned to partieleequal to one-third of the total potential
energy. Substitutind (3.65) intb (3]36), we obtain

divg oy (@,t) = = > (WVa, 05 | Ta = z)
a,f

==Y (WVa,dpl@a=2)— Y (WVa,ba|za=2).

B
a8

(3.67)

Since the cluster of three particles is isolated, the netefan the cluster due to
internal interactions is zero. Therefore, frdm (3.65), \agén

vma¢a = - Z VZ[-;d)Ot' (368)
BF#a

Using this relation, equatiof (3167) simplifies to

dive ov(@,t) = = > (W(Va,dp — Vaysa) | Ta =) . (3.69)
oL
Let )
fa,@ = vw5¢a - vwa¢,@ (370)

Now, using the identity

<faﬁw|ma:m>:/ <faﬁW|ma:m;mﬁ:y> dyv

R3

and the definition given in(3.70), equatidn (3.69) takes¢nm

divg oy (x,t) = Z / <Wfa5 | xo =, x5 = y> dy. (3.72)
a,3 R3
a#p
Let us now study the definition gf. s given in [3.70). From({3.86) we have

_ T ) )Y
faﬂ:_vwa¢ﬂ+vwg¢a: [

1 int int
2= 4 2| = Z(fint _ pinty 72
3 ot amﬁ] (= £ 372)

The above equation suggests how the fof¥é is decomposed. For examplgt is
decomposed as

1 .. .
S (A" = £3). (3.73)

in o . 1 in in
1t:f12+f13:§( - zt)+3

Rearranging this relation gives
int + f2int + fént — O, (374)

which is true since the clustéil, 2, 3} is isolated.
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Fig. 3.2 (a) shows the force on each particle in a system consistifgpairticles which interact through
a 3-body potential given i (3.65). Since the potential isveéel from an energy decomposition, we have
fint 4 fint 4 pint — 0. (b) shows the force decomposition of egftt such thatf,s = —fza, but
not necessarily parallel to the line joining partictesand 3.

From [3.72) it is clear thaf, s is anti-symmetric with respect to its arguments.
Therefore, the integrand on the right-hand side[of (3.7fif&s all the necessary
conditions for the application of Lemnia_C.1 given in Appedi@. Conditions (1)
and (2) in Appendik T are satisfied through the regularityditions on W. Therefore,
using Lemma&ClJ1, we have

ay(x,t) = % ;ﬁ /Rs /Sio

a7 B
(=(Vay0a — Ve, ¢g)W | o =@ + 5z, 0p = — (1 — 5)z) ds ® zdz.
(3.75)

The stressr, is non-symmetric in general becaufgs;, defined in[[3.72), need not
be parallel to the line joining particles and 3 as shown in Figl_3]2. We therefore
have two expressions for the stress for the same three-lmidynl. The symmetric
expression in(3.62) and the non-symmetric expressidnf8j3We show next that
the non-central-force decomposition that led to the nansagtric stress tensor is not
physically meaningful since it violates the strong law dfi@t and reaction.

Weak and strong laws of action and reachbn

The following derivation hinges on the fact that in a matesystem the balance laws
of linear and angular momentum must be satisfied for any fhanedody.

Consider a system oWV particles with massesi,, (o = 1,..., N). The total
force on particlex is

fa= I+ fas, (3.76)
plta

26Thjs derivation is due to Roger Fosdi¢k]20].



32

where f¢** is the external force on particte, and, as abovef,s is the contribution
to the force on particle: due to the presence of partigge No assumptions are made
regarding the termg, s or the interatomic potential from which they are derived.

A “part” o, of the system consists ¢f < N particles. We suppose, is a fixed
point in space. LeF***(,) denote the total force on the pait external to the part.
Let Mt (p,; z¢) denote the total external moment pp aboutz. Let L(gp;) be
the linear momentum of the papt and H (p+; o) be the angular momentum pf
aboutz.

We adopt the following balance laws, valid for all parts of ystentZ]

L

F™(py) = %(@t)v (3.77)
dH

M (py;@0) = ﬂ(@t;mo)- (3.78)

We now show that by applying these balance laws to partiq4dsts of the system,
that the strong law of action and reaction can be establishea first observation,
let p; consist of the single particle. The external force and linear momentum for

pr = {a}is
F({a}) = F5() + ) fay(t), (3.79)

yF
L{a}) = maxa(t) (no sum) (3.80)

The balance of linear momentum [0 (3.77) requires
IO fay = Madia. (3.81)
Yo
The external moment and angular momentunp ois
M ({a}; @) = (@a(t) = 0) X (F + D fay) = ma(@a(t) — @) X &alt),
Yo
(3.82)
where we have usef (3181), and
H({a};m0) = (@0 — o) X mada(t), (3.83)

The balance of angular momentum[in(3.78) is satisfied idali since

Ma(Ta(t) — o) X Ea(t) = % [(@a(t) — o) X Maia(t)]

= Zo(t) X Moo (t) + (Xa(t) — o) X MaEa(t)

= ma(Ta(t) — xo) X Eu(t).

2TThe view that the balance of linear momentum and the balahe@mgular momentum are funda-
mental laws of mechanics lies at the basis of continuum nréchaSee, for example, Truesdell’s article
“Whence the Law of Moment and Momentum?” in[61].



33

As a second observation, lgt consist of the union of the two particlesand.
The external force and linear momentum are

Fo' ({0, 81) = £+ 5+ Y (far + F34)s (3.84)
v#g¢ﬁ
L({e, B}) = Mmoo + mpip. (3.85)

The balance of linear momentum [0 (3.77) requires
FEA LA D (fay + F5y) = Madia + mpis. (3.86)
7¢z¢5

Subtracting[(3.81) for particles andg3 gives

> (for + fo0) — Z For — Z £, =0, (3.87)
vigiﬂ v#a viﬂ
from which
Jap + fpa = 0. (3.88)

This relation is called theveak law of action and reactid22]. It shows thatf,z =
— fsq, but does not guarantee thijs lies along the line connecting particlesand
s.
Next, the external moment and angular momentum,aé
M= ({a, B}; @0)
= (@a —@0) X (F+ Y far) +(@p —m0) X (FF+ Y o)
v¢l¢ﬁ 7#%#@
= (o — @) X (MaZa — fap) + (x5 — x0) X (MpZp — fa),  (3.89)

where we have usef(3181), and
H({a,B};20) = (Ta — o) X Ma®a + (Tp — o) X mpds. (3.90)

The balance of angular momentum[in (3.78) requires

(o — x0) X (MaZa — fap) + (g — o) X (MpEs — faa)
d

::EEKmag—mo)X7na$a—%(m54—xo)X7ngiﬂ

= 2oy X Maxa + (.’Ba — :130) X MaLa + :i?g X mg.’i)[g + (mg — .’130) X mg:f?g

- (ma - .’130) X MaEo + (.’135 - :130) X mﬁ:iﬁv (391)
which simplifies to

(To — o) X fap + (T — x0) X foa =0,
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and, after usind(3.88), we obtain
(o —xp) X fop = 0. (3.92)

This shows thaif,s must beparallel to the line joining particlesx and 5. This is
the strong law of action and reactionNVe have shown that this law must hold for
any force decomposition, in order for the balance of lineak @angular momentum to
hold for any subset of a system of particles.

The possibility of non-symmetric stress

Based on the proof given above for the strong law of actiorreaction, we argue that
only force decompositions that satisfy the strong law ofoscand reaction provide
a physically-meaningful definition fof,s. For example, the definition if_(3170) is
not physical because if it were used to compute the exteroaient acting on a sub-
system of particles, as is done above, the balance of angudarentum would be
violated. For this reason, this decomposition and the spording non-symmetric
stress in[(3.75) are discarded. The conclusion isdhaointwise stress tensor for a
discrete system of point masses without internal strudtageto be symmetric

In the next section, we discuss the possibility of expandiegclass of solutions
resulting from Irving—Kirkwood—Noll procedure in a way thraakes it possible to
obtain non-symmetric stress tensors for systems whereding garticles have inter-
nal structure. This involves a relaxation of the assumgtianthe “bonds” connecting
two particles are necessarily straight.

3.6 Generalized non-symmetric pointwise stress for gagiwith internal structure

In Sectior 3.4, we saw that the Irving—Kirkwood—Noll proaeg, when applied to
multi-body potentials, results in a symmetric non-uniqo@pwise stress tensor. We
now seek to find additional solutions o (31.61), which are olotained using the
standard Irving—Kirkwood-Noll procedure. In arriving Bi&2) using LemmaCl1,
we can see that the contribution to the potential part of thess at positior is
due to all possible bondsissumed to be straight linethat pass through. The
question that naturally arises is to what extent can thisrapion be weakened. In
other words, can Lemnia Q.1 be generalized in a suitable manrtbat non-straight
bonds can be accommodated? Such a possibility was firstsdisduy Schofield and
Hendersor[52], who used the Irving and Kirkwood approach wiseries expansion
of the Dirac-delta distribution. It will be shown in this d®m, using Noll’s more
rigorous approach, that solutions giving rise to non-gtrebonds are possible.
From a physical standpoint, non-straight bonds are passiblsystems with in-
ternal degrees of freedom. An example would be the dipgdetdiinteractions be-
tween water molecules resulting from the electrical dipafleeach molecule. The
possibility of internal degrees of freedom was alreadyegiby Kirkwood in his
1946 paper[29]. The idea is to relate the shape of the naighktrbonds to the ad-
ditional physics associated with the internal degreesegdom. This issue will be
further explored in future work. For now, we only investigéie possible existence
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of additional solutions other than that given by (3.62). Vegib by describing the
shape of a bond in a more precise way through the followingniiefin.

Definition 2 The “path of interaction” between any two interacting patésa and
£ is the unique contour that conneetsand 3, such that there is a non-zero contri-
bution to the potential part of the pointwise stress, at any point on this contour.

In this section, the termiond and path of interactionare used synonymously.
Therefore, for the case of the pointwise stress tensdr B8j3this path of interac-
tion is given by the straight line joining and 3. It is shown in AppendiX'C, that
under certain restrictions on the path of interaction, Lexftal can be generalized
to LemmdC.P given in AppendXIC. Roughly speaking theseiotisins are given
by the following conditions:

1. The shape of the bond connecting partieleend 3 only depends on the distance
betweeny andﬂ.

2. For any two pairs of particle@y, §) and (v, ) separated by the same distance,
the bondsy — g and~ — § are related by a rigid body motion. In addition, if
x, — 23 = x4 — x5 then this rigid body motion involves only translation.

From conditiori L, it is clear that the shape of the bonds catelseribed by contours
Y, :[0,1] — R3, forl > 0, with 2;(0) = (0,0, 0), X;(1) = (,0,0) along with some
mild restrictions. Hence, defining the contofsfor [ > 0 is equivalent to defining
the paths of interaction between any two point®ih For a precise definition df;
and the paths of interaction see Apperidix C. Since all thesszry conditions for
the application of Lemmiad.2 are same as those for Lemnja @.tawuse Lemma
in the Irving—Kirkwood—Noll procedure instead of Lem@dl. In doing so, we
arrive at a definition for the generalized pointwise stressoro&, for given paths
of interaction with the above mentioned properties. Thigven by

ol (x,t) =

v

1 1
3 Z /]RS/ . (fapW | o =1 + 52,25 =21 — (1 - 5)2) ® Q1] (s) ds dz,

a,f3 5=

a#p

(3.93)

where f. is defined in[(351), and (s, z,2) = = — sz — Q.T|;(5), Q= €
SO(3). Here,xz, represents the projection efonto the line joining the endpoints,
xo =z +szandxg =z, —(1—s)z, of the path of interaction being considered.

Q.. represents the rotation part of the rigid body motion désctin conditiofi R that
maps the contoul,., ., to the path of interaction that conneats andx .

Equation [[3.98) is a general expression for the potentiel glathe pointwise
stress tensor, of which (3162) is a special case. We diseussa key features of this
expression below:

28 This is in essence a constitutive postulate similar to tiser@ption in pair potentials that the energy
depends on only the distance between particles. A more gledependence of the shape of the path of
interaction on the environment of a pair of particles mightgossible, but is not pursued here. See also
Definition[d in Appendi T and following discussion.
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1. Equation[(3:93) is unique only up to given paths of intéoacfor a given poten-
tial energy extension. It is a more general result than 3 $8ce [3.6R) can be
obtained from[(3.93) by assuming that the path of interadtietween any two
points is the straight line connecting them. For this sgex@ae it is easy to see
thatr | =« anszTﬁzH(S) = —z.

2. o8 isin general non-symmetric, whereas the stress obtaimedgh the standard
Irving—Kirkwood—Noll procedure is always symmetric foryanulti-body poten-
tial with an extension. Since the kinetic part of the stressoro,. (see[(3.3b))
is symmetric, it follows that the total pointwise stresss@nobtained from the
generalized stress tensor is usually non-symmetric. Thiereunder the present
setting, the balance of angular momentum is satisfied ombuthh the presence
of couple stresses. This suggests that non-straight boigds correspond to sys-
tems with particles having internal degrees of freedom.

3. Since both[(3.62) and (3193) are valid definitions for tle¢eptial part of the
pointwise stress, the question of which one to choose deyp@amthe presence of
internal degrees of freedom in each particle. In the absehagernal degrees
of freedom only straight bonds are possible due to symmetrg. issue of the
pointwise stress being unique only up to a divergence-é&esdr-valued function
is partially addressed here, since the expression givehéylifference between
the two definitions is divergence-free.

4. The expression i (3.P3) is very similar {0 (3.62). Thenpwise stress at is
a superposition of the expectations of the force of all geshondgpaths of
interactionpassing througl. The vectorz selects an orientation and the size of
the vector connecting the two ends of the bond, astides it throughr from
end to end as shown in Fig._38.3.

3.7 Definition of the pointwise traction vector

In this section, we derive the formula for the pointwise ti@t vectort(x, n;t)
defined on the surface passing throughwith normaln at timet¢. The following
derivation is based oh [48] and it can be easily extendedriedpaths of interaction.
As usual, letM denote our material system. L& c R? be a domain in three-
dimensional space with continuously differentiable steis, representing a part of
the body. By this definition, each of thé point masses described i either belong
to £2 or in the space surrounding, denoted by2¢. Let f denote the force exerted
by the particles inf2¢ on particles inf2. We note that in continuum mechanigss
related tot by

f(t):/st(w,n,t) dS(x), (3.94)

wheren(x) is the outer normal at € S. Using the Cauchy relatiot(xz, n,t) =
o(x,t)n, we obtain

JiG) :/SandS(:l:). (3.95)
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Fig. 3.3 A schematic diagram helping to explain the vectors appganitthe inner integral of{3.93) for a
given pointz. The integral in[(3.93) in an integral over all possible gathiinteraction that pass through
the pointe. The inner integral with respect tg with z fixed, is an integral over those paths, wheres
the vector joining its endpoints. Frame (a) shows a pathtefattion wherns = 0. As s is increased the
path “slides” throughe. Frame (b) shows the path for an arbitrarin the interval[0, 1]. The end points
are represented by, + sz andx; — (1 — s)z. Frame (c) shows the position of the path o= 1.

Now, note that the net force exerted By on {2 due to particle interaction, denoted
by f.(t), is given by

fo(t) = Z /uE.Q /vem (fapW | o = u, x5 = v) dudv, (3.96)

a,p
a#f
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wheref, s is defined in[(3.31). Since the integrandin (3.96) satistiehaconditions
for the application of the lemmas in Appendik C, we can nowaispecial case of
Lemmd.C.3 by restricting to straight borftidiVe therefore have,

a,B
a#p
1
/ / / (~fapW | o =x + 52,25 = — (1 — 5)2) (2 - n)dsdz dS(x).
S JR3 Js=0
(3.97)
We now note thaf, in (3.97) exactly satisfies
Fo(t) = / oyndS(z), (3.98)
s

whereo, is given by [3.6P). It is therefore clear thit describes the potential part of
the interaction forcef. Hence, it is natural to assign a potential part of the pasgw
traction vectort, to f,, given by

ty(x,n;t) := oy

n
1 1
53 [ ]tz —e e —a - (12 92) (2o dsda,
o5 VR =0
a8

(3.99)

The above formula is conceptually quite simpliegives the measure of the force
per unit area of all the bonds that cross the surface, wheeeftiice is calculated
with respect to a surface measure ({8€917). Using this viewpoint, we motivate
the definitions for the macroscopic traction vector and tiness tensor, when we
incorporate spatial averaging in the next section.

It is now natural to assign the kinetic contribution to thecbacross the surface
to the kinetic part of the pointwise stress tensor. Sulitigd8.98) from [3.95), we
obtain the kinetic contribution to the force across a s@fac

Sfi(t) == /(a’ —oy)ndS(x) = / oxndS(x).
s S
Therefore the kinetic contribution to the pointwise trantivectort, is given by

t(x,n;t) := oxn

=— Zma (VM )W |z = ). (3.100)

(63

Finally, we note that the definitions ¢f andt are functions ofc andn alone.
Hence, this result is related to the work of Fosdick and V[&id, who give a varia-
tional proof for the stress theorem of Cauchy in the continwersion. In that work

29gpecifically, for straight bonds, we sat; = x andQ=7}, (s) = —z.
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the traction vector is allowed to depend on the unit normdltwe surface gradient
and is shown to be independent of the surface gradient.

The fields defined and derived in this section are pointwisatjties. In the next
section, expressions for macroscopic fields are obtainesphtially averaging the
pointwise fields over an appropriate macroscopic domain.

4 Spatial averaging

In the previous section, the Irving—Kirkwood—Noll procedwvas used to construct
pointwise fields from the underlying discrete microscopi&tem using the principles
of classical statistical mechanics. Although the resglfields resemble the contin-
uum mechanics fields and satisfy the continuum conservatiprations, they are
not macroscopic continuum fields. For example, the poimwtsess field inN(3.62),
at sufficiently low temperature, will be highly non-uniforexhibiting a criss-cross
pattern with higher stresses along bond directions, evesnwhacroscopically the
material is nominally under uniform or even zero stress.

To measure the fields derived in the previous section in aer@xent, one needs
a probe which can extract data only from a single point ofregein space. Since
this is not possible practically, there is no way we can dateghe experimental data
with theoretical predictions. Therefore a true macroscapiantity is by necessity
an average over some spatial region surrounding the camtimoint where it is
nominally define® Thus, if f(x,t) is an Irving—Kirkwood—Noll pointwise field,
such as density or stress, the corresponding macroscopigfiéx, ¢) is given by

fulwt) = [ wly—o)fw.0)d. @)

wherew(r) is a weighting function representing the properties of trabp and its
lengthscale.

The important thing to note is that due to the linearity of fiase averaging in
the Irving—Kirkwood—Noll procedure, the averaged macopsc function f,, (x, t)
satisfies the same balance equations as does the pointwaseireg(x, t).

Weighting function
The weighting functiono(r) is anR*-valued function with compact support so that

w(r) = 0 for ||r| > A, where) is a microstructural lengthscale. The weighting
function has units ofolume ™ and must satisfy the normalization condition

/ w(r)dr = 1. (4.2)
RS

30we do not include time averaging, because this is indirquéiiformed due to the presence1af.
The reasoning for this comes from tfrequentist'sinterpretation of probability, wherein the probability
of a state is equal to the fraction of the total time spent leysiystem in that state.
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Fig. 4.1 Three weighting functions for spatial averaging: uniformighting (solid line) in[(4.8); Gaussian
weighting (dashed line) ifi{4.4); Quartic spline weight{dgsh-dot line) in{4]5). Note that the areas under
the curves are not equal because the normalizatidn ih @ajdording to volume.

This condition ensures that the correct macroscopic ssedggained when the point-
wise stress is uniform. For a spherically-symmetric disttion,w(r) = @w(r), where
r = ||r||. The normalization condition in this case is

/ w(r)dnridr = 1.
0

The simplest choice foi(r) is a spherically-symmetric uniform distribution over a
specified radius,,, given by

. 1YV, ifr <y,
w(r) = {0 otherwise (4.3)

whereV,, = %mﬂﬁj is the volume of the sphere. This function is discontinuaus a
r = ry. If this is a concern, a "mollifying” function that smoothigkesw(r) to zero
atr,, over some desired range can be ad@@glnother possible choice fab(r)

is a Gaussian functioh [23]

b(r) =77 exp [—r?/r2]. (4.4)

This function does not have compact support. However ityecgidly with distance
so that a numerical cutoff can be imposed where its valuesdbeow a specified
tolerance. Another possibility is a quartic spline used @shiess method applications
(where it is called &ernel functior2]),

(r) = { 1617?;?3’(1 +35)(1 = 2)3ifr <y,

v 0 otherwise (4.5)

This spline has the advantage that it goes smoothly to zere=at,,, i.e.,w(r,) =
0, @' (ry) = 0, andw”(r,) = 0. Fig.[41 shows the plots of the three weighting
functions given above.

31An example of a mollifying function is given later in equatiG.13).
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4.1 Spatial averaging and macroscopic fields

Continuum fields such as density and momentum density figklslefined using
(4.1) as the ensemble average via the probability densitgtion 177, followed by a
spatial average via the weight functianas follows:

polat)i= Yo [ wly =)0V | 20 = v) dy, 46
puw(x,t) = Zma /R3 w(y — x)(Wo, | zo = y) dy. 4.7)

(03

It is straightforward to show that using definitiors, {4.60d4.T), the macroscopic
version of the generalized pointwise stress tensor give@Ra) divides into poten-
tial and kinetic parts as,

1

owv(z,t) / —:l:)//

UIV Z R3 R3 Js=0
04#5

(fapW | o =y1 +sz,25 =y1 — (1 - 5)2) ® QX (s) ds dz dy,
(4.8)

wheref, is defined in[(381)y, =y — sz — Q.7 (s), Q= € SO(3), and
owx(x,t) Z/ — )Mo (VI @ VYW |z, = y) dy. (4.9)
R3

We now intend to express the potential part of stress in a iwmmeenient form. This
is done by two consecutive changes of variables. Under themstion that) . and
Y| are differentiable with respect te and||z||, respectively, the Jacobian of the
transformatior(s, y, z) — (s,y.1, 2) is unity. Therefore,

1

owv(T,t) / fa:)//

U’V Z R3 R3 Js=0
Oé?fﬁ

(fapW |@o =y1 + 52,25 =y1 — (1 -5)2) ® Q.1 dsdzdy.,
(4.10)

wherey = y(s,y.1, z). A second change of variables is introduced as follows
Yy + sz =u, y,—(1—s)z=mw, (4.11)

which implies,
z=u—w, Yyl = (1—s)u+ sv. (4.12)

The Jacobian of the transformation is

Vuz Vez | I -I]
J = det {vuyl Vv’yL} = det {(1 Y sI] =1. (4.13)
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w((1—s)u+sv—x)

Fig. 4.2 The bond functiorb(x; u, v) is the integral of the weighting function centeredaatlong the
line connecting pointa andwv. The graph shows the result for a quartic spline weightingction. The
bond function is the area under the curve.

Using [4.11),[[4.12) and(4.113) to rewrife (4.10), we obtain

1
owv(x,t) = 3 Z /R3><]R3<_faBW | xo = u,xp = v) @ b(x; u,v) dudv,
a,p

ap
(4.14)
where )
b(z;u,v) = — /s:() W(Y — ) Qu—vT |y s (4.15)
is called thebond vectoywith
'!:I(S, u, ’U) = y(s, yl(sv u, ’U), Z(’U/, ’U))
For the special case of straight bonds, we have
g=1-sju+tsv and Qu_oT|,_p(s)=—(u—v).
Therefore the bond vector simplifies to
1
b(m;u,v):(ufv)/ w((1 —s)u+ sv—x)ds
s=0
= (u —v)b(z; u,v), (4.16)

whereb(x; u, v) is commonly referred to as th®nd function The geometrical sig-
nificance of the bond function is explained in Fig.l4.2.
For the special case of straight bonds, equafion14.14)lgiegto

owv(x,t) = 1 Z / (—fapW | 2o = u, x5 = v)Q(u—v)b(x; u,v) du dv.
2 3 R3xR3
a#B

(4.17)
The expressions for the potential and kinetic parts of ttagially-averaged stress
tensor in equation$ (4.9) and (4117) are our main result andtitute the general
definitions for the macroscopic stress computed for a disssestem. It will be shown
in Sectiorb that these relations reduce to the Hardy stees®t[23] under suitable
approximations. The issue of the uniqueness of the stresertéin the sense that any
divergence-free field can be added to it) is deferred to Gel&Ei5.
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4.2 Comparison with the Murdoch—Hardy procedure

An alternative procedure of defining continuum fields to the described above, due
to Murdoch [43 48, 47] and Hardy [23], only involves spatigeraging. We refer to
this approach as thiglurdoch—Hardy procedutéJnder the Murdoch—Hardy proce-
dure, continuum fields are defined as direct spatial avei@gegroscopic variables
without incorporating statistical mechanics ideas. Tfere the Murdoch—Hardy
procedure is purely deterministic in nature. For examgle, density and momen-
tum density fields at a particular instant of time, corregfing to a given weighting
functionw, are defined as

Pw(x,t) = Zmaw(:va(t) —x), (4.18a)
Pu(@,t) = mava(t)w(za(t) — z), (4.18b)

respectively, wherec, and v, are deterministic quantities. We denote spatially-
averaged variables obtained from the Murdoch—Hardy prnaeedith a superposed
tilde to distinguish them from quantities obtained in Seci.]. Equation (4.18) is
used to “smear” a discrete system to form a continuum. Theoreag for abandon-
ing statistical mechanics is the lack of knowledge of theeemde of the system as
explained by Murdoch and Bedeaux in[46]:

Physical interpretations of any given ensemble averagalglelepends
on the definition of the ensemble. for example, if a container is filled to a
given level with water and then poured onto a surface, thie ¢diprecision
with which the pouring is effected may result in many difi@renacroscopic
flows. Here no single description is available within detigigtic continuum
mechanics: in this case the ensemble (defined in terms ofdter wiolecules
and limited knowledge of how the pouring takes place) retetinvolve aver-
ages associated with all possible flows. Clearly relatiomslizing ensemble
averages are associated with a much greater variety of lnetthen is de-
scribable in terms of deterministic continuum mechanics.

We share the same concern regarding the ambiguity in thetitfiof an ensemble.
For example, in an experiment where an austenite-maréepkise transformation
occurs, the resulting micro-structure consists of a corppmtial configuration of
martensitic variants, and this depends largely on the rsgopic details of the sys-
tem, such as cracks, lattice defects, etc. Therefore,srctisie, macroscopic variables
cannot completely describe the ensemble of interest. Tadtes difficulty, Mur-
doch proposes a time average in place of ensemble averagerthigess, it should
be noted that from classical statistical mechanics, therabk of interest and its
corresponding distribution exisis principle. Therefore the framework described in
Sectior 4.1l is a correct framework in which to phrase the lprobA practical calcu-
lation can then be performed, for example, by replacing tteemble averages with
time averages in a molecular dynamics calculation (seeéd®éfg). We stress the im-
portance of writing a continuum field variable as an enserabé&age followed by
spatial average, rather than a spatial average followedthgeaaverage, as is done
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in the Murdoch—Hardy procedure, because it helps to givafeedrmicture of all the
previous definitions for continuum fields and stress in patdir. This is discussed in
the next section.

Itis interesting to note that by relaxing the connectiorhvgitatistical mechanics,
the Murdoch—Hardy procedure allows for a much wider clasgefihitions for the
stress tensof [45] in addition to the non-uniqueness cleniaed so far, due to the
presence of multiple extensions for the potential energy alowing non-straight
bonds. In this section we intend to systematize this proeedthe source of non-
unigueness resulting from multiple definitions of the stremnsor is studied, thus
helping us to identify a much larger class of possible defing. In this new system-
atic approach, the steps involved in the Murdoch—Hardygulace are as follows:

1. Develop a continuum system by smearing out the discrstesyusing[(4.18).

2. Introduce anon-localconstitutive law for the continuum that is consistent with
the discrete version of force balance given latefin (4.19).

3. For each constitutive law, define a stress tensor, whitisfiea the equation of
motion for the continuum.

To understand the above three steps, we explore the Muréitaety procedure
in more detail. The continuity equation is satisfied in aigliway [44]. We now look
at the equation of motion.

Equation of motion

The motion of particler is governed by Newton’s second law,

D Fls(t) + bA(t) = maval(t), (4.19)
B
B#a

wherefd,(t) := fas(u(t)), fop(u) are the terms in the central-force decomposition
obtained from a multi-body potential with an extension (Seetior{ 3.4) and< (¢)
is defined as
bl (t) := —Va Vext(®1(t), ..., 2N (1)).

The superscriptd” in (A-19) and the above equation are used to the stressahtinet
the quantities are deterministic in nature. Equation (#id 8 force balance equation
for the discrete system. We now design an analogous forembalequation for the
smeared continuum defined thy (4.18), such that{4.19) alivalgs.

For the sake of simplicity in notation, from here onwards \ge fi,s to denote
both fos(u) andfgﬁ (t), whenever it is clear from the context. The same goes with

the usage ob,, (t) for bd (¢).
Force balance for the smeared continuum

Multiplying #19) byw(xz; — =) and summing over all particles, we have

fu + by = Z MaVaw (Lo — ), (4.20)
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where
Z fapB)w(@a(t) — @), (4.21)
a#B
= Z ba(t)w(xs(t) — x). (4.22)
B

To arrive at a form similar to the equation of motion of contim mechanics given

in (3.23), equatior (4.20) is rewritten as
0
fu + by =5 Z MaW(To — T)Vo — za: MaVo(Vw(zy — ) - v4)

= —— +divg Z MaW(To — T)Vo @ Vg (4.23)

o (x, 1) = 2o z), (4.24)

and the relative velocity of a particle with respect to thatemuum velocity as
0N @, t) = va(t) — Dy (2, t). (4.25)
Using [4.18) and{4.25), we obtain
Zmav w(ee(t) — ) = Pu(@,t) — pu(T, t)0y(x, 1)
=0,

the last equality being true by the definitidn(4.24). FronZ8} and the above equa-
tion, it follows that

1o omrel |~ =~ -
E MaW(To — T)Vo @ Vy = g MaW(To — T)Vs Q@ Vi + POy @ Vo
«

Substituting this into[{4.23) and rearranging, we have

~ ~ op
Juw — divg za:ma(f)gel ® {);el)w(ma - w) + by, = % + dlvw( wUw @ 'Uw)

Comparing the above equation with the equation of mot[aZ3)3 we have

divg 6y (2, 1) = fu(x,t) — dive Z Me (07 @ "N w(xy — ), (4.26)
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whereg, is the stress tensor corresponding to the weighting funetidcrom [4.26)
itis clear that the kinetic part and the potential part ofstress tensoé,, xk ande, v,
respectively, are given by

Owx(x,t) Zma prel ~rel) (xq — ), (4.27a)

divg 6y (2, 1) = fw(m,t). (4.27b)

Any solution to [4.27b) is a valid candidate for the definitiof &, . Murdoch [45]
proposes several possible candidates, and highlightogslity of having multiple
definitions. To understand the connection between therdiftgpossible definitions,
we look back at[{4.20) and (4.21). Equatidn (4.20) is a forakamce equation for
any “continuum particle” at, andf,,, defined in[Z.21), is the force per unit volume
acting on it. It is not immediately clear froh (4]121) how twontinuum particles at
positionsx andy interact with each other. This interaction can be given by@a-n
local constitutive law. The main idea is to recési (#.21) as

Suw(z,t) = /R3 g(xz,y,t)dy, (4.28)

for someg(x, y,t), which we call thegenerator of the non-local constitutive law
This function describes the interaction between the cantimparticles at andy. To
satisfy Newton'’s third law, we also negdo be anti-symmetric with respect to its ar-
gumentse andy. Unfortunately the representation given[in (4.28) is ndtua and,
since every choice @gj leads to a different stress definition, this is one of the cesir
of non-uniqueness in the definition for the stress tensdnénMurdoch—Hardy pro-
cedure. We describe two different constitutive laws, wHezdd to the Hardy stress
and the doubly-averaged stress (DA st%@]]

For the case of Hardy stress, the generatbis given by the equation

.’13 yv Z faﬁw ) (.’Bﬁ —XTo + T — y)a (429)
a#ﬁ
whered denotes the Dirac delta distribution.

The generatog® for the DA stress is given by

(@, y,t Z fapw(za —z)w(zs —y). (4.30)
a#ﬁ

Fig.[4:3 shows the interaction between two continuum pagjavith positionse
andy, that are in a neighborhood of two interacting particleand 8 respectively
and not in a neighborhood of any other particle in the systenthis setup, it is
clear from the generator for the Hardy stress, giveriin (4.t two continuum
particles atc andy interact only whery — z3 = « — z,, as shown in Fid- 4:3(g).

32Murdoch [45] refers to this stress as “Noll's choice”. To @v@onfusion with the stress derived
through the Irving—Kirkwood—Noll procedure in Sect[dn 3 wame it the “DA stress”.
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Fig. 4.3 A continuum particler interacts with: (a) only that continuum particlewgtwhich is identically
oriented toxz ase is oriented tox,, when the interaction is given hy'!; (b) any continuum particle
in the shaded region, when the interaction is giveryby (c) any continuum particle on the shaded line,
when the interaction is given by P,

On the other hand, there is no such restriction on the georefi@t the DA stress,
described by[{4.30) (see F@(@)Although at this point there is no systematic
way of suggesting additional possible generators, we cggesi a third generator,
g''P, which has properties that lie in betwegh andg®. As shown in Fig[4.3(¢),
when interaction is governed ky'®, a continuum particlec interacts withy only
wheny lies on the line passing throughand parallel tax, — x3. In all the three
cases, the interaction force is always directed along teb®ve, — . Therefore
by (@.28) we have three different integral representationg,, with generatorg®,
gH, gHD_

Now, in each of the integral representationsfafgiven by [Z.29) and{4.30), the
integrand satisfies all the necessary conditions for théicgtion of LemmdClL or
LemmdC.2 in Appendixid For instance, using Lemria®.1 we obtain an expression
for the potential part of the stress tensor, given by

1 1
Cuwy(z,t) = —3 /]R3 [/ Og(:c +sz,x— (1 —9)z,t)ds| ® zdz.  (4.31)

33Note that for the DA stress, the force between two continuantigles atz: andy is not parallel to
x — y in general. This is not a violation of the strong law of actamd reaction, because the strong law
only applies to discrete systems. It has been used in thigatien by requiring thatf,s = —fs and
-fOéB X (ma — :BB) =0.

34The integrand should be continuously differentiable folsltiemma to be applicable. Although™
is not continuously differentiable due to the presence efirac delta distribution, this does not hinder
us from applying the lemma since we can replace the Diraa digtribution by an appropriate infinitely
differentiable delta sequence and take a limit. See Appddidor a rigorous derivation of this.
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Substituting[(4.29) intd (4.31), we have the potential pathe Hardy stress:

1
Sy = *% > / [/ fopw(®a —x — 52)0(Tp — To + 2)ds| @ zdz
a,p R3 s=0
aB
1 1
=52 / [~ fapw((1 = s)za + 525 — @) @ (€0 — xp)]ds.  (4.32)
a,B s=0
a%f
Substituting[[4:30) intd{4.31) we have the potential pathe DA stress:

1
aPA = 1 Z / / [~ fapw(ze —x —sz)w(xs —x+ (1 —5)2) ® 2] ds dz,
’ 2 ap ) 2€R® Js=0
a#B

(4.33)
which was derived by Murdocl [47]. The conclusion is that lo@-uniqueness of
the generator in the systematized Murdoch—Hardy procddads to a non-unique
definition for the stress tensor. Further sources of noguertiess can by introduced
by having a different force decomposition corresponding tbfferent potential ex-
tension, or using curved paths of interaction instead afigitt bonds and applying
LemmalC.2, which is a generalization of LemmalC.1 in Appei@iXNe do not
pursue this generalization further here.

It is important to point out that the systematized Murdoch#dy procedure pre-
sented here doewt describe all possible solutions fo (4.27b). An example af-a s
lution that cannot be obtained via our systematized Murdbieidy procedure is the
following definition suggested in [45]:

Gy (@, 1) == Z fap @ (@ — ma)a([|lz — zall), (4.34)

a,f
a#p

wherea(u) == 25 0“ s?1(s) ds. As is pointed out in[45], the expansion [0.(4.34) is
not a physically-relevant definition for stress due to tHefaing test case. Consider
a stationary deformed body at zero temperature (i.e., wherparticles occupy fixed
positions without vibrating). In this case, the net forcéragzon any particle is zero.
Since f,z is the only term in the summand ¢f(4]134) which dependg p@.33) is
equivalent to

G5 (@)= (> fap) © (& — ma)a|J@ — @0 ). (4.35)
o B
p#a

In our case_; fos = fo = 0, for each particlex in the interior of the body
which is considerably away from the surface compared tortteratomic distance.
Hence, the only non-zero contribution to the stress is dubkdse particles close to
the surface on which the net force due to other particles iiszevo. Moreover, al-
thougha(u) decays to zero ag increasesg(u) # 0 for all w # 0. Thus, there is a
non-zero stress at every pomte R? (even outside the body!) due to particles close
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to the surface of the body, which is obviously not physicalfgsonable. Neverthe-
less,a, , is mathematically still a valid definition since it satisfi@e force balance
equation[[45]. However, it cannot be derived using the syatezed Murdoch—Hardy
procedure proposed here. Thus, the systematized MurdashyHhbrocedure does
not lead to all possible definitions that satisfy the forclabee equation.

Finally, it is also worth noting that the fact that all balenlaws are satisfied
under the Murdoch—Hardy procedure should not come as aiseypincew in (£.18)
serves the same purposel#sin (3.13). In this vieww is seen as a function defined
on a phase space, although one that does not evolve accdodinfiow described
by Hamilton’s equations of motion, but still satisfi@ﬂ)The corresponding
flow in phase space is described as follows. Continuing withnotation introduced
@), let=(0) = (°(0),v%(0)) = (25(0),...,25(0),v5(0),...,v%(0)) denote
any arbitrary point in phase space. We add a superséfipd ‘stress the fact that an
element in phase space is stochastic in nature. Considéotha phase space given
by the mapping

0|

(0) = (2°(0),v%(0)) = (2(0) + z(t) — (0),v*(0) + v(t) — v(0))
= (x°(t),v°(t)) = E(t), (4.36)

where the quantities(t) = (x1(t), -+ ,&n(t)),v(t) = (v1(t), -+ ,vn(t)) denote
the position and velocity of the particle and these are assitmbe known. (Typically
these quantities are obtained from a molecular dynamicslation.) Therefore the
Murdoch—Hardy procedure can be interpreted as a probi@biti®del constructed
from the datax(t) andv(t), obtained from a deterministic model — a molecular
dynamics simulation. Note that andv® in (£.38) denote the positions and velocities
of the particles in the probabilistic model. Then it is easysée that iV (=;t) is
given by

W(E:t) = w@i(t) - @) - wlen (1) - @), (4.37)

then the definitions given b{f (311 3), (3115) ahd (4.18) amsizient andV given by
the above formula satisfies Liouville’s equation ($ee (B, Mhich was used in deriv-
ing the balance equations in Sectidn 3. Note that unlikei®®@&, 1 (=; ¢) defined

in (4.37) isnota probability density function. (Its integral over phasaspdiverges,
since it is independent af.) The key difference between the two approaches is that
all quantities in the Irving—Kirkwood—Noll procedure areopabilistic, while this

is not true for the Murdoch—Hardy procedure, if the abovebphilistic interpreta-
tion is adopted. For examplé, s in the Murdoch—Hardy procedure is deterministic.
Therefore the structure inherent [D_(3.61) through the imatglensities is absent in
the Murdoch—Hardy procedure, thus giving additional noigueness. It is shown in
Sectior[ b that the Hardy stress can be derived using botloaplpes, while the DA
stress is a result of the Murdoch—Hardy procedure alone.

35This is only a mathematical argument. No physical signifieeshould be drawn from this analogy.
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4.3 Definition of the spatially-averaged traction vector

We close this section by defining the spatially-averagettita vectort,, (x, n;t),
for a weighting functionwv, at a pointz relative to a plane with normat(xz). One
possibility is to adopt the Cauchy relation using the sfiigt@veraged stress tensor,

ty(x,n;t) := oz, t)n. (4.38)

However, sincer,, is defined as a volume average, we immediately see that with
this definitiont,, depends not only on the bonds that cross the surface, bubalso
nearby bonds that do not crossit [44]. Hence, equafion{4188s not appear to be
consistent with Cauchy’s definition of traction.

We therefore seek an alternative definition for the spatialleraged traction vec-
tor. In Sectiof 317, we showed that the pointwise tracticriaeat a point on a surface
is the expectation of the force per unit area of all the bohddross the surface, mak-
ing it a property of the surface. We would like the spatiallyeraged traction to have
the same property. We therefore define it as an average oserfacerather than
over a volume as for the stress. For simplicity, we consitderweighting function
wy,, defined to be constant on the averaging domain, which ismitekée a gener-
alized cylinder of heighk, with its axis parallel tar and enclosinge. The traction
t,(x,n;t) is defined as

ty(z,n;t) ;== lim o, (z,t)n, (4.39)

=1l

h—0
whereo,, is the stress associated with the weighting functign,In a more general
case, an arbitrary averaging domain can be collapsed ontdacs passing through
x, in many ways. Although this can be made mathematically mpogeise, we do not
pursue that in this work. Definitiof (4.89) has a two-fold adtage over the definition
in (£.38):

1. The traction vector is defined to be non-local on a surfiaees making it a prop-
erty of the surface. This is physically more meaningful, aluder to the contin-
uum definition.

2. The above definition differs from the traction definition(#.38), because only
the bonds which cross the surface contribute to the tra&igtoh

In Sectio 5.2, we use definition (4]139) to define the Tsaitimacstarting with the
spatial averaging discussed in Secfiod 4.1 and in this weabksh a link between
the Tsai traction and the Irving—Kirkwood—Noll procedure.

5 Derivation of different stress definitions and the issue ofiniqueness

In this section, we systematically derive various stressdes commonly found in the
literature from the methods developed in Seclibn 3 and &ddti The stress tensors
discussed in this section are the Hardy, virial and DA stteasors and the Tsai
traction.
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5.1 Hardy stress tensor

The Murdoch—Hardy procedure described in Sedfion 4 wapienigently developed
by Murdoch [438] and Hardy [23]. The motivation for Hardy'sidy was to test the
validity of the continuum description of phenomena in sheaves. The formulas
suggested by Irving and Kirkwood were not useful due to tkk & knowledge re-

garding the probability density function and the infiniteise expansion in the defini-
tion of the stress. As an alternative, Hardy used what we eow &s the “Murdoch—
Hardy procedure” to propose an instantaneous definitiorsti@ss, for the special
case of pair potential, given by

- % Z (xa(t) —xa(t) @ (xa(t) — za(t ))V/Bb(w To,xg), (5.1a)

2 2o — 5]
a#p
Z w( — 2)mav(t) @ v (t), (5.1b)

whereb is the bond function defined il (4116) amff"! is the velocity of particlex
with respect to the continuum velocity, as definedIn (4.Zd)simplify the notation,
the explicit dependence af, andv:*! on time is dropped from here onwards. Equa-
tions [5.1&) and({5.1b) may look familiar. They are simikatte spatially-averaged
generalized stress i (4.9) add (4.17) (for the special ofisepair potential). If in
these relations, the ensemble average is replaced by avarage, we obtain a time-
averaged Hardy stress. However, in performing such an tperave must note the
following:

1. Under conditions of thermodynamic equilibrium (see fwt¢[8 on pagé10),
ensemble averages can be replaced by time averages provaddéde system is
assumed to be ergodic. Strictly speaking this time averhgald be done for
infinite time, but for practical reasons we are restrictefirtite time.

2. The Hardy stress tensor is valid under non-equilibriundétions assuming that
the system is iflocal thermodynamic equilibrith at all points at every instant
of time. This is plausible only when there is a clear sepanatif time scales
between the microscopic equilibration time scakend macroscopic times. Here,
7 is not being defined rigorously. Roughly speakingnust be sufficiently small
so that macroscopic observables do not vary appreciabhyjitove

36Local thermodynamic equilibrium is a weaker condition thaniform thermodynamic equilibrium
(see footnot€]8). The assumption is that the microscopicaitoassociated with each continuum particle
is locally in a state of uniform thermodynamic (or at leastastable) equilibrium. This is the reason why
concepts like temperature can be defined as field variablesntnuum mechanics. See for examplel [17].
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Under these assumptions, we may replace ensemble averdlyasng averages in

(4.9) and[(4.117) to obtain

owx(x,t)=—= Z/ x)mav @ vildt, (5.2a)
t+T
owv(x,t) =5 Z/ —fop @ (ko — xp)b(x; T, 8)]dE, (5.2b)
a#ﬁ

where f,, 3, corresponding to a given potential extension, is defing@.i51), andr
represents a microscopic time scale. We see that the Haiedg $6 obtained through a
rigorous process beginning with the statistical mechagvosepts introduced in Sec-
tion[3. From here on, we will denote the stres$inl(5.2) asttedy stress”, although
we note that this definition constitutes a generalizatiotheforiginal Hardy stress
to arbitrary potentials and includes time averaging. lenidlly, the Hardy stress can
also be derived from the systematized Murdoch—Hardy praeedescribed in Sec-
tion [42. The kinetic part of the Hardy stress is the same asdhtained in the
Murdoch—Hardy procedure. The potential part of the Hardgsst is derived using
the generatog™ given in [4:29). This was done in Sectigh 4 (dee (#.32)).

Note that the Hardy stress tensor is symmetric. One couldfynibds to a general
form by choosing an arbitrary path of interaction, thus legdo a non-symmetric
form (see Sectioh 41.2). Also note that the stress tensottirggtdrom the genera-
tor g"'P (see Fig[4B) would be symmetric, because the interacticzefbetween
two continuum particles is always aligned with the line cectimg them. It is very
important to observe that under non-equilibrium cond#iomhere we assume a lo-
cal thermodynamic equilibrium at every instant of macr@ictime, we may assume
that the averaging domain centered at a positiomoves with the continuum velocity
v(x, t). This fact will be used in Sectidn'5.2.

5.2 Tsai traction

Cauchy’s original definition of stress emerges from the ephof traction acting
across the internal surfaces of a solid via the bonds thasdre surface. It is there-
fore natural to attempt to define traction at the atomic le@vel similar vein in terms
of the force in bonds intersecting a given plane. This apgraectually goes back
to Cauchy himself as part of his effort in the 1820s to defirestness in crystalline
systems|[[5,16], which is described in detail in Note B in Levelassical book on
the theory of elasticity [35]. Cauchy’s derivation is limit to zero temperature equi-
librium where the atoms are stationary. This approach weenebed by Tsai[63] to
the dynamical setting by also accounting for the momentumdfuatoms moving
across the plane. The expression for the traction givéndhdppears to be based on
intuition.

In this section, we show how the Tsai traction can be systeaigtderived from
the Hardy stress tensor, which itself was derived from theegdized stress tensor
defined in Section411. We will see that the potential parts#iE original definition
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agrees with the results of our unified framework. Howeveaj$€xpression for the
kinetic part of the traction depends on the absolute veladithe particles and there-
fore is not invariant with respect to Galilean transforroasi. We show below that the
correct expression for the Tsai traction vedt@e, n; t) across a plan® with normal
nis

o (o — n
(@, 1) / 2 Jer g ] >n|‘“

aBNP «

1 mavrel ,Urel o)
3 (to) (e (te) - m)

- — @ 5.3
At [vrel(te) - m ’ (5.3)

a>P

wherer indicates the microscopic time scalg, , 5 » indicates the summation over
all bondsa — 8 crossing the plan®, > ., . indicates summation over all particles
that crossP in the time intervalt, t + 7|21 v=°! denotes the local relative velocity
of particlea, andt., indicates the time at which the particle crosses the plahe. T
correct form forv™e! is notimmediately obvious. Below, we derive equat{on](5u3)
obtain an explicit expression fafe'.

We start with the Hardy stress in_(b.2). Recall from SedfightHat if the averag-
ing domain is taken to be a generalized cylindgof heighth, the spatially-averaged
traction field,t,, (x, n; t), on a surface passing througtwith normaln is

ty(x,n;t) = }11% Oy, = %ig%)(a'whyvn + O, kM) (5.4)
= tw,v + tw,k-

Using [5.2), we rewrite the potential part and kinetic pdrfsod) as

1 ) t+7
ty(z,mt) = o %13%) t Zﬁ[ffag ® (o — )by (x; 20, xp)|dt, (5.5a)
af
1 t+7 . '
tu(@,n;t) = —~ lim t 3 maw(@a — @ Wt h) (W (¢ h) - m)dt,

(5.5b)

whereb;, denotes the bond function for a generalized cylinder oflgigAlso note
the dependence af:®!' on 4 in (B.5D). Let us first consider the potential part of the
traction in [5.5R). A approaches zero, the generalized cylinder will no longar co
tain complete bonds. Assuming a constant weighting functivze bond function,,
equals the fraction of the length of the bond lying within tfemeralized cylinder per
unit volume:

1 h 1
bp(x; o, x5) = — = , (5.6)
T A (@ —@p) m| Al (za - 25) 7

37A particle is counted multiple times if it crosses the plandtiple times.
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for any bond~ — 3 crossing the cylinder. Therefoifle (5l 5a) takes the form

—xp) n
tu(x,m5t) = / > [ fa5|ma7m5) - dt. (5.7)

afnP

Note that thel /2 factor is dropped because of the definition of the summation i
the above equation. This is the first term[in{5.3). Turningh® kinetic part of the
traction in [5.5b), we interchange the summation and iaegrobtain

1 tQ(OL h)
tyx(x,m;t) = —— lim Mmaw(xe — 3 h)v (t; h) (v (t; h) - n)dt,
’ T h—0 = t1(oz'h)
(e} h ’

(5.8)
wheret; (a; h) andta(«; h) are the times of entry and exit of particle respectively,
from a cylinder of height. The summation in the above equation is over all particles
that are in the generalized cylinder during the time intefia + 7], with a particle
countedk times if it enters and exits the cylindértimes. Multiplying and dividing
the above equation by (a; h) — t1 (a; ) and substituting inv, we have

ta(ash) re re
¢ (n) _ _i lim Z ﬁQ(O{ h — tl Oé h ff((a ;h) maval(t;h)(val(t;h) : n)dt
Wk AT h—0 z h ta(a; h) — t1(a; h)
h
_ 1 (Oé; h) — 1 (Oé; h) rel rel
-~ A — }L_% h mavgy (te) (v (te) - 1), (5.9)

where we have used the Lebesgue differentiation thedrefnnlt®e last equality.
Note that the interchange of limit and summation in the atstep is valid since we
can assume that the summation for &@pyis a finite summation which is physically
meaningful. Since the averaging domain moves with a coatinuelocity we note
that

i f2lash) —ti(ash) 1 .

h—0 h [vrel(te,) - m
In words, this equality states that the net time spent byiglart in the cylinder,
divided by its height, is equal to the inverse of the velodftyparticle « along the
axis of the cylinder. This is correct in the limit,— 0, where particles only enter and
exit the cylinder at its ends. Substitutiig (5.10) infa Jj5v@e have

(5.10)

1 ma’l)rel tes 1;361 te) M
3 (te) (v (te) - 1)

tux(n) = ——
)= ol(to) nl

a+»P
1 :
=~ D mavy(te)sign(vy (ts) - n). (5.11)
aP

This is the second term i (3.3). Note that
vrel(t) = lim v (¢ h) = vo(t) — lim v(x; h). (5.12)
h—0

h—0

Hence, we have implicitly assumed thaty;,_,o v(x; h) is well-defined for our av-
eraging domain (plané’) which is a limit of the generalized cylindeh,. In the
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following calculation, we show thai(x; %) is well-defined and its exact form is de-
rived.
We know that for a generalized cylinder

TS Maw(@a (1) — a3 h)va (t)dt
Y s mpw(@a(t) — x)dt

z f”;,fg) mava(t)dt

t2(B5h)
f L(Bsh) T

IR [%@2(@; 1)) — @ (ta(as h))]
S5 mg [t2(B; h) — t1(B; )]

whereY" indicates summation over those particles that cidss the time interval
[t,t + 7], including multiple entries and exits.

Considering the limit, — 0 of the first partial fraction of the last equation we
have

v(x;h) =

(5.13)

)

Ma, wa(t2(0‘?}?))_wa(t.1(a§h)) "
lim / to(ash)—t1(ash) _ mava( (—)) 7 (514)

2(Bih)—t1(Bih Y
h=0 ngB% >_pmglva(tes) - n/vs(te ) nl

using the fact that in the limik — 0, (t2(8;h) — t1(B;h))/(t2(c; h) — t1(a; b)),
which is the ratio of the times spent by particleéand« in one of their sojourns into
the cylinder, is equal to the inverse ratio of their normdbeiies. Using [5.14) and
taking the limith — 0 of (5.13), we obtain

MaVa(te)

aeP Z;; mglva(te) - n/vs(te) n|

v(x) = %%U(x; h) = (5.15)

Note that the above expression for the continuum velocifsuigrom intuitive. One
might expect the continuum velocity to be the average vejlatiparticles crossing
the surface, but this is not true. It is clear from the aboueatiqn that the averaging
is not trivial.

From the relationship between the Tsai traction[in](5.3) tredHardy stress
tensor in[[(5.R), it is apparent that the Tsai traction is aerocal quantity than the
Hardy stress tensor. The Tsai traction performs bettertti@hlardy stress in systems
with free surfaces. This was studied by Cheung and ip [7]Jafane-dimensional
case, in which virial stress and Tsai stress are comparedifial stress is a special
case of Hardy stress as shown in the next section).

The Tsai traction definition can be used to evaluate thesstegssor at a point by
evaluating the traction on three perpendicular pleﬁnwever, it is not clear from
the perspective put forward by Tsai [63] whether the resglstress tensor would

38For example, if the normals to the planes are aligned withattes of a Cartesian coordinate sys-
tem with basis vectore;, thent(e;) would give the componenis; 1, o21, 031, t(e2) would give the
componentsria, 022, 032, andt(es) would give the components; 3, 023, 033.
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be symmetric or even well-defined, i.e., it is not clear if #r@o choice of planes
will give suitably transformed components of the same sttessor. Our derivation
suggests that a stress tensor constructed from the Ts@dtrabould be well-defined
and symmetric, at least in a weak sense, since it is a limh@Hardy stress, which
has these properties. The numerical experiments presengsttior 6, suggest that
the Tsai traction is invariant with respect to the positibthe Tsai plane” and the
resulting stress tensor is symmetric.

5.3 Virial stress tensor

In this section, we show that the virial stress tensor ddrineSectiof 2 and in Ap-
pendiXA can be re-derived from the time-averaged versicgh@Hardy stress given
in (&.2). The expression for the virial stress tensor is iolefrom [5.2) as a special
case for a weighting function which is constant on its supgdre bond functionj,

in (5.2) is evaluated approximately using its definitibdl@).by only counting those
bondsa — 5 that lie entirely within the averaging domain and neglegtime bonds
that cross the averaging domain. Henge;; z, xg) is given by

) [ 1/vol(£2) ifbonda — B € 2,
b(®@; Ta, Tp) = {0 otherwise (5.16)

wheref2,, denotes the averaging domain centered.&ubstituting[(5.76) intd (51 2),
we have

1 i rel rel 1
o(z,t) = m/t [— > mav vy +5 > [~ fap®(@a—mp)]| dt,

a€, aaﬁigw
«

(5.17)
which is identical to[(A.2]7) in AppendixJA. It is clear fromiththat the virial stress
tensor is only an approximation and tends to the Hardy saegke volume of the
averaging domain is increased. This is because the ratieeafhieasure of bonds that
cross the surface to those which are inside the averagingidodecreases as the
size of the domain increases. The difference between tia siress tensor and the
Tsai traction was analytically calculated for a one-dimenal chain by Tsai (see
[63]). Since, taking the averaging domain size to infinitgdgiivalent to taking the
thermodynamic limit in this context, the Hardy and virialests expressions become
identical in this limit. Since the virial theorem was alsaided in Sectio P for the
case of equilibrium statistical mechanics, it follows tta Irving—Kirkwood—Noll
procedure is consistent with the results of equilibriuntistiaal mechanics in the
thermodynamic limit.

5.4 DA stress tensor

It was seen in Sectidn 4.2, that the DA stress tensor, defin@d33), is derived using
an appropriate generator in the systematized Murdoch-yHaatedure. However,
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unlike the Hardy stress, the DA stress cannot be derived fhenfrving—Kirkwood—
Noll procedure. It is also worth noting that the stress temgeen by [4.3B) is in
general non-symmetric, and only under very special comulitiyields a symmetric

tensor[[45].

5.5 Uniqueness of the macroscopic stress tensor

Three possible sources of non-uniqueness for the stressrtieave been identified in
our discussion:

1. Given that there are multiple potential extensions (sel2#), different force
decompositions are possible and hence different pointstiess tensors can be
obtained.

2. For a given pointwise stress tensor, a new pointwisesstrsich also satisfies
the balance of linear momentum, can be obtained by adding anétrary tensor
field with zero divergence.

3. The generalization of the Irving—Kirkwood—Noll procediin Sectiof 316 to arbi-
trary “paths of interaction” leads to the possibility of nRepmmetric expressions
for the pointwise stress tensor.

We address the first two issues in this section. The thirdcgoofrnon-uniqueness
is only possible in systems where the discrete particlesmyakp the system pos-
sess internal structure, such as internal polarizatiompior. $or systems of discrete
particles without internal structure only straight bonds jgossible due to symmetry
arguments. We leave the discussion of particles with ilafestnucture to future work.

Uniqueness and potential energy extensions

The first source of non-uniqueness of the stress tensoratecketo the potential en-
ergy extension discussed in Section 3.4. We show belowltleatniacroscopic stress
tensor, calculated as a spatial average of the pointwisgsstensor with constant
weighting function, is always unique in the thermodynarittl (see footnot&ll on
page®), i.e., the difference between the spatially-aw#tampintwise stress tensors
resulting from two different extensions tends to zero, asvillume of the averaging
domain is increased.

The discussion below is limited to 5-body potentials sirtcean be easily ex-
tended to any interatomic potential. We first show that thetrioution due to any
cluster of5 particles within the averaging domain is zero. Without lokgenerality,
we may assume that our system consistsdirticles interacting with an interatomic
potential energy given by

Vit = V(x1, . .., @s5). (5.18)
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Fig. 5.1 A cluster of5 particles that lie completely inside the averaging domad®s not contribute to the
ambiguity in the stress tensor.

Let Vine(Ci2, - - -, Cas) andVit, (Cia, - - -, C45) be two different extensions 8f,,; from
the shape spacgto R' (see Section 3l4), and for aBy= (ri2,...,745) € S, let
OVint , \ T3 — Ty
o e = , 5.19
Jap(1 xs) Pos (s) o (5.19)
Vi, \ T3 — T
* .. = 1 .2
faB (w17 ) :L.5) 8Ca5 (S) Taﬁ ) (5 0)

be their corresponding force decompositions. ketind o* denote the resulting
pointwise stress tensors in the Irving—Kirkwood—Noll pedare fromV;,,; andVyi,,
respectively. Let2,, denote the averaging domBircentered at: that is used to cal-
culate the Hardy stress tensor. Using (5.2b) and notingaihtite bonds lie within2,
the difference between the Hardy stress tensors resutiimg these two representa-

tions, for the special case of a constant weighting funci®given by

A = ) — . -A « a ) 21
o(z,t) =0y -0, = 2¢vol Z/ fap @ (o — xp)ldt, (5.21)
a#B

WhereA.fozB = fu,@ - fo*cﬁ'

We would like to show thallen; = 0, wheren, is the normal vector as shown
in Fig.[5.1. The essential idea to is to interchange the ratégn and summation in
(5:23) and split the terms appearing in the summation irgotions, such that each
fractionyields a zero contribution tdon, . In order to show this, we partition the av-
eraging domain into regions such that no region containstecfgain its interior and
the partition surfaces are perpendicular to the normal Esgé5.1). Lethp denote
the width of the partition”. Using [5.21), we can now writdon; as

Aony = /H_TZ Z —Af, 0 —Tp) M he
LT 27 vol(12,) 27’V01 as(® b 1|(

P apnpP *ﬂ?ﬁ) n1|

1 t+71
=— AF; .22
27 vol(£2,,) /t zp: hpAFp, (5-22)

39For simplicity assume that the averaging domain is convex.
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where} ;- » denotes the summation over the bonds crossing partiticand

B (xa —xp) -1
AFp =) [—Afaﬁm (5.23)
aBNP

is thenetforce on particles on one side of the partition due to pasidn the other
side. Since both representations give the same total for@aoh particle, the force
difference, or net force, on each particle is zero and tloeeefA Fr = 0. For exam-
ple, for the partition shown in the figure,

AFp = =2(Afs1 + Afas). (5.24)
SinceAfy5 = —Afsq, Wwe have

AFp = —2(Afs1 + Afas + Afas + Afsa)
= —2(Afa3+ Afas) — 2(Afs1 + Afsa)
= 2Afi" —2AfiM =040 =0. (5.25)

Hence,Aon, = 0. Undertaking a similar argument in the other directions see
that Aon,; = 0. These results together imply thd- = 0. Given this, we can con-
clude that any cluster of particles that lies entirely witthie averaging domain does
not contribute to the spatial average of the difference betwtwo stress definitions.
Consequently, the only non-zero contribution comes froos¢hclusters for which
the bonds connecting its particles cross the averaging thoiace this contribution
scales as surface area, it tends to zero as volume tendstityinfi

Uniqueness and the addition of a divergence-free field tetiess

The second source of non-uniqueness of the stress tensdvasithe addition to it
of a divergence-free field. This issue is partly addressethéyesult (shown in Sec-
tion[5.3) that the spatially-averaged pointwise stresveaes to the virial stress in
the thermodynamic limit (see footndie 1 on pale 5). Consluepointwise stress;,
obtained through the Irving—Kirkwood—Noll procedure, alhisatisfies the balance
of linear momentum, and a new pointwise stress= o + &, wherediv, & = 0.
Clearly,s also satisfies the balance of linear momentum and is therafso a valid
solution. The spatially-averaged stress obtained fronmévedefinition is

&w(%t)=/RSw(y—w)&(y,t)dy=/RSw(y—w)(ﬂ(y,t)Jr&(y,t))dy- (5.26)

We showed in Sectioh 5.3 that in the thermodynamic limit, spatially-averaged
pointwise stressg, converges to the virial stress. We also expggtto equal the
virial stress in this limit (since any macroscopic stresstraonverge to this value
under equilibrium conditions). Thereforg, {5.26) reduttes

lim [ w(y —x)o(y,t)dy =0, (5.27)
TD R3

wherelimp refers to the thermodynamic limit. Equatién(3.27) placesang con-
straint on allowable forms fad, the implications of which are left for future work.
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Fig. 6.1 The virial pressure as a function of time is plotted for aaterl cube of aluminum &00K. The
total pressure/virial pressure is the sum of the kinetic goténtial pressures.

6 Numerical Experiments

In this section, we describe several numerical experiméntslving molecular dy-
namics and lattice statics simulations, conducted to caplifferences in the spatially-
averaged stress measures derived in Settion 5. We cons&delatdy stress defined
in (5.2), the Tsai traction defined in(5.3), the virial sgelefined in[(5.27) and the
DA stress defined il {4.83). We will sometimes refer to thes¢ha “microscopic
definitions” or the “microscopically-based stress tensors

6.1 Experiment 1

We begin with the study of the kinetic part of the stress terfsmm the discussion
in Sectionb, it is clear that unlike the definition for the @utial part of the stress
tensor, there is no ambiguity in the definition for the kingdart of stress. However,
the kinetic part of the stress may appear to be at odds witbdhgnuum definition
of stress that is stated solely in terms of the forces acteigen different parts of
the body. The need for the kinetic part of stress becomesappahen considering
an ideal gas, where the potential interaction term is zerddfinition and therefore
it is the kinetic term that is wholly responsible for the tsamission of pressure.

To demonstrate that the kinetic term in the stress tensos thwkeed exist, we
perform the following constant energy molecular dynamiggiation of an isolated
cube. The cube, consisting @000 aluminum atoms in a face-centered cubic (fcc)
arrangementl() x 10 x 10 unit cells), is floating freely in a vacuum. The atoms intérac
according to an EAM potential for aluminum due to Ercolessl Adams([16]:

1
VitM =5 D Vas(rag) + D _Ualpa). pa=)_ folrap)-  (61)
o, « B
azf BF#a
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Hereld,,, called theembedding functians the energy required to embed particlén

the electron density,,, due to the surrounding particles, afif{r. ) is the electron
density of particle3 atx,,. The initial positions of the atoms are randomly perturbed
by a small amount relative to their zero temperature equulib positions and the
system is evolved by integrating the equations of motiore itial perturbation

is adjusted so that the temperature of the cube is akI{ (small fluctuations in
temperature are expected since temperature is not cattialthe simulation). Since
the block is unconstrained, we expect the stressn the box and consequently the
pressure, defined by = fé tr o, to be zero. The virial expression for calculating
the pressure follows froni (A.23) as

1 — 1 S
P=1=|> malvall® =5 Y [[fasllras|, (6.2)
3V - 2 —
a#f
where

.fozB — int

OVEM 45—z,
Orap TagB

(6.3)

The three curves shown in F[g_B.1 are the potential andikipatts of the pres-
sure and the total pressure as a function of time, calculaed) [6.2). As expected
the total pressure tends to zero as the system equilibtdtegever, the potential
and kinetic parts areon-zerg converging to values that are equal and opposite such
that their sum is zero. More interestingly, the kinetic pantot insignificant for our
system. This clearly shows that kinetic part cannot be mégdeeven when consid-
ering solid systems. This can be guantified by noting thatkthetic part in [6.2)
is simply the temperature per unit volume given by the eqtitjen theorem [26],
kT = 2T /3N, whereT is the kinetic energy. Thereforle (6.2) reduces to

1 1 R T —
a,f3
a#fB

For example at 300 Kk T' = 0.02585 eV. The lattice spacing for the system consid-
ered is equal td.032A. Hence, the volume per atomi§/N = 4.0233 /4 = 16.387A
and the kinetic pressure1s577 meV /A. This translates t852.394 MPa, which is a
considerable stress.

6.2 Experiment 2

It is clear from Sectiof 611, that the kinetic stress is aldizguantity and cannot be
neglected. In this experiment, we further explore the pitar between the potential
and kinetic parts of the stress.

Consider a crystalline solid at a relatively low temperatunder uniform stress.
The atoms will vibrate about their mean positions with an ke that is small rel-
ative to the nearest-neighbor spacing. Now imagine plaaifigai planeP between
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Fig. 6.2 The effect of the position of the Tsai plane on the potential kinetic parts of stress. Frames (a)
and (b) show schematic diagrams of a two-dimensional tukamdattice with (a) the Tsai plane positioned
midway between the lattice planes and (b) the Tsai plandiposd almost on top of a lattice plane. The
open circles correspond to the ideal lattice positions. Alaek circles are atoms that are shown in mid-
vibration relative to the lattice site as indicated by thear The Tsai plane is indicated by a vertical
dashed line. The bonds crossing it appear as dotted linamé-(c) shows the plot of the kinetic part of
stressok |, potential part of stress}, and the total stress;1, as a function of the normalized position
sp = (xp —x1)/Ax of the Tsai plane P, whetep is the position ofP, =, is the position of the lattice
plane, andAz is the spacing between the lattice planes.

two crystal lattice planes and measuring the traction adtol$ P is midway between
the lattice planes (see Fig. 6.3(a)), we expect that relgtiew atoms will cross?
and that consequently the kinetic stress will be small onexgro. In contrast, i?

is close to the lattice plane there will be many such crossargl the kinetic stress
will be large in magnitude. This seems to suggest that tfaidgrawill change as a
function of the position of?, which would be incorrect since the system is under uni-
form stress. The reason that this does not occur is that éveeyan atom crosses,
the bonds connected with it reverse directions with resjpeBt changing a positive
contribution to the contact stress to a negative one andveisa (see the bonds con-
nected with atomd in Fig.[6.2(a) and Fid. 6.2(b)). This effect on the potenpiait

of the stress exactly compensates for the change in magnitlithe kinetic stress
leaving the total stress constant. This is demonstratecriaaily in Fig[6.2(d). This
graph shows the results obtained from a molecular dynarriogation of the sys-
tem described in Sectign 6.1, with periodic boundary coonét The periodic length
of the box is set based on the zero temperature lattice gpaConsequently upon
heating by a temperature changeif’, a compressive stress is built up in the box
according to

e=s:0+ Iap AT =0, (6.5)

wheres is the elastic compliance tensor and is the coefficient of thermal expan-
sion. Inverting this relation for an fcc crystal with cubimsmetry oriented along the
crystallographic axes, we have

011 = 0929 = 033 = —(011 + 2012)AT =0, (66)
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with the rest of the stress components zerd If (.6 )are the elastic constants of the
material. Substituting in the appropriate values for Essl-Adams EAM aluminum
[16] (c11 = 118.1 GPa,c1» = 62.3 GPa,ar = 1.6 x 107°K~1) and AT = 310K,
giveso = —1.2 GPa. We see that the total stress in Fig. 6]2(c) is constgatdess of
the position of the Tsai plane and equal to the expected wdlud .2 GPa computed
above. However, the kinetic and potential parts change diaally. When the Tsai
plane is away from the lattice planes>(= +0.1), the kinetic stress is zero and the
entire stress is given by the potential part of the stressh@3 sai plane moves closer
to a lattice plane|ép| — 0), the kinetic stress becomes more negative (increasing
in magnitude) and the potential part of stress increasegantly the right amount
to compensate for this effect. When the Tsai plane is righioprof a lattice plane
(sp = 0), both the kinetic stress and potential stress are maximumeignitude, but
their sum remains equal to the constant total stress. Thisigking demonstration
of the interplay between the kinetic and potential parthefdtress tensor.

6.3 Experiment 3 and 4

In this section, the predictions of the microscopicall\s®e@ stress tensors are com-
pared with analytical solutions from elasticity theory fao simple boundary-value
problems. This is a revealing test, since stress is a cantinconcept and therefore
the microscopic definitions should reproduce the resulésafntinuum theory under
the same conditions. We perform two numerical experimémisach experiment, an
atomistic boundary-value problem is set up, and the valoagpated from the dis-
crete system are compared with the “exact” result computad Elasticity theory
for the same problem using material properties predictetiéynteratomic potential
used in the atomistic calculations. The numerical expenisiare conducted at zero-
temperature since there is no controversy regarding thre &rof the kinetic stress
which is the same for all stress definitions. Therefore, apamison at zero tempera-
ture is sufficient to probe the differences between the stre=asures, at least under
equilibrium conditions. The properties we are interestestiidying are:

1. Symmetry of the stress tensor.

2. Convergence of the stress tensor to the continuum valiletiaé size of the av-
eraging domain (a three-dimensional volume in the caseriaflviHardy and DA
stresses and a plane in the case of the Tsai traction).

Inter-atomic Model

The numerical experiments in this section are carried ongus Lennard-Jones po-
tential. The exact choice of material parameters is unitaodr since the objective
of the experiment is to compare the values obtained from ticeostopically-based
stress for the discrete system with the “exact” values abthifrom the continuum
elasticity theory for the same material. The Lennard-J@agameters; ando, are
therefore arbitrarily set to 1. The potential has the follayform:

1 1

o(r) =4 LE - T—G} —0.00787” + 0.0651. (6.7)
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Note that the above equation has been rendered dimengsdnylexpressing lengths
in units of o and energy in units of. As seen in the above equation, the Lennard-
Jones potential is modified by the addition of a quadratimtdrhis is done to ensure
that ¢(reut) = 0 @and @’ (rent) = 0, wherer.,, = 2.5, denotes the cutoff radius
for the potential. We refer to this as the “modified Lennaodek potential”. The
ground state of this potential is an fcc crystal with a l&tt@onstant ot = 1.556
and elastic constants;; = 87.652,c12 = c44 = 50.379. The conventional elastic
moduli associated with the cubic elastic constants[are [34]

FE = (C%I + C11C12 — 26%2)/(611 + 612) = 50877, (68)
U = Cqq4 = 50.379, (69)
V= 012/(011 + 012) = 0.365, (610)

whereFE is Young's modulusy is the shear modulus, ands Poisson’s ratio. (In the
above, elastic constants are given in units@f3. Poisson’s ratio is dimensionless.)

Experiment 3: Dependence of the microscopically-basedston the averaging do-
main size

The main aim of this experiment is to study the dependendeeddtress given by var-
ious definitions (Hardy, Tsai, virial and DA) on the size o #wveraging domain. We
consider the special case of uniform uniaxial loading with = 1 (all other stress
components zero). Our system is a cub@®k 10 x 10 unit cells €000 atoms) with
periodic boundary conditions applied in all directions.iffgpose the uniaxial load-
ing, the periodic lengths (i = 1, 2, 3) in the three directions are modified according
to the linear elastic solution for uniform straining:

li =10a(1 + o011/ E) = 10.197, (6.11)
lg = 13 = 10@(1 — V0'11/E) = 9.928. (612)

We then compute the stress at the center of the periodianddlk increasing the size
of the averaging domain. In comparing the different stresfindions, the domain
size is set by the Tsai plane which is taken to be a square héorttze 1-direction
with the same dimension in the 2 and 3-directions. The averaging domain for the
Hardy, virial and DA stresses is a sphere of diaméterw. The weighting function,
w(r), for the Hardy stress is taken to be constant with a suitalbléfging function,

ifr<R—¢
Tw)} fR—e<r<R, (6.13)
otherwise

w(r) = cl1 —COS(R’

€

Owo= O

wherec is chosen appropriately to normalize The results are presented in Higl6.3,
where the stressy; is plotted as a function of the normalized domain sizes
w/10a. (Recall that the applied valueds; = 1.) We make the following qualitative
observations based on these results:

1. The Hardy stress converges to the exact value most quicklystress definitions
and has the least noise.
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Fig. 6.3 Plot showing the dependence ®f; , calculated using different definitions on the averaging do
main size. The variable represents the ratio of the domain size to the length of teesy (0 unit cells).

2. The normal stress computed from the Tsai traction osedlabout the exact value
with a fluctuation amplitude that decays rather slowly withdhin size. The os-
cillations reflect the symmetry of the crystal as new bondsrethe calculation
with increasing plane size.

3. The virial stress is always smaller than the Hardy and 3seasses since it does
not take into account the bonds that cross out of the avegatgimain. It appears
to be converging towards the exact value, but convergerstevisand even at the
maximum domain size studied, the virial stress still hagaicant error.

4. The DA stress is much smaller than all other stresses dyreater averaging.

Experiment 4: A plate with a hole under tension

We now consider one of the classical elasticity boundatyevproblems: an infinite
plate with a hole subjected to uniaxial tensieg at infinity. This is traditionally
named theKirsch problem for an isotropic material model. Our objective istmn-
pare the microscopically-based stresses computed foceethssystem set up for the
Kirsch problem with the exact solution. A complication in kiveg this comparison
is that the fcc Lennard-Jones material we are considerirgyistalline with cubic
symmetry and is not isotropic. We must therefore comparditeete solution with
the more general solution for the Kirsch problem from theotlgeof elasticity for
anisotropic media [34]. For anisotropic materials, thesgrconcentratiéfh at the
hole is no longeB (as it is for an isotropic material), but depends on the Elasin-
stants of the material. For the elastic constants of the aehdones model i (8.7),
we obtain a stress concentration20£08. In addition to the overall stress concentra-
tion, the analytical solution provides the complete stfeedd about the hole. We can
therefore compare the microscopically-based stress figttishe continuum result.

40The stress concentration is defined as the ratio of the mamisitess to the applied stress,. The
maximum stress for the Kirsch problem occurs at the circuenfee of the hole.
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Fig. 6.4 Normalizedo11 component of the stress along the = 0 line for an anisotropic plate with
a hole subjected to uniaxial tension in the 1-direction. Ehecoordinate is normalized by the height
of the atomistic model. The exact solution for an infinitetplabtained from anisotropic linear elasticity
(black solid line) is compared with the results obtainearfithe three microscopic definitions in the three
columns: Hardy, Tsai and virial. The four rows corresponfbto different averaging domains constituting
1%, 2.5%, 5% and10% of h.

In order to model an infinite elastic space, we consider elargare plate ori-
ented along the crystallographic axes consisting@f,590 atoms, with a hole of
radius 25a, whereqa is the lattice constant. The plate is constructed by stackin
100 x 100 x 10 unit cells and excluding the atoms that lie withing the radifithe
hole. The relatively large system size helps to ensure ligatariation of the contin-
uum stress is small on the lengthscale of the lattice spagidgminimizes boundary
effects near the hole. The atoms interact according to thdifrad Lennard-Jones
potential given in[(6]7).

As before, the averaging domain size is set by the length adthwf the Tsai
plane, with the Hardy, virial and DA stress using a sphereiaéter equal to the
length of the Tsai plane. The system is loadeddhy = o, by displacing the
atoms according to the exact solution from continuum meiclsaor linear elastic
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anisotropic medid [34]. The applied stress is sufficienthal, so that the assump-
tion of material linearity and the small strain approxiratinherent in the elasticity
theory provide a good approximation for the behavior of §sem. After the atoms
are displaced, the stress tensor is evaluated on a unifatistiibuted grid of points
on the mid-plane of the plate locatedwgat= 0. A grid of 100 x 100 points is chosen
to evaluate the virial, Tsai and Hardy expressions and aatril x 30 is chosen
to evaluate the DA stress tensor. A coarser grid is used &oobth stress due to the
higher computational cost of this calculation.

First, we consider the;; component of the stress along the = 0 line, where
we expect the maximum value at the hole surface. The regeltslatted in Figl &4,
which shows a comparison between the exact value and therthiozoscopic stress
definitions (Hardy, Tsai and virial) for four different aaging domains ranging from
1% to 10% of the heighth of the atomistic model. We see that the Hardy and Tsai
stresses faithfully follow the exact solution, but thenghalf as their averaging do-
main overlaps with the hole. This drop-off reflects the faetttthe microscopically-
based stress measures are bulk expressions. The smalkarettegying domain, the
closer the microscopic measures can approach the exags$ swacentration at the
hole surface, however, this increased fidelity comes at¢iseaf significantly large
fluctuation about the exact value. The virial stress is iidafly zero for the smallest
averaging domain because it is too small to contain combletels. For the same
reason, the Hardy stress experiences very large fluctsadioth a nearly constant av-
erage value. For larger averaging domains, the Hardy dtessmaller fluctuations
than the other stress definitions.

The reason that the drop-off effect described above is soquiaced in this sim-
ulation, is that the system is very small by continuum staasldf instead of a hole
with a radius of25a, we studied a plate with a hol&0 or 1000 times larger, using
the same-sized averaging domain, the spatially-averagedssions would get much
closer to the correct value before dropping off over the skengthscale as seen in
Fig.[6.4. However, microscopic stress measures are ofteypeted for small sys-
tem sizes and therefore the difficulties presented in thedigue typical of realistic
atomistic simulation.

Next, we explore the stress field over the entire plane. Ther ctensity plots
given in Fig[6.5, show variation ef; in the mid-plane of the plate. It can be seen
that the stress within the hole is zero. Comparing the ptots{; of the virial stress
(Fig.[6:5(B)), Tsai stress (Fifj. 6.5(c)), Hardy stress (Bi&(d)) and the DA stress
(Fig.[6-5(€)) with the exact solution (Fig. 6.5(a)), we seattthe first three defini-
tions capture the overall variation in,, whereas the DA stress does not. However,
it is clear that the microscopically-based stress in alheft¢ases is smeared relative
to the stress given by the exact solution and none reach Hut stxess concentration
of 2.408. This is a result of the averaging procedure involved intadl definitions
as explained above. Although the DA stress tensor plotteﬁjg@ captures
the variations in the field, it is much smaller in magnitudenpared to the exact so-
lution. This is because of the greater degree of averagivaviad in the DA stress

41Fig.[6:5(€) and Fid_6l8 are generated from a much coarséicgmpared to the other plots due to
the computational expense of the DA stress definition.
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Fig. 6.5 Color density plots ofr11 are plotted on a common scale: (a) exact (b) virial (c) TspHardy
(e) DA. Results plotted for an averaging domain sizé @ of the height of the model.
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Fig. 6.6 Color density plots of error imr11, defined as the absolute value (@f;1 — a?’f"“)/a?’l‘a“,
whereo is the stress calculated using (a) virial (b) Tsai and (c)atress definitions.
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tensor. Overall, the Hardy stress is less noisy than thalwiriTsai definitions due to
the smoothing afforded by the weighting function. (Thisasdto see in the figure.)
The stress computed from the Tsai traction, in particusamare noisy since the av-
eraging is limited to a plane compared with the volume aviegagf the Hardy and
virial definitions. However, this more localized definitienables the Tsai stress to
approach the exact stress concentration most closely of @ik microscopic defini-
tions. Similar results were observed by Cheung and [Yip [7ilie stress near a free
surface.

The relative error iy, for the three microscopic definitions is shown in gl 6.6.
Of the three definitions, the stress computed from the Taatitm is generally more
accurate, followed by the Hardy stress and then the viniakst As noted above, the
Tsai stress does particularly well in capturing the vaoiagiin the stress field close
to the hole where the fact that it is localized in one dirati®particularly helpful.



69

- exact;

+0.2
: +0.1
. 0.0
L e —0.1
e —0.2

o |

3 o

(©

Fig. 6.7 Color density plots of the shear stress components comaedthe Tsai traction, (aji2 and
(b) 021, and (c) the exact shear stress, plotted on a common scale.
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Fig. 6.8 Color density plots of the DA shear stress components;{apnd (b)o21, plotted on a common
scale.

It is also interesting to examine the shear stress compsneigt[6.7 shows the
exact result from the continuum solution and the ando»; components of the stress
tensor computed from the Tsai traction from two differerarigs, one normal to the
1 direction and the other normal to tBalirection. We see that the Tsai stress repro-
duces the exact distribution and appears generally syrmanéhis suggests that the
symmetry of the Hardy stress is preserved while taking té tio arrive at the Tsai
traction. The DA stress tensor is in general non-symmétag, put from Fig[ 6.8(3)
and Fig[6.8(B) we observe that in this casg, ando,; appear similar. Interestingly,
in contrast to the normal stress, the magnitude of sheassisecaptured by the DA
stress definition, at least for the case studied here. Tis@ndar this is not obvious.

Overall, we can summarize our results as follows. Of thetdedinitions studied,
the Hardy stress is generally preferred. It tends to be tlom#mest and provides good
accuracy away from surfaces as long as the lengthscale dviehwthe continuum
fields vary is large relative to the atomic spacing. In situa where either of those
conditions break down, the Tsai traction provides a bedtalized measure of stress.
The virial stress is less accurate than both. From a conmipo#dtstandpoint, the
virial stress has the advantage of being easiest to comphbgeevaluation of the
bond function in the Hardy stress makes it slightly more espe to compute, but
comparable to the virial stress. The Tsai traction is mdftdIt and time consuming
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to compute, since it requires the detection of bonds andstbat cross a given plane
during the averaging process. Furthermore, this evaluatiast be performed for
three separate planes in order to obtain the full stresstémshree dimensions.

7 Summary and future work

In this paper, we provide a unified interpretation and pdsgiieneralization of all
commonly used definitions for the stress tensor for a dis@ggtem of particles. The
macroscopic stress in a system under conditions of thernsdic equilibrium are
derived using the ideas of canonical transformations witfé framework of classical
statistical mechanics. The stress in non-equilibriumesystis obtained in a two-step
procedure:

1. The Irving—Kirkwood—Noll proceduré [27, 48] is applienl dbtain apointwise
(microscopic) stress tensor. The stress consists of aikipatt o, and a poten-
tial parto,. The potential part of the stress is obtained for multi-bpdtentials
which have a continuously differentiable extension froma ghape space of the
system to a higher-dimensional Euclidean sffdcEnis generalizes the original
Irving—Kirkwood—Noll approach that was limited to pair patials. This general-
ization is obtained based on the important result that fgmanulti-body potential
with a continuously differentiable extension, the forcespparticle in a discrete
system can always be expressed as a suoepfral forces. In other words, the
strong law of action and reactiois always satisfied.

2. The pointwise stress obtained in the first step is sppat@airaged to obtain the
macroscopic stress.

This two-step procedure provides a general unified framleirom which various
stress definitions can be derived includalbof the main definitions commonly used
in practice. In particular, it is shown that the two-stepgadure leads directly to the
stress tensor derived by Hardy in[23]. The traction of Cguaihd Tsail[5, 8, 63] is
obtained from the Hardy stress in the limit that the averggliomain is collapsed to
a plane. The virial stress of Clausius and Maxwéll[8[40,id Hn approximation of
the Hardy stress tensor for a uniform weighting function rehgonds that cross the
averaging domain are neglected. The Hardy stress and siresds become identical
in the thermodynamic limit. In this manner, clear connetdiare established between
all of the major stress definitions in use today.

The unified framework described above yieldsyanmetricstress tensor faall
interatomic potentials which have an extension, when us#dthe standard Irving—
Kirkwood—Noll procedure. However, there are materials @tune, such as liquid
crystals, which can have non-symmetric stress tensors.der @o explore the pos-
sibility of non-symmetric stress, the Irving—Kirkwood—INarocedure is generalized
to curved paths of interactioas suggested in [52]. This involves the generalization
of Noll's lemmas in [48], originally derived for straight hds, to arbitrary curved
paths as defined in this paper. These generalized lemmastdeanon-symmetric

42Most practical interatomic potentials satisfy this coimfis.
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stress tensor when applied within the Irving—Kirkwood-INwbcedure. It is pos-
tulated that curved paths of interaction may be importargyistems with internal
degrees of freedom, such as liquid crystals and objectivetsires([28]. This is left
for future work.

One of the key points addressed in this paper is the uniqearidbe stress ten-
sor. Three possible sources of non-uniqueness of the sénessr are identified and
addressed:

1. Different pointwise stress definitions can be obtainediftierent potential en-
ergy extensions. This is demonstrated through a simpledanensional exam-
ple. We also show that regardless of the uniqueness of tiiévgiee stress tensor,
the macroscopicstress tensor obtained through a procedure of spatial gingra
is unique since the difference resulting from alternatisefwise stress tensors
tends to zero as the volume of the averaging domain is inedeas

2. The pointwise stress tensor is obtained by solving therza of linear momen-
tum,div,, oy = h(x), whereo is the potential part of the stress tensor, afid)
is a known function. The Irving—Kirkwood—Noll procedurads to a closed-form
solution to this problem. However, an arbitrary tensor feeldith zero divergence
can be added ter, without violating the balance of linear momentum. We argue
that in the thermodynamic limit, the non-equilibrium ss@btained through our
unified two-step process must converge to the virial strégsgjoilibrium statis-
tical mechanics. This is similar to the argument made by Wajret al. [64].
This condition is satisfied by the general stress expreghiainwe obtain. Any

divergence-free stregs added to this stress must therefore also disappear under

equilibrium conditions. This greatly restricts the alld@&forms ofé.

3. The generalization of the Irving—Kirkwood—Noll proceddrom straight bonds
to arbitrary curved paths of interaction implies the exist of multiple stress
tensors for a given system. However, the existence of cupeeds implies the
existence of internal structure for the discrete partidgsossibility already dis-
cussed by Kirkwood in[29]. For a system of point masses witlaternal struc-
ture, only straight bonds are possible due to symmetry aegisnand therefore
this source of non-uniqueness is removed. The general dasenesymmetric
stress must be addressed within the context of an appreprnaltipolar theory
as discussed by Pitte[i[49]. We leave this to future work.

In addition to the unified framework described above whictbéased on the
Irving—Kirkwood—Noll procedure, we also investigated terdoch—Hardy proce-
dure [23[43] of defining continuum fields as direct spati@rages of microscopic
guantities. We demonstrate that this approach can be sgsgmn by adopting a
non-local continuum perspective and introducing suitaj@eerator functions. The
various stress definitions resulting from the Murdoch—hktgnibcedure, such as the
Hardy, virial and the “double-averaged” stress (suggebteMurdoch in [47]) can
be derived from this unified framework. Although we share ¢bacern regarding
the ambiguity of the probability density functions usedha trving—Kirkwood—Noll
procedure that led Murdoch to develop the direct spatiateaying approacH [46],
we feel that since these probability density functionsteixigrinciple, the Irving—
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Kirkwood—Noll formalism is the correct framework to phrabe problem in with
approximations introduced later to derive practical egpi@ns.

Finally, numerical experiments involving molecular dyriesnand lattice statics
simulations are conducted to study the various stress tefiaiderived in this paper.
It is generally observed that the Hardy stress definitioreappto be most accurate
and converges most quickly with the averaging domain sizesitlations where a
more localized measure of stress is needed, such as neacesidr defects, the Tsai
traction can be used instead. The virial stress is less attitan the other two def-
initions and converges most slowly with averaging domaze sits main advantage
is its simple form and low computational cost. One of the niotgresting results,
which requires further study, comes from Experiment 2 ofystalline system under
uniform hydrostatic stress. Fig. 6.2(c) shows that althotig potential and kinetic
parts of the Tsai traction largely depend on the positiohefftsai plane between two
adjacent lattice planes, the total stress remains congthis calculation provides a
striking demonstration of the interplay between the kimatid potential parts of the
stress tensor.
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A Derivation of the virial stress tensor

The original virial theorem was a scalar equation credite@lausius([8], which gives a definition for the
pressure in a gas. Maxwell [40] extended this result to aoteversion which gives a definition for stress.
We present here a more modern version of the virial theoretiygesed on the derivation by Marc and
McMillan [38].

Consider a system a¥ interacting point masses. The position of each point magisén by

Lo =T+ 7o, (A1)

wherez is the position of the center of mass of the system of pastialedr, is the position of each point
mass relative to the center of mass. From Newton’s secondiawave

fa = Pa, (A.2)
where f,, is the force acting on particle, andp,, is its linear momentum given by
Pa = ma(@ + 7a) = ma (@ + v3"). (A3)

In &3), ma is the mass of particle: andv:®! = 7, is its relative velocity with respect to the center of
mass. Since the position of the center of mass given by

_ Za MaTa

x , (A.4)
2o Ma
we have the following identities which will be used later:
> mara =0, Y mavy =0. (A.5)
Next, we apply a tensor product with, to both sides of (AP) to give
Ta ® fa =Ta ® Pa- (A.6)
On using the identity
d
a(Ta ® Pa) = vffl ® Pa + Ta @ Pa, (A-7)
equation[[A5) becomes
d
_("'a ® pa) =Wa + 27-@7 (AS)

dt

whereW, = ro ® fo is thevirial tensorand7 o = %(vgd ® pa) is thekinetic tensorof particle

a. Equation [[A:8) is called thelynamical tensor virial theoreniThis “theorem”, which is simply an
alternative form for the balance of linear momentum, becoomeful in a modified form after making
the assumption that the atoms in the system amgdtionary motion This means that there exists a time
scaler, which is short relative to macroscopic processes but lefaive to the characteristic time of the
atomic system, over which the atoms remain close to thajirai positions with bounded positions and
velocities. This condition is satisfied for a system of atemdergoing thermal vibrations about their mean
positions as expected in a solid at moderate temperaturexploit this property of the system, we define
the time average of any quantifyover the timer as

_ 1 T
ff;Afmﬁ (A9)

and apply this averaging tb (A.8):

=Wa + 2T . (A.10)

1
—(ra ® pa)
T 0

Assuming thatr, ® p, is bounded, and a separation of time scales between migicsaed continuum
processes exists, the term on the left-hand side can be rsasteal as desired by taking sufficiently
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large. Therefore the above equation is reduce¥Vo, = —27 ... Summing over all particles gives the
tensor virial theorem
W = —2T, (A.11)

whereW is the time-averaged virial tensor of the system,

W=>7a® fa, (A.12)

andT is the time-averaged kinetic tensor of the system,

_ 1 -
T = 5 za:mavgfl ® Bq. (A.13)

The expression fof” can be simplified by substituting iR (A.1) and noting that dueeparation of time
scalest is constant on the atomistic time scaleso that

— 1 _—
T= > mavt @ v + | > mavie! | @ @ (A.14)
[e3 @

The term in the square brackets is zero du€igl(A.5), and thus
T 1 rel rel
T - E;mava ® vl (A.15)

It is important to note that the virial theorem [D(Al11) aipplequally to continuum systems at rest as
well as those that are not in macroscopic equilibrium andheeefore in a state of motion. This statement
hinges on the separation of scales assumption accordingittwontinuum motion occurs so slowly rel-
ative to atomistic processes so as to be essentially cdrsighat time scale.

The virial theorem leads to a definition for stress by cormgidethe idea that the forces on the particles
in the system can be divided into two parts: an internal giftt, resulting from the interaction of particle
o with other particles in the system and an external pgft’, due to its interaction with atoms outside
the system and due to external fields,

fo =" + £ (A.16)

In terms of continuum variables, the external part of thedaran be identified with the tractiot,that the
surrounding medium applies to the system of particles aadbtinly forcepb, acting on it, where is the
mass density antl is body force per unit maf8. Substituting[A.1b) into{A.1R), divides the virial tensor
for the system into internal and external parts,

W:Wint +Wext :Zwa®fént+ZTa®f§Xt' (Al7)
«@ «

Rewriting the external virial 2]

Wext = 3 Ta ® £ :=/ .’1:®pde+/ z®RtdA, (A.18)
= 2] Xe}

where(? is the domain occupied by the system of particles@fds a continuous closed surface bounding
the particles and separating them from surrounding pesticThe variabler is a position vector within

43These density, traction and body forces peintwisecontinuum fields, i.e., they are defined at all
points but do not include the spatial averaging implicit e ftmacroscopic continuum description. See
Sectior 3L for more details on pointwise fields.

44\We accept this step as an ansatz due to the many assumptioh@ih one of which being tha® is
large enough to express the external forces acting@ amthe form of the continuum tractiot
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(2 and on the surfac@s2. Substituting the Cauchy relatioh,= on, whereo is the pointwise Cauchy
stress, into the above equation and applying the divergéremeem, we have

Wext = / [z ® pb + dive (z @ 0)] dV = / [aT +a® (dive o+ pb)] av.  (A.19)
2 k9]

We assume that the pointwise fields satisfy the same balaaeseds the macroscopic continuum fields.
Therefore, the ternfdivg o + pb) is zero under equilibrium conditions (sée(3.23)). We tieeeehave
that

Wext = Vot (A.20)

where we have defined the continuum stress field as the avesihgeofo over the domairf2:
1
Oav = — / odV, (A.21)
Ve

HereV is the volume of2[X Substituting [A.2D) into[{A.117) and then into the virial trem in [A11)
gives

Oay = 7% [Wint + 27_—]T . (A22)

Substituting in[[A15) and the definition 3W;,,; from &11), we have

1 e - - 1 - 1
Tov = v Z fint @ po + Z maeuie! @ vrel | . (A.23)
« «

This is the virial stress tensor. It is an expression for thedDy stress tensor given entirely in terms of
atomistic quantities. Finally to demonstrate the symmefrthe virial stress, we rewritgf "t as the sum
over its decomposition:

L =" fap, (A.24)
o5

wheref,, 3 are the terms in the central-force decomposition corredipgrio a potential energy extension
as explained in Sectidn_3.4. Substituting_(A.24) ifio (A, 2@ obtain

1 [
Tav =~ Y Fap@Ta+ > mavil @i (A.25)
a,f a
a#p
Now recalling thatf,s = — fz., we have the following identity
1 1
D fap®ra=33 (fap®ra+t fa®@rs) =33 fap® (ra—7s). (A.26)
o, o, a,p
a#pB a#pB a#p

Substituting[[A.2B) intd(A.25), we have

1)1 _— _—
o =~ |5 E fap @ (ra —rg) + 5 maquie! @ viel|. (A.27)
a,B a
a#B

This expression shows that the virial stress is symmeitricesf, 5 is parallel torq — r3.

45The definition of this volume is somewnhat arbitrary. One cassibly definel” as the total volume
of the Voronoi cells of the atoms lying withif?.
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B Distance geometry

In Sectior 3.#, we saw that the interatomic potential enévgy;, of a set of N particles can be defined
as a function on 8N — 6 dimensional manifold embedded &N (N —1)/2 where each point on this
manifold represents aiV(N — 1)/2-tuple of real numbers which correspond to the distancesdsst
the N particles inR3. We also noted that thes¥ (N — 1)/2 distances must satisfy certain geometric
constraints in order to be physically meaningful (see fo®ff9). In this appendix, we discuss the nature
of these geometric constraints.

An entire field of geometry, referred to distance geometryhas emerged to describe the geometry
of sets of points in terms of the distances between them. Tibjea was first treated systematically by
Karl Menger in the early twentieth century and summarizethnbook by Blumentha[[3]. More recent
references include_[4,10,111.]25)56]. Our discussion betowartly based o[ [50], which provided a
particularly clear explanation of the subject.

The key function in distance geometry is tBayley-Menger determinang : RVN(V-1)/2 _, R,
which is defined as

0 s12 si13 - sin 1
s12 0 s23 -+ san 1
s13 s23 0 -+ s3n 1
X2, QNy 23y (vmnyn) = det | - (B.1)
S1N S2n SsN -0 01
1 1 1 1 0
where
sap =C24 (B.2)
For a system ofV points,{x1, ...,xx}, embedded ifR?3, the Cayley-Menger determinant evalu-
ated at the pointiriz, ..., 7(v—1)n)), Wherer, g = ||za — xgl, is related to the volum&y —; of a
simplex of N points in an (V — 1)-dimensional space through the relation:
2N=1((N —1)!)?
x(riz, ..., r(N_1)N) = %Vﬁf*l(wh“wml\’)' (B.3)
ForN = 2,
x(r12) = 2L, (B.4)
whereL = /s12 is the length of the segment defined by the two points./FoE 3,
x(r12,713,723) = —16A2, (B.5)
whereA is the area of the triangle defined by the three points.¥ct 4,
x(r12,...,734) = 288V2, (B.6)

whereV is the volume of the tetrahedron defined by the four points./¥*o> 5, we must have
x(riz,...,r(n—1)n) =0, (B.7)

for points inR3 since any simplex with five or more points has zero volume ieettimensional spal8.

We now seek to go in the opposite direction. Rather than ctingpthe squared distancds g}
from a set of points and using the Cayley-Menger determinantompute volumes, we seek to verify that
a set of distances actually corresponds to a set of pointsée-tdimensional space. In technical terms, we
want the points associated with the distances terbbeddablén R3. In order for this to be the case the
following conditions must be satisfi&d:

46This is easier to visualize in two-dimensional space. It ta@se, a simplex with four vertices (a
tetrahedron) would have zero volume since its vertices evbelconfined to a plane. The same applies to
higher-order simplexes and the corresponding higherrarclemes.

47Actually, a somewhat stronger theorem can be proved. If tiatpare numbered in such a way that
the first four points satisfy conditiofi$ 1 ad 2, then condi[3 and4 need only be applied to groups of
points that include these four points. Seke [3] for details.
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Fig. B.1 A cluster of 5 particles. The cluster is shown projected ¢néoplane normal to the plane defined
by particles 1, 2 and 3 shown as a horizontal line. Atom 4 Ims/a this plane. There are two possible po-
sitions for atom 5 (at the same height above or below the P2s8), where the distanc§sio, ..., 735}
are all the same and only distance; differs. The alternative position of atom 5 and correspogdiis-
tancerys are shown in parentheses. Based on Fig. 2ih [39].

X(TQB,TQW,TBW) <0, Va < <7,

X(TaBs Tays Tass -+ Tys) = 0, Va < B <y <9,

X(TaB Tay: Tass Tae, - -+, Tse) = 0, Va< f<vy<d<e,

4. X(Tap, TaysTassTaes Tacs - ,Tec) =0,  Ya<B<y<s<e<(.

wnN e

For example, Conditiofl1 states that the Cayley-Mengemht@nts computed for all distinct triplets of
points must be negative or zero. Conditibiis] 2-4 apply sityit® sets of four, five and six points. The
above conditions are easy to understand in ternis_of (B.Z0y(Bhey enforce the correct sign of areas and
volumes in three-dimensional space and the degeneracyticonid (B.7).

As an example, let us see how this is applied for a clusté¥ ef 5 particles. There aré5 x 4)/2 =

10 distances, and onlyx 5 —6 = 9 degrees of freedom. There is therefore one more interatdistance
than is needed to describe the configuration and indeed iheree Cayley-Menger determinant coming
from conditior(3:

0 s12 513 s14 s15 1
s12 0 s23 s24 s25 1
s13 s23 0 s34 s35 1
S14 S24 834 0 s45 1
S15 S25 S35 Sa45 0 1

1 1 1 1 10

X(T‘lg,. . .,T‘45) = det

This expression can be expanded out leading to the followimjcit expression [39H

5 5 5 5 5
B i Z Z Z Z Z [248@{3557576566 — 654355y5+556a

a=1p=1v=16=1e=1

— 85a851556eSey — 12(Sa)? 54656 + 3(3a[3)2(576)2] =0, (B.8)

where in the above equatien, s = sz, Whenevero > 3. For a given set of nine squared distances, say
{s11,--., 335}, (B.8) provides a quadratic equation for the tenth squaigdnte,sss,

A(s45)% + Bsas + C = 0, (B.9)

48Note that Martin[[39] has a small typographical error in leiktion.
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whereA, B andC are functions of the other squared distances. (Sée [30kfdicé expressions for, B
andC'.) This means that there are two possible solutionsfgr(and hence also fats5) when the other
distances are set. This situation is demonstrated i Fig. B.

The above example shows that although only 9 degrees ofdneede necessary to characterize a
cluster of 5 particles, selecting a subset of 9 distancestisutfficient. For this reason, any interatomic
potential energy extension (see Secfior 3.4) must be esgutess a function oV (N — 1)/2 arguments
and not just an arbitrary subset2# — 6 of them.

C Useful lemmas

In his 1955 paper on the "Derivation of the fundamental eiquatof continuum thermodynamics from
statistical mechanics{[48], Walter Noll proves two lemnthat play an important role in his derivation.
In this section, for completeness, we derive Noll's firstfeenand then extend it to arbitrary curved “paths
of interaction”. We then derive Noll’s second lemma for thisre generalized case.
Let f(v, w) be atensor-valued function of two vectarsandw, which satisfies the following three

conditions:

1. f(v,w) is defined for alv andw and is continuously differentiable .

2. There exists & > 0, such that the auxiliary functiog(v, w), defined through

g(v, w) := (v, w)|[v]*T[|lw|>+°, (€1

and its gradient¥/,,g and V., g are bounded.
3. f(v,w) is antisymmetric, i.e.,

f(v,w) = —f(w,v). (C2)

Lemma C.1 Under the conditions mentioned above, the following equatioldg?J

1. !
/ngS flxe,y)dy = -5 divg /z€R3 {/5:0 fle+sz,x—(1—s)z)ds| ® zdz. (C.3)

Proof Conditions (1) and (2) guarantee absolute convergence l&ovd the order of integration to be
swapped. Froni{Cl2) we have

[ tewd=-[  iwe (C.4)
y€eR3 y€eR3
Introduce new integration variables: on the left replgosith z = & — y and on the right replacg with
z =1y — x. Thus,

/ fle,z — 2z)dz = 7/ flx+ z,x)d=. (C.5)

z€R3 z€ER3

Note that a minus sign on the left-hand side is dropped by ddlymeversing the integration bounds. The
two terms in[[Ch) are equal tﬁy crs f(z, y)dy, we can therefore write

| S@vw=g [ fee sz ©6)
Next, from the chain rule, we have
Vaef(x+sz,z—(1—5)z) =Vof + Vuf, (C.7)
wheres € R. Similarly,
%f(ersz,mf(lfs)z)=(va+Vw_f)z. (C.8)

49The expression in Noll's paper appears transposed relatif@3). This is because the gradient and
divergence operations used by Noll are the transpose ofefimitibns. See end of Sectifh 1.
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Fig. C.1 The property of gath of interactionas mentioned in the definition is illustrated in this figure.
Two paths of interaction for the paifst, v) and(w, ©) are shown in the figure.

Combining [C.Y) and{C]8), we have
Vaof(x+sz,x— (1 —s)z)|z= dif(:v +sz,xz— (1—9)z). (C.9
S

Integrating the above equation with respecs foom 0 to 1 gives

{Vz ' fle+sz,x—(1—s)z)ds| z=f(x+z,z) — f(x,z — 2). (C.10)
s=0

Substituting[[C.T0) intd {Cl]6), and using the identity
(VaT)a =dive (T ® a), (C.11)
whereT () is a tensor of any order andlis a vector which is not a function af, gives [C.3). O

LemmdC.1 provides us a solutidi(z), to the equation
[ f@y)dy = dive Fla) (C.12)
yER3

It is clear thatF'(x) is only a single solution out of an infinite set of solutionsttkliffer from it by a
divergenceless second-order tensor field. The followingie extends Lemnia (.1 to accommodate other
possible solutions of which the solution given[in(IC.3) ipadial case. Before that we give the following
definition:

Definition 3 For anyw andv € R3, the “the path of interaction” ofu and v is a contour that joings
andw such that for anyiz and® in R?, where||u — v|| = ||& — ||, the path of interaction of pairéu, v)
and (@, ) are related by a rigid body transformatiof@ | c), for someQ € SO(3) andc € R3, with
Q(u —v) =u—vandQ = I, whenevern — v = & — v. See FigCLClL.

Basically, this definition enforces the condition that tipath of interaction” is a contour whose shape is
only a function of the distance between the points that inects. The shape of the contour for a given
distance is assumed to be dictated by the nature of bondithg imaterial. Here we assume this shape to
be known. (See also footndie]28 on phgk 35).
Let (e1, e2, e3) be a basis oR®. For everyl > 0, let2; : [0,1] — R? be a continuously differen-
tiable contour inR? such that
Yi(s)-e1=sl, 0<s<1, (C.13a)

7,(0) = (0,0,0); % (1) = (1,0,0). (C.13b)
Fig.[C:2 describes the properties of the contumentioned above.

By the definition of thepath of interactionit is clear that the shape of any path of interaction can be
described by the contod;. Moreover, from its properties it is possible to explicithgfine the path of
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(@) (b)

Fig. C.2 Frame (a) shows an admissible contour and frame (b) showsaamissible contour which
violates property[{C.13a) Gf;.

Fig. C.3 The contourl'(.; 3, x, z) passes througl and the vector is the difference between the two
end points of the contour. It is related to the cont@qy, |, such that any point . (s) is mapped to
I'(s; 3, x, z) (shown above as a hollow dot) by a rigid body moti@.. |c), whereQ . represents rotation
ande = ¢ — Q27 (5), represents translation.

interaction as a function df;, a given pointe through which it passes, and a vectowhich connects its
end points. More precisely, foraty< 5 < 1,2 € R3 andz € R3, letI'(-; 5,2, 2) : [0,1] — R3
denote a path of interaction &, such that

I(s;5,2,2) =2+ Qxz [X2)(s) — 1)z (5)], (C.14)

for someQ. € SO(3), satisfying
z
Qze1 = ——, (C.15)
1]

as shown in Fid_C]3. Let us now verify thAtqualifies as a path of interaction. It is clear frdm (Q.14) tha
the contourd(s; 5, x, z) andY| ;| (s) are related through a rigid body transformation, such that

I'(s;s,z z2) =, (C.16a)
I';s,z,z)—I'0;5x,z2)=—=z. (C.16b)

Fig.[C.3 describes the properties mentioned above.
From [C.I6h), it follows thaf” passes through the poimtand from [CI6b) it is clear that is the

vector joining its endpoints. Moreoveép . in (C.I4) is made independent &fo ensure that the condition
Q. = I wheneverr — y = u — v, in the definition of the path of interaction, is satisfied.
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For anyz € R3, let
CT:{F(';gymyz) :0<5< 17ZER3}7 (017)

denote the set of all paths of interaction that pass thratdtiow for everyy on a contoud” € Cg, lety |
denote the projection @f on the line joining the end points of the path. Itis easy totkaty | (s; 5, z, z)
is given by

yi(s;8,@,2) =+ Q= [s]z]ler — T”z”(g)} . (C.18)
Therefore, from[{C.I8a) we have
x) (5,®,2) =y.(55®,2) =z + Q [5]z]ler — 1) (5)] - (C.19)
Using [C.I5) this simplifies to
z) (5,x,2) =2 — 32— Q7| (5). (C.20)

We now generalize Noll's Lemnfa (.1 to arbitrary paths ofriatgon.

Lemma C.2 For given paths of interaction oR? x R?, and under conditionSIf13 ofi (v, w) given at
the start of this appendix, the following equation holds:

1
‘L,f@wMy=%@wﬂﬂJéﬂf@L+hwlfuf@acMLmﬂ®MMa

€R3
(C.21)
wherez | (5, z, z) is given by[[C20).
Proof From [C6) we have
1
[ tewd=3[ fes-2-fatza)d (€22
yERS 2 z€ER3
Next, from the chain rule, we have
Vef(zL +5z,2z1 —(1-3)2) = (Vof +Vuf)Vaezy, (C.23)
wheres € R. From [C.20) we hav& x| = I. Therefore
Vef(xy +3z,2, — (1—35)z) =Vof+ Vuf. (C.24)
Similarly,
d _ . d.’cl
d—gf(:clqtsz,mLf(lfs)z):(vaJrwa) ngz . (C.25)
From [C.20), we have
dx
RN (©26)
S
Substituting [[C.26) intd{C.25), we have
d
d_gf(wl +5z,2) —(1-38)z) = = (Vof +Vuf) Qz‘r\/\zu(g)- (C.27)

Combining [C:2#) and{C.27), we have

d

gf(iEL +35z,x) —(1-38)2)=—[Vaf(xy +52,2; — (1 —35)z)] QzTﬁz”(E). (C.28)
Integrating both sides over the intenak [0, 1], we have

f(wl(lv €T, Z) + =z, mL(17 Z, Z)) - f(wl(ov €T, Z), mL(Oy €T, z) - Z) =

1
_ /7_0[wa(mL + 52,0, — (1-5)2)Q=Y],(5)ds.
o (C.29)
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Using [C.20)),[[C.T5), and properfy (C.13b) X, we have
z, (0,x,2) == ; z), (1, z,2) = (C.30)
Substituting,[[C.30) intd {C.29) and using the iden{iiyI@), we have
1
flet+z,x)— f(x,z—2) = —dive / fley +35z,2; —(1-3)z) ®Q2Tﬁzu (s)ds. (C.31)
5=0
If we now substitute the above equation irffo (¢.22), the lensyproved. O

Lemma C.3 Letf2 C R?, with a piecewise smooth surfaSe For given paths of interaction dR® x R3,
and under the conditiodS[1-3 gf(v, w) given at the start of this appendix, the following equatiotds:

/meg/yem f(@,y) dy dee
1
= %/S/ER3 /*—of(wl +s5z,x; —(1— §)z)(QzTﬁz”(§) -n)dsdzdS(x), (C.32)

wherex | (5, x, z) is given by[[C.20) and2° := R3\ (2.

Proof We immediately see that due to antisymmetryféb, w), we have

[ | feydyde=o. (C.33)
xze2 Jyen

Therefore, we have

/men /yegc fl@,y) dy do = /men /y€R3 f(z,y) dy de. (C.34)

From Lemm&CR, we have

[ty = dive g(a), (c.35)
yERS
with
1 1
s@ =5 [ [ feitsmes-1-990Q ), 0)dsdz (€36
2 Jzer3 Js=0
wherez | (5, z, z) is given by [C.2D). From the divergence theorem we have
/ dive g(x) de = / g(xz) - n(x) dS(x). (C.37)
xeR2 S
Using [C33){[C317), we obtail (CB2). o

D Derivation of the Hardy stress from the Murdoch—Hardy procedure

The Hardy stressi-g’v, was derived in Sectidn 4.2 subject to the condition:

dive 64 (2, t) = D fapw(®a — ). (D.1)
@B
a#f

Recall that the expression fui'ﬁ’v given in [232) was obtained by using the generator functbn
(see[[4.2PB)), which is actually a distribution. Due to thledrent obstacles present in this procedure (see
footnote 3% on pade#7), we now derive the expression for treydstress given i (4.82), by avoiding
the use of the Dirac delta distribution.



83

Definition D.1 Consider the following definitions for the functiof(«) and associated functions taken
from [18]:
1. Define a mollifier; € C'>°(R3) by

Y
n(r) = COxP (\\r\\2—1> il <1, (D.2)
0 if el > 1,

where the constard’ > 0 is selected so thaf,; ndr = 1.
2. Foreacte > 0, set

1 T
e = —n(-). D.3
ne(r) = 0 (%) (03)
The family of functionsy. areC° and satisfy
/ nedr = 1. (D.4)
R3

The support ofjc is contained in a ball of radiuscentered a0.
3. Ifthe functionh : R3 — Ris locally integrable, define its mollificatiohe () as

he(r) == [ netr = (o) dy. (D.5)
We use the following property of mollifiers in our derivation
he — h almost everywhere as — 0. (D.6)
For the proof of[[D.B), refer td [18]. Equation ([.1) can beriten as
dive &4 o (@,1) = Y fapV/w(@a — @)uw(Ta — ), (0.7)
s

sincew(zq — ) > 0. Now, sincey/w(xg — y) is locally integrable, using property (D.6), we have

o —x) = li —Yne(xs — Ta +x — y) dy, D.8
Volwe @) = lim | \ful@s —ynces —wate - y)dy ©8)

e—0

where referring tol{DB)h(y) = Jw(xg —y) andr = xg — o + . Using [O.8), (DY) can be

rewritten as

divg &57\,(:1:,15) = lim E /3 fag\/w(:ca —xz)w(zg — Y)ne(xg — Ta +x — y)dy
R
a,B
a#B

e—0

i < . D.9
lim S [ gt vt)dy ©9)
a,B
B

Now, note that the functiop¢, 5 is anti-symmetric with respect to its argumentsandy, for eache > 0
and satisfies all the necessary conditions for the appicati Lemmd&C.L in Append[xIC. Therefore, from
it follows that

L . 1. !
divg agyv(m,t) :6151}) QX; (—5 divg /]R3 [/5:0 faﬁ\/w(wa —x—sz)w(xg —x+ (1 —5)2)
aZp

X ne(xp — o +z)ds:| ®zdz>

~im > (-5 [ /;Ovm (Farfutaa —2 = s2)u(es 2+ (1= 5)2))

B
azB

X Ne(xg —xa + 2)zds dz), (D.10)
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where in the last equality we have used the identity givefCidd) and the fact thaj. is independent of
2 in the above equation. Sinee is positive, and ifw ,s a continuously differentiable function, it follows
that

Ve (fa,@' \/w(ma —x—sz)w(xg —x+ (1 - s)z)) z (D.11)

is a locally integrable function of. Therefore, by properfy D6 and using the propeity(r) = ne(—),
we have

dive 6 (@, t)

1
_% ;‘; /s:o Vo [fapw(@o — @ — 5(Ta — 5))] (Ta — z4) ds
il
1 1
= divg |:2 az’; A:O [fapw((l —s)xa +sxg — ) ® (o — xg)] d5:| )
o
(D.12)

where referring to{DI5y = xo — ©g, y = 2, andh(z) is given in [0.11). Comparing both sides of
(D:12), we arrive at the expression for the Hardy stressotegisen in [Z:3R).
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