Skip to main content
Log in

A possible role of CTV.20 gene methylation in response to Citrus tristeza virus infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus tristeza virus (CTV) is the pathogen causing tristeza diseases in several Rutaceae species and leading to significant economic damage to citrus worldwide. The Ctv locus provides broad spectrum resistance to CTV in Poncirus trifoliata L. Raf. This locus is present also in tolerant and susceptible species, so an epigenetic mechanism of Ctv expression regulation was proposed. Indeed, a difference in plant 24-nt sRNAs distribution corresponding to CTV.20 gene was previously observed in susceptible species following CTV infection. This gene, encoding for a plant virus movement-like protein, was investigated as a candidate gene for CTV susceptibility. Here, we show the presence of differences in methylation status of a specific region of CTV.20 in two susceptible species, sour and sweet orange, following CTV infection. On the contrary, no significant differences were observed in the tolerant Citrange carrizo following the infection. Moreover, a hypermethylation of the whole CTV.20 gene was observed in Citrange carrizo both healthy and infected, and in healthy sour and sweet orange. This preliminary study allows hypothesizing a possible role of methylation in regulation of CTV.20 expression involved in the CTV susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Albiach-Martí, M. R., Grosser, J. W., Gowda, S., Mawassi, M., Tatineni, S., Garnsey, S. M., & Dawson, W. O. (2004). Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Molecular Breeding, 14, 117–128.

    Article  Google Scholar 

  • Bian, R., Nie, D., Xing, F., Zhou, X., Gao, Y., Bai, Z., & Liu, B. (2013). Adaptational significance of variations in DNA methylation in clonal plant Hierochloe glabra (Poaceae) in heterogeneous habitats. Australian Journal of Botany, 61, 274–282.

    Article  CAS  Google Scholar 

  • Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research, 7, 1513–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cicatelli, A., Todeschini, V., Lingua, G., Biondi, S., Torrigiani, P., & Castiglione, S. (2014). Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. Environmental Science and Pollution Research, 21, 1723–1737.

    Article  CAS  PubMed  Google Scholar 

  • Csorba, T., Pantaleo, V., & Burgyan, J. (2009). RNA silencing: an antiviral mechanism. Advances in Virus Research, 75, 35–71.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Pendon, J. A., & Ding, S. W. (2008). Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annual Review of Phytopathology, 46, 303–326.

    Article  PubMed  Google Scholar 

  • Folimonova, S. Y., Folimonov, A. S., Tatineni, S., & Dawson, W. O. (2008). Citrus tristeza virus: survival at the edge of the movement continuum. Journal of Virology, 82, 6546–6556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, A. I., Saiz, A., Acedo, A., Ruiz, M. L., & Polanco, C. (2013). Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.) Plant Growth Regulation, 70, 227–236.

    Article  CAS  Google Scholar 

  • Li, J. T., Yang, J., Chen, D. C., Zhang, X. L., & Tang, Z. S. (2007). An optimized mini-preparation method to obtain high-quality genomic DNA from mature leaves of sunflower. Genetics and Molecular Research, 6(4), 1064–1071.

    CAS  PubMed  Google Scholar 

  • Lu, R., Folimonov, A., Shintaku, M., Li, W. X., Falk, B. W., Dawson, W. O., & Ding, S. W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences, 101, 15742–15747.

    Article  CAS  Google Scholar 

  • Matzke, M. A., & Mosher, R. A. (2014). RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews Genetics, 15, 394–408.

    Article  CAS  PubMed  Google Scholar 

  • Maunakea, A. K., Chepelev, I., Cui, K., & Zhao, K. (2013). Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Research, 23, 1256–1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClelland, M., Nelson, M., & Raschke, E. (1994). Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Research, 22, 3640–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkov, T. E., Yang, Z., Rai, M., Molina, J. J., Roose, M. L., & Ye, X. (2010). Toward positional cloning of the Citrus tristeza virus resistance gene. In A. V. Karasev & M. E. Hilf (Eds.), Citrus tristeza virus complex and Tristeza diseases (pp. 187–201). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., & Burgyan, J. (2005). Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. Journal of Virology, 79, 7812–7818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno, P., & Garnsey, S. M. (2010). Citrus Tristeza diseases – A worldwide perspective. In A. V. Karasev & M. E. Hilf (Eds.), Citrus tristeza virus complex and Tristeza diseases (pp. 187–201). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Moreno, P., Ambros, S., Albiach-Martí, M. R., Guerri, J., & Pena, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9, 251–268.

    Article  CAS  PubMed  Google Scholar 

  • Rai, M. (2006). Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Molecular Biology, 61, 399–414.

    Article  CAS  PubMed  Google Scholar 

  • Rathore, M. S., Mastan, S. G., & Agarwal, P. K. (2015). Evaluation of DNA methylation using methylation-sensitive amplification polymorphism in plant tissues grown in vivo and in vitro. Plant Growth Regulation, 75, 11–19.

    Article  CAS  Google Scholar 

  • Regulski, M., Lu, Z., Kendall, J., Donoghue, M. T., Reinders, J., Llaca, V., Deschamps, S., Smith, A., Levy, D., McCombie, W. R., Tingey, S., Rafalski, A., Hicks, J., Ware, D., & Martienssen, R. A. (2013). The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Research, 23, 1651–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Ruiz, S., Navarro, B., Gisel, A., Pena, L., Navarro, L., Moreno, P., Di Serio, F., & Flores, R. (2011). Citrus tristeza virus infection induces the accumulation of viral small RNAs (21–24-nt) mapping preferentially at the 30-terminal region of the genomic RNA and affects the host small RNA profile. Plant Molecular Biology, 75, 607–619.

    Article  CAS  PubMed  Google Scholar 

  • Sabetta, W., Alba, V., Blanco, A., & Montemurro, C. (2011). sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods, 7, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuorinen, A. L., Kelloniemi, J., & Valkonen, J. P. T. (2011). Why do viruses need phloem for systemic invasion of plants? Plant Science, 181, 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z. N., Ye, X. R., Molina, J., Roose, M. L., & Mirkov, T. E. (2003). Sequence analysis of a 282-kilobase region surrounding the citrus tristeza virus resistance gene (Ctv) locus in Poncirus trifoliata L. Raf. Plant Physiology, 131, 482–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Shi, H. J., Wang, M. L., Cui, L., Yang, Z. G., & Zhao, Y. (2015). Analysis of DNA methylation of Spirodela polyrhiza (Grater Duckweed) in response to abscisic acid using methylation sensitive amplied polymorphism. Russian Journal of Plant Physiology, 62, 127–135.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study has been carried out with the financial support of the University of Bari - Fondo Ateneo 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Fanelli.

Ethics declarations

Funding

This study was funded by Fondo Ateneo 2014.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanelli, V., De Giovanni, C., Saponari, M. et al. A possible role of CTV.20 gene methylation in response to Citrus tristeza virus infection. Eur J Plant Pathol 150, 527–532 (2018). https://doi.org/10.1007/s10658-017-1293-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1293-7

Keywords

Navigation