Skip to main content
Log in

Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Gram-positive bacteria isolated from the rhizosphere and inside the roots of rice were characterized for plant growth promoting (PGP) traits and antifungal activity against some rice plant pathogenic fungi of rice. The results showed the endophytic and rhizosphere isolates had different PGP traits and antifungal activity. Only one rhizosphere isolate and one endophytic isolate showed highly inhibitory effects against the mycelial growth of all fungal rice pathogens tested in this study. The best bacterial isolates, based on multiple PGP traits and inhibitory effects against the mycelial growth of all fungal rice pathogens, were identified. Based on biochemical tests and by comparison of 16S rDNA sequences, the endophytic isolate REN3 and the rhizosphere isolate REN4 were closely related to Bacillus cereus and Bacillus mojavensis respectively. The broad-spectrum antifungal strains, the REN3 and REN4 isolates analyzed here, exert multiple PGP and antagonistic activity and represent an excellent option to be used as either potent bio-promoting or bio-control agents in rice under in vitro conditions. This application may help to minimize dependence on pesticides, which have adverse effects on the environment, finally leading to have sustainable environments. In conclusion, the results of antifungal activity showed rice harbors bacteria with a good potential in biocontrol of rice fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47(3), 282–288.

    Article  Google Scholar 

  • Avis, T. J., Gravel, V., Antoun, H., & Tweddell, R. J. (2008). Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biology and Biochemistry, 40(7), 1733–1740. doi:10.1016/j.soilbio.2008.02.013.

    Article  CAS  Google Scholar 

  • Backman, P. A., & Sikora, R. A. (2008). Endophytes: an emerging tool for biological control. Biological Control, 46(1), 1–3. doi:10.1016/j.biocontrol.2008.03.009.

    Article  Google Scholar 

  • Bell, C., Dickie, G., Harvey, W., & Chan, J. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41(1), 46–53.

    Article  CAS  Google Scholar 

  • Berg, G., & Hallmann, J. (2006). Control of plant pathogenic fungi with bacterial endophytes. In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes (Eds ed., pp. 53–69). Berlin, Heidelberg: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Chen, F., Wang, M., Zheng, Y., Luo, J., Yang, X., & Wang, X. (2010). Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumber fusarium wilt by Bacillus Subtilis B579. World Journal of Microbiology and Biotechnology, 26(4), 675–684.

    Article  CAS  Google Scholar 

  • Costa, L. E. d. O., Queiroz, M. V. d., Borges, A. C., Moraes, C. A. d., & Araújo, E. F. d. (2012). Isolation and characterization of endophytic bacteria isolated from the leaves of the common bean (Phaseolus vulgaris). Brazilian Journal of Microbiology, 43(4), 1562–1575.

    Article  Google Scholar 

  • Etesami, H., & Alikhani, H. A. (2016a). Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 94, 11–24. doi:10.1016/j.biocontrol.2015.12.003.

    Article  Google Scholar 

  • Etesami, H., & Alikhani, H. A. (2016b). Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Archives of Agronomy and Soil Science (just-accepted).

  • Etesami, H., Hosseini, H. M., & Alikhani, H. A. (2014a). Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 20(4), 425–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etesami, H., Hosseini, H. M., Alikhani, H. A., & Mohammadi, L. (2014b). Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of Plant Growth Regulation, 33(3), 654–670.

    Article  CAS  Google Scholar 

  • Garipova, S. R. (2014). Perspectives on using endophytic bacteria for the bioremediation of arable soils polluted by residual amounts of pesticides and xenobiotics. Biology Bulletin Reviews, 4(4), 300–310. doi:10.1134/S2079086414040033.

    Article  Google Scholar 

  • Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., & Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895–914.

    Article  CAS  Google Scholar 

  • Kobayashi, D., & Palumbo, J. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. Microbial endophytes, 199–233.

  • Kuarabachew, H., Assefa, F., & Hiskias, Y. (2007). Evaluation of Ethiopian isolates of Pseudomonas fluorescens as biocontrol agent against potato bacterial wilt caused by Ralstonia (Pseudomonas) solanacearum. Acta Agriculturae Solvenica, 90(2), 125–135.

    Google Scholar 

  • Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., Geraldi, I. O., Pizzirani-Kleiner, A. A., & Azevedo, J. L. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6(12), 1244–1251.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P., Dubey, R., & Maheshwari, D. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Kurabachew, H., & Wydra, K. (2013). Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control, 67(1), 75–83.

    Article  Google Scholar 

  • Li, X., Hu, B., Xu, Z., & Mew, T. (2003). Threshold population sizes of Bacillus Subtilis B5423-R to suppress the occurrence of rice sheath blight. China Journal Rice Science, 17(4), 360–364.

    Google Scholar 

  • Lugtenberg, B. J. J., Dekkers, L., & Bloemberg, G. V. (2001). Molecular determinants of rhizosphere colonization by pseudomonas. Annual Review of Phytopathology, 39(1), 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari, D., Aeron, A., Dubey, R., Agarwal, M., Dheeman, S., & Shukla, S. (2014). Multifaceted beneficial associations with pseudomonas and rhizobia on growth promotion of Mucuna pruriens L. Journal Pure Applied Microbiology, 8(6), 4657–4667.

    Google Scholar 

  • Manandhar, H., Lyngs Jørgensen, H., Mathur, S., & Smedegaard-Petersen, V. (1998). Suppression of rice blast by preinoculation with avirulent Pyricularia oryzae and the nonrice pathogen Bipolaris Sorokiniana. Phytopathology, 88(7), 735–739.

    Article  CAS  PubMed  Google Scholar 

  • Mendes, R., Pizzirani-Kleiner, A. A., Araujo, W. L., & Raaijmakers, J. M. (2007). Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology, 73(22), 7259–7267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, L. A., & Reynolds, C. M. (2005). Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends in Biotechnology, 23(1), 6–8. doi:10.1016/j.tibtech.2004.11.010.

    Article  CAS  PubMed  Google Scholar 

  • Patten, C. L., & Glick, B. R. (2002). Role of pseudomonas putida indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68(8), 3795–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22(2), 187–193.

    Article  PubMed  Google Scholar 

  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya, 17, 362–370.

    CAS  Google Scholar 

  • Rosenblueth, M., & Martínez-Romero, E. (2004). Rhizobium etli maize populations and their competitiveness for root colonization. Archives of Microbiology, 181(5), 337–344.

    Article  CAS  PubMed  Google Scholar 

  • Sandhu, A., Halverson, L. J., & Beattie, G. A. (2009). Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities. Microbial Ecology, 57(2), 276–285.

    Article  CAS  PubMed  Google Scholar 

  • Schwyn, B., & Neilands, J. (1987). Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160(1), 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Song, F., & Goodman, R. M. (2001). Molecular biology of disease resistance in rice. Physiological and Molecular Plant Pathology, 59(1), 1–11.

    Article  CAS  Google Scholar 

  • Whipps, J. M. (1987). Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytologist, 107(1), 127–142.

    Article  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(suppl 1), 487–511.

    Article  CAS  PubMed  Google Scholar 

  • Zinniel, D. K., Lambrecht, P., Harris, N. B., Feng, Z., Kuczmarski, D., Higley, P., et al. (2002). Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology, 68(5), 2198–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the Center of Excellence for Soil Quality Improvement for Balanced Plant Nutrition, Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, for funding a part of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Etesami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etesami, H., Alikhani, H.A. Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. Eur J Plant Pathol 147, 7–14 (2017). https://doi.org/10.1007/s10658-016-0981-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0981-z

Keywords

Navigation