Skip to main content
Log in

The type III effector PthG of Pantoea agglomerans pv. gypsophilae modifies host plant responses to auxin, cytokinin and light

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Pantoea agglomerans pvs. gypsophilae and betae are related gall-forming bacteria. While P. agglomerans pv. beta initiates gall formation on both beet and gypsophila, the gypsophila pathovar causes gall formation only on gypsophila. PthG is a type III effector determining host range of these pathogens, initiating the hypersensitivity response in beet, but is a virulence factor in gypsophila. The role of PthG and its mode of action in pathogenicity remain unclear. Transgenic Nicotiana tabacum plants expressing pthG were created. PthG over-expression was often lethal, and surviving pthG-bearing lines showed morphological and developmental abnormalities such as leaf deformation and abnormal vascular branching, dwarf stature, loss of apical dominance, seedling apical meristem loss, rapid germination, reduced fertility, plants which cease growth for several weeks later producing a new lateral shoot, and loss of endophyte resistance (bearing unusual saprophyte populations). Some transformants required light for seed germination and showed rapid seedling greening. In in vitro assays PthG expression modified responses to auxin and cytokinin, inhibiting root and shoot production but not callus formation. In vitro differentiation responses to light were modified by PthG expression. This effector may interfere in the plant auxin signalling pathways resulting in higher observed auxin and ethylene levels, and subsequent blockage of root and shoot development. Apparently PthG tunes the host response to high hormone levels, changing the developmental response. Since shoot and root development are delayed, we hypothesize that callus/gall formation is supported by this activity. However, interference by PthG with hormone and light signalling does not explain all the responses observed in pthG-bearing lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BA:

Benzyl adenine

CT:

Cycle threshold

GA3 :

Gibberellic acid

HR:

Hypersensitive response

hrc :

hrp conserved

hrp :

Hypersensitive response and pathogenicity

IAA:

Indole-3-acetic acid

LB:

Luria Broth

MS:

Murashige and Skoog (1962) medium

NAA:

1-naphthaleneacetic acid

Pab :

P. agglomerans pv. betae

Pag :

P. agglomerans pv. gypsophilae

PDA:

Potato dextrose agar

qRT-PCR:

Quantitative reverse transcriptase (Real Time) PCR

STS:

Silver thiosulphate

T3SS:

Type III secretion system

TC:

Transgenic (“empty vector”) control

References

  • Achard, P., Vriezen, W. H., Van Der Straeten, D., & Harberd, N. P. (2003). Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. The Plant Cell, 15, 2816–2825.

    Article  CAS  PubMed  Google Scholar 

  • Aloni, R., Wolf, A., Feigenbaum, P., Avni, A., & Klee, H. J. (1998). The never ripe mutant provides evidence that tumor induced ethylene controls the morphogenesis of Agrobacterium tumefaciens-induced crown galls on tomato stems. Plant Physiology, 117, 841–849.

    Article  CAS  PubMed  Google Scholar 

  • Aloni, R., Langhans, M., Aloni, E., Dreieicher, E., & Ullrich, C. I. (2005). Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. Journal of Experimental Botany, 56, 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Barash, I., & Manulis-Sasson, S. (2007). Virulence mechanisms and host specificity of gall-forming Pantoea agglomerans. Trends in Microbiology, 15, 538–545.

    Article  CAS  PubMed  Google Scholar 

  • Barash, I., & Manulis-Sasson, S. (2009). Recent evolution of bacterial pathogens: the gall-forming Pantoea agglomerans case. Annual Review of Phytopathology, 47, 133–152.

    Article  CAS  PubMed  Google Scholar 

  • Benjamins, R., & Scheres, B. (2008). Auxin: the looping star in plant development. Annual Review of Plant Biology, 59, 443–465.

    Article  CAS  PubMed  Google Scholar 

  • Beno-Moualem, D., Gusev, L., Dvir, O., Pesis, E., Meir, S., & Lichter, A. (2004). The effects of ethylene, methyl jasmonate and 1-MCP on abscission of cherry tomatoes from the bunch and expression of endo-1, 4-β-glucanases. Plant Science, 167, 499–507.

    Article  CAS  Google Scholar 

  • Brunings, A. M., & Gabriel, D. W. (2003). Pathogen profile Xanthomonas citri: breaking the surface. Molecular Plant Pathology, 4, 141–157.

    Article  CAS  PubMed  Google Scholar 

  • Büttner, D., & Bonas, U. (2006). Who comes first? How plant pathogenic bacteria orchestrate type III secretion. Current Opinion in Microbiology, 9, 193–200.

    Article  PubMed  Google Scholar 

  • Campanoni, P., Blasius, B., & Nick, P. (2003). Auxin transport synchronizes the pattern of cell division in a tobacco cell line. Plant Physiology, 133, 1251–1260.

    Article  CAS  PubMed  Google Scholar 

  • Casanova, E., Zuker, A., Trillas, M. I., Moysset, L., & Vainstein, A. (2003). The rolC gene in carnation exhibits cytokinin- and auxin-like activities. Scientia Horticulturae, 97, 321–331.

    Article  CAS  Google Scholar 

  • Castellano, J. M., & Vioque, B. (2002). Characterisation of the ACC oxidase activity in transgenic auxin overproducing tomato during ripening. Plant Growth Regulators, 38, 203–208.

    Article  CAS  Google Scholar 

  • Chalupowicz, L., Barash, I., Schwartz, M., Aloni, R., & Manulis, S. (2006). Comparative anatomy of gall development on Gypsophila paniculata induced by bacteria with different mechanisms of pathogenicity. Planta, 224, 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z., Agnew, J. L., Cohen, J. D., He, P., Shan, L., Sheen, J., et al. (2007). Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences of the United States of America, 104, 20131–20136.

    Article  CAS  PubMed  Google Scholar 

  • de Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., et al. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26, 1434–1443.

    Article  PubMed  Google Scholar 

  • Ezra, D., Barash, I., Valinsky, L., & Manulis, S. (2000). The dual function in virulence and host range restriction of a gene isolated from pPATHEhg plasmid of Erwinia herbicola pv. gypsophilae. Molecular Plant-Microbe Interactions, 13, 693–698.

    Article  Google Scholar 

  • Ezra, D., Barash, I., Weinthal, D. M., Gaba, V., & Manulis, S. (2004). pthG from Pantoea agglomerans pv. gypsophilae encodes an avirulence effector that determines incompatibility in multiple beet species. Molecular Plant Pathology, 5, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti, A., Yang, Y., Schmidt, R. J., & Jackson, D. (2008). The relationship between auxin transport and maize branching. Plant Physiology, 147, 1913–1923.

    Article  CAS  PubMed  Google Scholar 

  • Goto, M., Takahashi, T., & Okajima, T. (1980). A comparative study of Erwinia melletiae and Erwinia herbicola. Annals Phytopathological Society of Japan, 46, 185–192.

    Google Scholar 

  • Hardtke, C. S., & Berleth, T. (1998). The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. The EMBO Journal, 17, 1405–1411.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, S. J., Mott, E. K., Parsley, K., Aspinall, S., Gray, J. C., & Cottage, A. (2006). A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation. Plant Methods, 2, 19.

    Article  PubMed  Google Scholar 

  • Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S., & Mullineaux, P. M. (2000). pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Molecular Biology, 42, 819–832.

    Article  CAS  PubMed  Google Scholar 

  • Hood, E. E. (1993). New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  • Hoshi, A., Oshimaa, K., Kakizawa, S., Ishii, Y., Ozeki, J., Hashimoto, M., et al. (2009). A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences of the United States of America, 106, 6416–6421.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., et al. (2001). Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409, 1060–1063.

    Article  CAS  PubMed  Google Scholar 

  • Korber, H., Strizhov, N., Staiger, D., Feldwisch, J., Olsson, O., Sandberg, G., et al. (1991). T-DNA gene 5 of Agrobacterium modulates auxin response by autoregulated synthesis of a growth hormone antagonist in plants. EMBO Journal, 10, 3983–3991.

    CAS  PubMed  Google Scholar 

  • Long, J. A., Moan, E. I., Medford, J. I., & Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature, 379, 66–69.

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Mendoza, I. E., Lopez-Meyer, M., & Nessler, C. L. (1996). Transformation of tobacco and carrot using Agrobacterium tumefaciens and expression of the b-glucuronidase (GUS) reporter gene. In R. N. Trigano & D. J. Gray (Eds.), Plant tissue culture concepts and laboratory exercises (pp. 261–274). Boca Raton: CRC.

    Google Scholar 

  • Morris, R. O. (1986). Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annual Review Plant Physiology, 37, 509–538.

    Article  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., et al. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312, 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Nester, E. W., Gordon, M. P., Amasino, R. M., & Yanofsky, M. F. (1984). Crown gall: a molecular and physiological analysis. Annual Review of Plant Physiology, 35, 387–413.

    Article  CAS  Google Scholar 

  • O’Donnell, P. J., Schmelz, E. A., Moussatche, P., Lund, S. T., Jones, J. B., & Klee, H. J. (2003). Susceptible to intolerance—a range of hormonal actions in a susceptible Arabidopsis pathogen response. The Plant Journal, 33, 245–257.

    Article  PubMed  Google Scholar 

  • Ongaro, V., Bainbridge, K., Williamson, L., & Leyser, O. (2008). Interactions between axillary branches of Arabidopsis. Molecular Plant, 1, 388–400.

    Article  CAS  PubMed  Google Scholar 

  • Perl, A., Aviv, D., & Galun, E. (1988). Ethylene and in vitro culture of potato: suppression of ethylene generation vastly improves protoplast yield, plating efficiency and transient expression of an alien gene. Plant Cell Reports, 7, 403–406.

    CAS  Google Scholar 

  • Remans, R., Spaepen, S., & Vanderleyden, J. (2006). Auxin signaling in plant defense. Science, 313, 171.

    Article  PubMed  Google Scholar 

  • Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.

    Article  CAS  PubMed  Google Scholar 

  • Romano, C. P., Cooper, M. L., & Klee, H. J. (1993). Uncoupling auxin and ethylene effects in transgenic tobacco and Arabidopsis plants. The Plant Cell, 5, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Rotem, J. (1994). The genus Alternaria: Biology, epidemiology, and pathogenicity. St Paul: APS.

    Google Scholar 

  • Sagee, O., Riov, J., & Goren, R. (1990). Ethylene-enhanced catabolism of [14C]indole-3-acetic acid to indole-3-carboxylic acid in citrus leaf tissues. Plant Physiology, 91, 54–60.

    Article  Google Scholar 

  • Salmon, J., Ramos, J., & Callis, J. (2008). Degradation of the auxin response factor ARF1. The Plant Journal, 54, 118–128.

    Article  CAS  PubMed  Google Scholar 

  • Schmelz, E. A., Engelberth, J., Alborn, H. T., O’Donnell, P., Sammons, M., Toshima, H., et al. (2003). Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Science, 100, 10552–10557.

    Article  CAS  Google Scholar 

  • Sisto, A., Cipriani, M. G., & Morea, M. (2004). Knot formation caused by Pseudomonas syringae subsp. savastanoi on olive plants is hrp-dependent. Phytopathology, 94, 484–489.

    Article  CAS  PubMed  Google Scholar 

  • Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences of the United States of America, 104, 18842–18847.

    Article  CAS  PubMed  Google Scholar 

  • Vandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M., et al. (2005). Biosynthesis of auxin by the Gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Applied and Environmental Microbiology, 71, 1169–1177.

    Article  CAS  PubMed  Google Scholar 

  • Vasanthakumar, A., & McManus, P. C. (2004). Indole-3-acetic acid-producing bacteria are associated with cranberry stem gall. Phytopathology, 94, 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  • Vidaurre, D. P., Ploense, S., Krogan, N. T., & Berleth, T. (2007). AMP1 and MP antagonistically regulate embryo and meristem development in Arabidopsis. Development, 134, 2561–2567.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, G. (2006). Auxin begins to give up its secrets. Science, 313, 1230–1231.

    Article  CAS  PubMed  Google Scholar 

  • Walters, D. R., & McRoberts, N. (2006). Plants and biotrophs: a pivotal role for cytokinins? Trends in Plant Science, 11, 581–586.

    Article  CAS  PubMed  Google Scholar 

  • Weinthal, D. M., Barash, I., Panijel, M., Valinsky, L., Gaba, V., & Manulis-Sasson, S. (2007). Distribution and replication of the pathogenicity plasmid pPATH in diverse populations of the gall-forming Pantoea agglomerans. Annals of Environmental Microbiology, 73, 7552–7561.

    Article  CAS  Google Scholar 

  • Yang, T. F., Gonzalez-Carraza, Z. H., Maunders, M. J., & Roberts, J. A. (2008). Ethylene and the regulation of senescence process in transgenic Nicotiana sylvestris plants. Annals of Botany, 101, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Zambryski, P. C. (1992). Chronicles from the Agrobacterium-plant cell DNA transfer story. Annual Review of Plant Physiology, 43, 465–490.

    Article  CAS  Google Scholar 

  • Zeier, J. R., Pink, B., Mueller, M. J., & Berger, S. (2004). Light conditions influence specific defense responses in incompatible plant–pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta, 219, 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Zupan, J., Muth, T. R., Draper, O., & Zambryski, P. (2000). The transfer of DNA of Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant Journal, 23, 11–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 517/09. The authors thank Dr. Amnon Lichter for help with qRT-PCR, Daniel Chalupowicz for help with ethylene measurements, and Prof. H. Fromm for critical comments on the ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gaba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

pthG-bearing cv. Samsun NN lines can carry a greater endophyte microbial population. (A) Transgenic empty vector control and (B) pthG line 44733 in tissue culture were sampled, disinfected and incubated on PDA medium at 25°C for 5 days. (DOCX 1159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinthal, D.M., Yablonski, S., Singer, S. et al. The type III effector PthG of Pantoea agglomerans pv. gypsophilae modifies host plant responses to auxin, cytokinin and light. Eur J Plant Pathol 128, 289–302 (2010). https://doi.org/10.1007/s10658-010-9666-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-010-9666-1

Keywords

Navigation