Skip to main content
Log in

Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Microcyclic conidiogenesis (MC), a process defined as the production of conidia on a spore without any, or only a minimal, involvement of hyphal growth, has recently been reported in a little known powdery mildew species, Oidium longipes. To investigate whether this was an isolated case or it is a more general phenomenon in powdery mildew fungi, germinating conidia of eight species of the Erysiphales were examined using light microscopy. The following species were included in this work: Erysiphe necator on grapevine, Blumeria graminis f. sp. hordei on barley, Podosphaera xanthii on cucumber, Erysiphe sp. on Ligustrum vulgare, O. longipes on Petunia x grandiflora, O. neolycopersici on tomato, Golovinomyces cichoracearum on Rudbeckia laciniata and Sawadaea sp. on Acer negundo. In all these species, up to 4% of the germinated conidia exhibited MC. Moreover, when colonies of E. necator and O. neolycopersici, on detached grapevine and tomato leaves, respectively, were treated with a conidial suspension of Ampelomyces, the intracellular pycnidia of these mycoparasites appeared in microcyclic conidiophores. This represents a yet undescribed method of accelerating asexual reproduction in this mycoparasite. In the life cycle of powdery mildews, the importance of MC is still not clear but it should be taken into consideration when conidial germination is studied on the host surface for purposes such as epidemiology or species identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ahearn, D. G., Price, D., Simmons, R. B., Mayo, A., Zhang, S. T., & Crow, S. A., Jr. (2007). Microcycle conidiation and medusa head conidiophores of aspergilli on indoor construction materials and air filters from hospitals. Mycologia, 99, 1–6.

    Article  Google Scholar 

  • Anderson, J. G., & Smith, J. E. (1971). The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation). Journal of General Microbiology, 69, 185–197.

    CAS  PubMed  Google Scholar 

  • Bacon, C. W., & Hinton, D. M. (1991). Microcyclic conidiation cycles in Epichloe typhina. Mycologia, 83, 743–751.

    Article  Google Scholar 

  • Bolay, A. (2005). Les Oidiums de Suisse. Cryptogamica Helvetica, 20, 1–176.

    Google Scholar 

  • Braun, U. (1987). A Monograph of the Erysiphales (Powdery Mildews). Beihefte zur Nova Hedwigia, 89, 1–700.

    Google Scholar 

  • Braun, U., Cook, R. T. A., Inman, A. J., & Shin, H. D. (2002). The taxonomy of the powdery mildew fungi. In R. R. Bélanger, W. R. Bushnell, A. J. Dik & T. L. W. Carver (Eds.), The powdery mildews: a comprehensive treatise (pp. 13–55). St. Paul: APS.

    Google Scholar 

  • Cascino, J. J., Harris, R. F., Smith, C. S., & Andrews, J. H. (1990). Spore yield and microcycle conidiation of Colletotrichum gloeosporioides in liquid culture. Applied and Environmental Microbiology, 56, 2303–2310.

    PubMed  Google Scholar 

  • Celio, G. J., & Hausbeck, M. K. (1998). Conidial germination, infection structure formation, and early colony development of powdery mildew on poinsettia. Phytopathology, 88, 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Cook, R. T. A., & Braun, U. (2009). Conidial germination patterns in powdery mildews. Mycological Research, 113, 616–636.

    Article  Google Scholar 

  • Cook, R. T. A., Inman, A. J., & Billings, C. (1997). Identification and classification of powdery mildew anamorphs using light and scanning electron microscopy and host range data. Mycological Research, 101, 975–1002.

    Article  Google Scholar 

  • Fletcher, J. T., Smewin, B. J., & Cook, R. T. A. (1988). Tomato powdery mildew. Plant Pathology, 37, 594–598.

    Article  Google Scholar 

  • Green, J. R., Carver, T. L. W., & Gurr, S. J. (2002). The formation and function of infection and feeding structures. In R. R. Bélanger, W. R. Bushnell, A. J. Dik & T. L. W. Carver (Eds.), The powdery mildews: a comprehensive treatise (pp. 66–82). St. Paul: APS.

    Google Scholar 

  • Hanlin, R. T. (1994). Microcycle conidiation—a review. Mycoscience, 35, 113–123.

    Article  Google Scholar 

  • Hashioka, Y., & Nakai, Y. (1980). Ultrastructure of pycnidial development and mycoparasitism of Ampelomyces quisqualis parasitic on Erysiphales. Transactions of the Mycological Society of Japan, 21, 329–338.

    Google Scholar 

  • Kiss, L., Cook, R. T. A., Saenz, G. S., Cunnington, J. H., Pascoe, I., Bardin, M., et al. (2001). Identification of two powdery mildew fungi, Oidium neolycopersici sp. nov. and O. lycopersici, infecting tomato in different parts of the world. Mycological Research, 105, 684–697.

    Article  Google Scholar 

  • Kiss, L., Russell, J. C., Szentiványi, O., Xu, X., & Jeffries, P. (2004). Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Science and Technology, 14, 635–651.

    Article  Google Scholar 

  • Kiss, L., Jankovics, T., Kovács, G. M., & Daughtrey, M. L. (2008). Oidium longipes, a new powdery mildew fungus on petunia in the USA: A potential threat to ornamental and vegetable solanaceous crops. Plant Disease, 92, 818–825.

    Article  CAS  Google Scholar 

  • Krasniewski, I., Molimard, P., Feron, G., Vergoignan, C., Durand, A., Cavin, J. F., et al. (2006). Impact of solid medium composition on the conidiation in Penicillium camemberti. Process Biochemistry, 41, 1318–1324.

    Article  CAS  Google Scholar 

  • Lapaire, C. L., & Dunkle, L. D. (2003). Microcycle conidiation in Cercospora zeae-maydis. Phytopathology, 93, 193–199.

    Article  PubMed  Google Scholar 

  • Li, Y. H., Windham, M. T., Trigiano, R. N., Reed, S. M., Spiers, J. M., & Rinehart, T. A. (2009). Bright-field and fluorescence microscopic study of development of Erysiphe polygoni in susceptible and resistant bigleaf hydrangea. Plant Disease, 93, 130–134.

    Article  Google Scholar 

  • Liberato, J. R. (2006). Powdery mildew on Passiflora in Australia. Australasian Plant Pathology, 35, 73–75.

    Article  Google Scholar 

  • Maheshwari, R. (1999). Microconidia of Neurospora crassa. Fungal Genetics and Biology, 26, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Nonomura, T., Xu, L., Wada, M., Kawamura, S., Miyajima, T., Nishitomi, A., et al. (2009a). Trichome exudates of Lycopersicon pennellii form a chemical barrier to suppress leaf-surface germination of Oidium neolycopersici conidia. Plant Science, 176, 31–37.

    Article  CAS  Google Scholar 

  • Nonomura, T., Matsuda, Y., Xu, L., Kakutani, K., Takikawa, Y., & Toyoda, H. (2009b). Collection of highly germinative pseudochain conidia of Oidium neolycopersici from conidiophores by electrostatic attraction. Mycological Research, 113, 364–372.

    Article  Google Scholar 

  • Oichi, W., Matsuda, Y., Nonomura, T., Toyoda, H., Xu, L., & Kusakari, S. (2006). Formation of conidial pseudochains by tomato powdery mildew Oidium neolycopersici. Plant Disease, 90, 915–919.

    Article  Google Scholar 

  • Shin, H. D., & La, Y. (1993). Morphology of edge lines of chained immature conidia on conidiophores in powdery mildew fungi and their taxonomic significance. Mycotaxon, 46, 445–451.

    Google Scholar 

  • Shishkoff, N., & McGrath, M. T. (2002). AQ10 biofungicide combined with chemical fungicides or AddQ spray adjuvant for control of cucurbit powdery mildew in detached leaf culture. Plant Disease, 86, 915–918.

    Article  CAS  Google Scholar 

  • Sundheim, L., & Krekling, T. (1982). Host-parasite relationships of the hyperparasite Ampelomyces quisqualis and its powdery mildew host Sphaerotheca fuliginea. Journal of Phytopathology, 104, 202–210.

    Article  Google Scholar 

  • Szentiványi, O., & Kiss, L. (2003). Overwintering of Ampelomyces mycoparasites on apple trees and other plants infected with powdery mildews. Plant Pathology, 53, 737–746.

    Article  Google Scholar 

  • Takamatsu, S. (2004). Phylogeny and evolution of the powdery mildew fungi (Erysiphales, Ascomycota) inferred from nuclear ribosomal DNA sequences. Mycoscience, 45, 147–157.

    Article  CAS  Google Scholar 

  • Takamatsu, S., Havrylenko, M., Wolcan, S. M., Matsuda, S., & Niinomi, S. (2008). Molecular phylogeny and evolution of the genus Neoerysiphe (Erysiphaceae, Ascomycota). Mycological Research, 112, 639–649.

    Article  CAS  PubMed  Google Scholar 

  • To-anun, C., Kom-un, S., Sunawan, A., Fangfuk, W., Sato, Y., & Takamatsu, S. (2005). A new subgenus, Microidium, of Oidium (Erysiphaceae) on Phyllanthus spp. Mycoscience, 46, 1–8.

    Article  CAS  Google Scholar 

  • Vági, P., Kovács, G. M., & Kiss, L. (2007). Host range expansion in a powdery mildew fungus (Golovinomyces sp.) infecting Arabidopsis thaliana: Torenia fournieri as a new host. European Journal of Plant Pathology, 117, 89–93.

    Article  Google Scholar 

  • Xiao, S., Charoenwattana, P., Holcombe, L., & Turner, J. G. (2003). The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. Molecular Plant-Microbe Interactions, 16, 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Zaracovitis, C. (1965). Attempts to identify powdery mildew fungi by conidial characters. Transactions of the British Mycological Society, 48, 553–558.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (OTKA K73565) of the Hungarian Scientific Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, L., Pintye, A., Zséli, G. et al. Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces . Eur J Plant Pathol 126, 445–451 (2010). https://doi.org/10.1007/s10658-009-9558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9558-4

Keywords

Navigation