Skip to main content
Log in

The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Bacterial biocontrol agents (BCAs) open up the possibility of controlling plant pathogens in an environmentally friendly way. Although they are naturally occurring microbes, some of them can cause diseases in humans. For successful registration it is necessary to test potentially adverse effects on the human health of at-risk candidates. Existing pathogenicity assays are cost-intensive, time-consuming and furthermore they are often inappropriate for facultative pathogens. We developed a new, fast and inexpensive bioassay on the basis of the nematode Caenorhabditis elegans, which is a well-accepted model organism to study bacterial pathogenicity. A selection of eight strains from clinical and environmental origin as well as potential and commercial BCAs from the genera Bacillus, Pseudomonas, Serratia and Stenotrophomonas were screened for their potential to kill the nematode in an in vitro agar plate assay. Furthermore, the motility and reproductive behaviour of nematodes exposed to strains were tested in comparison with those fed by the human pathogen Pseudomonas aeruginosa QC14-3-8 (positive control) and the negative control Escherichia coli OP50. Commercial as well as potential biocontrol strains did not display any adverse effects in all tests. In contrast, the C. elegans assay showed slight effects for clinical and environmental Stenotrophomonas strains. Results showed that the nematode C. elegans provides a model system to indicate the pathogenic potential of BCAs in a very early stage of product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aballay, A., & Ausubel, F. M. (2002). Caenorhabditis elegans as a host for the study of host-pathogen interactions. Current Opinion in Microbiology, 5, 97–101. doi:10.1016/S1369-5274(02)00293-X.

    Article  PubMed  CAS  Google Scholar 

  • Alonso, A., Morales, G., Escalante, R., Campanario, E., Sastre, L., & Martinez, J. L. (2004). Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. The Journal of Antimicrobial Chemotherapy, 53, 432–434. doi:10.1093/jac/dkh074.

    Article  PubMed  CAS  Google Scholar 

  • Beale, E., Li, G., Tan, M. W., & Rumbaugh, K. P. (2006). Caenorhabditis elegans senses bacterial autoinducers. Applied and Environmental Microbiology, 72, 5135–5137. doi:10.1128/AEM.00611-06.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., Marten, P., & Ballin, G. (1996). Stenotrophomonas maltophilia in the rhizosphere of oilseed rape - occurrence, characterization and interaction with phytopathogenic fungi. Microbiological Research, 151, 1–9.

    Google Scholar 

  • Berg, G., Roskot, N., & Smalla, K. (1999). Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology, 37, 3594–3600.

    PubMed  CAS  Google Scholar 

  • Berg, G., Kurze, S., Buchner, A., Wellington, E. M., & Smalla, K. (2000). Successful strategy for the selection of new strawberry-associated rhizobacteria antagonistic to Verticillium wilt. Canadian Journal of Microbiology, 46, 1128–1137. doi:10.1139/cjm-46-12-1128.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., Roskot, N., Steidle, A., Eberl, L., Zock, A., & Smalla, K. (2002). Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Applied and Environmental Microbiology, 68, 3328–3338. doi:10.1128/AEM.68.7.3328-3338.2002.

    Article  PubMed  CAS  Google Scholar 

  • Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental Microbiology, 7, 1673–1685. doi:10.1111/j.1462-2920.2005.00891.x.

    Article  PubMed  CAS  Google Scholar 

  • Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.

    PubMed  CAS  Google Scholar 

  • Cardona, S. T., Wopperer, J., Eberl, L., & Valvano, M. A. (2005). Diverse pathogenicity of Burkholderia cepacia complex strains in the Caenorhabditis elegans host model. FEMS Microbiology Letters, 250, 97–104. doi:10.1016/j.femsle.2005.06.050.

    Article  PubMed  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clement, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959. doi:10.1128/AEM.71.9.4951-4959.2005.

    Article  PubMed  CAS  Google Scholar 

  • Culletto, E., & Sattelle, D. B. (2000). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Human Molecular Genetics, 9(6), 869–877. doi:10.1093/hmg/9.6.869.

    Article  Google Scholar 

  • Garsin, D. A., Sifri, C. D., Mylonakis, E., Qin, X., Singh, K. V., Murray, B. E., et al. (2001). A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 98, 10892–10897. doi:10.1073/pnas.191378698.

    Article  PubMed  CAS  Google Scholar 

  • Grosch, R., Faltin, F., Lottmann, J., Kofoet, A., & Berg, G. (2005). Effectiveness of 3 antagonistic bacterial isolates to control Rhizoctonia solani Kühn on lettuce and potato. Canadian Journal of Microbiology, 51, 345–353. doi:10.1139/w05-002.

    Article  PubMed  CAS  Google Scholar 

  • Haas, D., & Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nature Reviews Microbiology, 3, 307–319. doi:10.1038/nrmicro1129.

    Article  PubMed  CAS  Google Scholar 

  • Hagemann, M., Hasse, D., & Berg, G. (2006). Detection of a phage genome carrying a zonula occludens like toxin gene (zot) in clinical isolates of Stenotrophomonas maltophilia. Archives of Microbiology, 185, 449–458. doi:10.1007/s00203-006-0115-7.

    Article  PubMed  CAS  Google Scholar 

  • Kalbe, C., Marten, P., & Berg, G. (1996). Members of the genus Serratia as beneficial rhizobacteria of oilseed rape. Microbiological Research, 151, 4433–4400.

    Google Scholar 

  • Köthe, M., Antl, M., Huber, B., Stoecker, K., Ebrecht, D., Steinmetz, I., et al. (2003). Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum-sensing system. Cellular Microbiology, 5, 343–351. doi:10.1046/j.1462-5822.2003.00280.x.

    Article  PubMed  Google Scholar 

  • Kurz, C. L., & Ewbank, J. J. (2007). Infection in a dish: high-throughput analyses of bacterial pathogenesis. Current Opinion in Microbiology, 10, 10–16. doi:10.1016/j.mib.2006.12.001.

    Article  PubMed  CAS  Google Scholar 

  • Kurze, S., Bahl, H., Dahl, R., & Berg, G. (2001). Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48. Plant Disease, 85, 529–534. doi:10.1094/PDIS.2001.85.5.529.

    Article  Google Scholar 

  • Labrousse, A., Chauvet, S., Couillault, C., Kurz, C. L., & Ewbank, J. J. (2000). Caenorhabditis elegans is a model host for Salmonella typhimurium. Current Biology, 10, 1543–1545. doi:10.1016/S0960-9822(00)00833-2.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. G., Urbach, J. M., Wu, G., Liberati, N. T., Feinbaum, R., Miyata, S., et al. (2006). Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biology, 7, R90. doi:10.1186/gb-2006-7-10-r90.

    Article  PubMed  Google Scholar 

  • Liu, X., Bimerew, M., Ma, Y., Müller, H., Ovadis, M., Eberl, L., et al. (2007). Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiology Letters, 270, 299–305. doi:10.1111/j.1574-6968.2007.00681.x.

    Article  PubMed  CAS  Google Scholar 

  • Lottmann, J., Heuer, H., Smalla, K., & Berg, G. (1999). Influence of transgenic T4-lysozyme-producing plants on beneficial plant-associated bacteria. FEMS Microbiology Ecology, 29, 365–377. doi:10.1111/j.1574-6941.1999.tb00627.x.

    Article  CAS  Google Scholar 

  • Lottmann, J., Heuer, H., de Vries, J., Mahn, A., Düring, K., Wackernagel, W., et al. (2000). Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiology Ecology, 33, 41–49. doi:10.1111/j.1574-6941.2000.tb00725.x.

    Article  PubMed  Google Scholar 

  • Marten, P., Smalla, K., & Berg, G. (2000). Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. Journal of Applied Microbiology, 39, 463–471. doi:10.1046/j.1365-2672.2000.01136.x.

    Article  Google Scholar 

  • Minkwitz, A., & Berg, G. (2001). Comparison of antifungal activities and 16 S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. Journal of Clinical Microbiology, 39, 139–145. doi:10.1128/JCM.39.1.139-145.2001.

    Article  PubMed  CAS  Google Scholar 

  • Parke, J. L., & Gurian-Sherman, D. (2001). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology, 39, 225–258. doi:10.1146/annurev.phyto.39.1.225.

    Article  PubMed  CAS  Google Scholar 

  • Qiuhong, N., Xiaowei, H., Baoyu, T., Jinkui, Y., Jiang, L., Lin, Z., et al. (2006). Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor. Applied Microbiology and Biotechnology, 69, 722–730. doi:10.1007/s00253-005-0019-5.

    Article  PubMed  Google Scholar 

  • Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268, 1899–1902. doi:10.1126/science.7604262.

    Article  PubMed  CAS  Google Scholar 

  • Ribbeck-Busch, K., Roder, A., Hasse, D., de Boer, W., Martínez, J. L., Hagemann, M., et al. (2005). A molecular biological protocol to distinguish potentially human pathogenic Stenotrophomonas maltophilia from plant-associated Stenotrophomonas rhizophila. Environmental Microbiology, 7, 1853–1858. doi:10.1111/j.1462-2920.2005.00928.x.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Díez, B., Síanchez, P., Baquero, F., Martínez, J. L., & Navasa, A. (2003). Differential interactions within the Caenorhabditis elegans - Pseudomonas aeruginosa pathogenesis model. Journal of Theoretical Biology, 225, 469–476. doi:10.1016/S0022-5193(03)00288-1.

    Article  PubMed  Google Scholar 

  • Scherwinski, K., Wolf, A., & Berg, G. (2006). Assessing the risk of biological control agents on the indigenous microbial communities: Serratia plymuthica HRO-C48 and Streptomyces sp. HRO-71 as model bacteria. BioControl, 52, 87–112. doi:10.1007/s10526-006-9006-8.

    Article  Google Scholar 

  • Scherwinski, K., Grosch, R., & Berg, G. (2007). Root application of bacterial antagonists to field-grown lettuce: effects on non-target micro-organisms and disease suppression. IOBC/WPRS Bulletin, 30, 255–257.

    Google Scholar 

  • Scherwinski, K., Grosch, R., & Berg, G. (2008). Effect of bacterial antagonists on lettuce: active biocontrol of Rhizoctonia solani and negligible, short-term effect on non-target microbes. FEMS Microbiology Ecology, 64, 106–116. doi:10.1111/j.1574-6941.2007.00421.x.

    Article  PubMed  CAS  Google Scholar 

  • Schulenburg, H., & Ewbank, J. J. (2004). Diversity and specificity in the interaction between Caenorhabditis elegans and the pathogen Serratia marcescens. BMC Evolutionary Biology, 4, 49–56. doi:10.1186/1471-2148-4-49.

    Article  PubMed  Google Scholar 

  • Sifri, C. D., Begun, J., & Ausubel, F. M. (2005). The worm has turned–microbial virulence modeled in Caenorhabditis elegans. Trends in Microbiology, 13(3), 119–127. doi:10.1016/j.tim.2005.01.003.

    Article  PubMed  CAS  Google Scholar 

  • Tan, M. W., & Ausubel, F. M. (2000). Caenorhabditis elegans a model genetic host to study Pseudomonas aeruginosa pathogenesis. Current Opinion in Microbiology, 3, 29–34. doi:10.1016/S1369-5274(99)00047-8.

    Article  PubMed  CAS  Google Scholar 

  • Tan, M. W., Mahjan-Miklos, S., & Ausubel, F. M. (1999a). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 715–720. doi:10.1073/pnas.96.2.715.

    Article  CAS  Google Scholar 

  • Tan, M. W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., & Ausubel, F. M. (1999b). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings of the National Academy of Sciences of the United States of America, 96, 2408–2413. doi:10.1073/pnas.96.5.2408.

    Article  CAS  Google Scholar 

  • Timms-Wilson, T. M., Ellis, R. J., Renwick, A., Rhodes, D. J., Mavrodi, D. V., Weller, D. M., et al. (2000). Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions, 13, 1293–1300. doi:10.1094/MPMI.2000.13.12.1293.

    Article  PubMed  CAS  Google Scholar 

  • Vaitkevicius, K., Lindmark, B., Ou, G., Song, T., Toma, C., Iwanaga, M., et al. (2006). A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proceedings of the National Academy of Sciences of the United States of America, 103, 9280–9285. doi:10.1073/pnas.0601754103.

    Article  PubMed  CAS  Google Scholar 

  • Van der Sar, A. M., Musters, R. J., van Eeden, F. J., Appelmelk, B. J., Vandenbroucke-Grauls, C. M., & Bitter, W. (2003). Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cellular Microbiology, 5, 601–611. doi:10.1046/j.1462-5822.2003.00303.x.

    Article  PubMed  Google Scholar 

  • Vodovar, N., Acosta, C., Lemaitre, B., & Boccard, F. (2004). Drosophila: a polyvalent model to decipher host–pathogen interactions. Trends in Microbiology, 12, 235–242. doi:10.1016/j.tim.2004.03.007.

    Article  PubMed  CAS  Google Scholar 

  • Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407. doi:10.1146/annurev.py.26.090188.002115.

    Article  Google Scholar 

  • Weller, D. M., Raaijmakers, J. M., Gardener, B. B., & Tomashow, L. S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40, 309–348. doi:10.1146/annurev.phyto.40.030402.110010.

    Article  PubMed  CAS  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487–511.

    PubMed  CAS  Google Scholar 

  • Wolf, A., Fritze, A., Hagemann, M., & Berg, G. (2002). Stenotrophomonas rhizophila sp. nov, a novel plant-associated bacterium with antifungal properties. International Journal of Systematic and Evolutionary Microbiology, 52, 1937–1944. doi:10.1099/ijs.0.02135-0.

    Article  PubMed  CAS  Google Scholar 

  • Zachow, C., Tilcher, R., & Berg, G. (2008). Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microbial Ecology, 55, 119–129. doi:10.1007/s00248-007-9257-7.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Lu, H., & Bargmann, C. I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438, 179–184. doi:10.1038/nature04216.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Barbara Fetz and Monika Schneider-Trampitsch for valuable technical assistance. The work was supported by a grant of the Austrian Science Foundation FWF to G.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachow, C., Pirker, H., Westendorf, C. et al. The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents. Eur J Plant Pathol 125, 367–376 (2009). https://doi.org/10.1007/s10658-009-9486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-009-9486-3

Keywords

Navigation