Skip to main content
Log in

Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

An effective colonization of the host plant tissue by the necrotrophic fungus Sclerotinia sclerotiorum requires the secretion of the non-host specific toxin oxalic acid (OA), which is known to suppress the generation of reactive oxygen intermediates (ROI). A full-length cDNA coding for an oxalate decarboxylase (TOXDC), which converts OA into CO2 and formate, was isolated from the basidiomycete Trametes versicolor. It was overexpressed in tobacco plants to study the role of ROI and OA in the interaction between tobacco and S. sclerotiorum. The transgenic plants contained less OA and showed a delayed colonization of S. sclerotiorum; furthermore a strong ROI accumulation and nearly no catalase activity compared to the wild type (WT) plants could be detected. In addition, inoculation experiments with transgenic catalase-deficient plants (CAT1AS) and in vitro studies showed that S. sclerotiorum copes with strong ROI stress. Our results indicate that OA supports the infection process caused by S. sclerotiorum and the fungus itself is able to tolerate high ROI concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Able, A. J. (2003). Role of reactive oxygen species in the response of barley to necrotrophic pathogens. Protoplasma, 221, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Apostol, I., Heinstein, P. F., & Low, P. S. (1989). Rapid stimulation of an oxidative burst during elicitation of cultured plant cells: role in defense and signal transduction. Plant Physiology, 90, 109–116.

    PubMed  CAS  Google Scholar 

  • Baker, C. J., & Orlandi, E. W. (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology, 33, 299–321.

    Article  CAS  PubMed  Google Scholar 

  • Bargabus, R. L., Zudack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2003). Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Molecular Plant Microbe Interactions, 16, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  • Bateman, D. F., & Beer, S. V. (1965). Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology, 55, 204–211.

    PubMed  CAS  Google Scholar 

  • Becker, D., Kemper, E., Schell, E., & Masterson, J. R. (1992). New plant vectors with selectable markers located proximal to the left T-DNA border. Plant Molecular Biology, 20, 1195–1197.

    Article  PubMed  CAS  Google Scholar 

  • Berna, A., & Bernier, F. (1997). Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous protein. Plant Molecular Biology, 33, 417–429.

    Article  PubMed  CAS  Google Scholar 

  • Berna, A., & Bernier, F. (1999). Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Molecular Biology, 39, 539–549.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, M. D., Thomma, B. P. H. J., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7, 1–16.

    Article  CAS  Google Scholar 

  • Bowler, C. (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO Journal, 10, 1723–1732.

    PubMed  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D. J., Kjellbom, P., & Lamb, C. J. (1992). Elicitor- and wound-induced oxidative cross-linking of proline-rich plant cell wall protein: a novel, rapid defense response. Cell, 70, 21–30.

    Article  PubMed  CAS  Google Scholar 

  • Callahan, F. E., & Rowe, D. E. (1991). Use of a host–pathogen interaction system to test whether oxalic acid is the sole pathogenic determinant in the exudate of Sclerotinia trifoliorum. Phytopathology, 81, 1546–1550.

    Article  Google Scholar 

  • Cessna, S. G., Sears, V. E., Dickman, M. B., & Low, P. S. (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 12, 2191–2199.

    Article  PubMed  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Langebartels, C., Van Montagu, M., Inzé, D., & Van Camp, W. (1996). Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant Journal, 10, 491–503.

    Article  CAS  Google Scholar 

  • Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H., Van Montagu, M., et al. (1998). Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proceedings of the National Academic Science USA, 95, 5818–5823.

    Article  CAS  Google Scholar 

  • Chomzynski, P., & Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform-extraction. Analytical Biochemistry, 162, 156–159.

    Article  Google Scholar 

  • Clare, D. A., Duong, M. N., Darr, D., Archibald, F., & Fridovich, I. (1984). Effects of molecular oxygen on detection of superoxide radical with nitroblue tetrazolium and on activity stains for catalase. Analytical Biochemistry, 140, 532–537.

    Article  PubMed  CAS  Google Scholar 

  • Colmenares, A. J., Aleu, J., Durán-Patrón, R., Collado, I. G., & Hernández-Galán, R. (2002). The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. Journal of Chemical Ecology, 28, 997–1005.

    Article  PubMed  CAS  Google Scholar 

  • Deighton, N., Muckenschnabel, I., Colmenares, A. J., Collado, I. G., & Williamson, B. (2001). Botrydial is produced in plant tissue infected by Botrytis cinerea. Phytochemistry, 57, 689–692.

    Article  PubMed  CAS  Google Scholar 

  • Deighton, N., Muckenschnabel, I., Goodman, B. A., & Williamson, B. (1999). Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea. Plant Journal, 20, 485–492.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation. Plant Molecular Biology Reporter, 1, 19–21.

    CAS  Google Scholar 

  • Doke, N. (1983). Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiological Plant Pathology, 23, 359–367.

    CAS  Google Scholar 

  • Doke, N., & Ohashi, Y. (1988). Involvement of an \( O^{ - }_{2} \) generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiological Molecular Plant Pathology, 32, 163–175.

    Article  CAS  Google Scholar 

  • Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., & Simmonds, D. H. (2001). Soybean plants expressing an active oligomeric oxalate oxidase wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiological MolecularPlant Pathology, 59, 297–307.

    Article  CAS  Google Scholar 

  • Dorey, S., Baillieul, F., Saindrenan, P., Fritig, B., & Kauffmann, S. (1998). Tobacco class I and II catalases are differentially expressed during elicitor-induced hypersensitive cell death and localized acquired resistance. Molecular Plant Microbe Interactions, 11, 1102–1109.

    Article  CAS  Google Scholar 

  • Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.

    CAS  Google Scholar 

  • Fleury, C., Mignotte, B., & Vayssuere, J. L. (2002). Mitochondrial reactive oxygen species in cell death signalling. Biochimie, 84, 131–141.

    Article  PubMed  CAS  Google Scholar 

  • Glazener, J. A., Orlandi, E. W., & Baker, C. J. (1996). The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiology, 110, 759–763.

    PubMed  CAS  Google Scholar 

  • Godoy, G., Steadman, J. R., Dickman, M. B., & Lam, R. (1990). Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 37, 179–191.

    Article  CAS  Google Scholar 

  • Govrin, E. M., & Levine, A. (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology, 10, 751–757.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J. J., & Loake, G. J. (2000). Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiology, 124, 21–29.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J. T. (1997). Programmed cell death in plant–pathogen interactions. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 525–545.

    Article  PubMed  CAS  Google Scholar 

  • Guimaraes, R. L., & Stotz, H. U. (2004). Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection. Plant Physiology, 136, 3703–3711.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1990). Role of free radicals and catalytic metal ions in human disease: an overwiev. Methods Enzymology, 186, 1–85.

    Article  CAS  Google Scholar 

  • Hammond-Kosack, K. E., Silverman, P., Raskin, I., & Jones, J. D. G. (1996). Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology, and ethylene and salicylic acid synthesis, in tomato cells carrying the corresponding Cf-disease resistance gene. Plant Physiology, 110, 1381–1394.

    PubMed  CAS  Google Scholar 

  • Hegedus, D. D., & Rimmer, S. R. (2005). Sclerotinia sclerotiorum: When “to be or not to be” a pathogen? FEMS Microbiology Letters, 251, 177–184.

    Article  PubMed  CAS  Google Scholar 

  • Horsch, R., Fry, J., Hoffmann, N., Eichholtz, D., Rogers, S., & Fraley, R. (1985). A simple and general method for transferring genes into plants. Science, 227, 1229–1231.

    Article  CAS  Google Scholar 

  • Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., et al. (2003). Overexpression of a gene encoding H2O2-generating oxalate oxidase evoke defense responses in sunflower. Plant Physiology, 133, 170–181.

    Article  PubMed  CAS  Google Scholar 

  • Kesarwani, M., Azam, M., Natarajan, K., Mehta, A., & Datta, A. (2000). Oxalate decarboxylase from Collybia velutipes. Journal of Biological Chemistry, 275, 7230–7238.

    Article  PubMed  CAS  Google Scholar 

  • Knight, H., & Knight, M. T. R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends in Plant Science, 6, 262–267.

    Article  PubMed  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Lang, E., & Lang, H. (1972). Spezifische Farbreaktion zum direkten Nachweis der Ameisensäure. Zeitschrift für Analytische Chemie, 260, 8–10.

    Article  CAS  Google Scholar 

  • Lara-Ortiz, T., Riveros-Rosas, H., & Aguirre, J. (2003). Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology, 50, 1247–1255.

    Article  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Liang, H., Maynard, C. A., Allen, R. D., & Powell, W. A. (2001). Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 45, 619–629.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., & Higgins, V. J. (1998). Measurement of active oxygen species generated in planta in response to elicitor AVR9 of Cladosporium fulvum. Physiological and Molecular Plant Pathology, 52, 35–51.

    Article  CAS  Google Scholar 

  • Marciano, P., Di Lenna, P., & Magro, P. (1983). Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiological Plant Pathology, 22, 339–345.

    CAS  Google Scholar 

  • Markham, J. E., & Hille, J. (2001). Host-selective toxins as agents of cell death in plant–fungus interactions. Molecular Plant Pathology, 2, 229–239.

    Article  CAS  Google Scholar 

  • Maxwell, D. P., & Lumsden, R. C. (1970). Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 60, 1395–1398.

    Article  CAS  Google Scholar 

  • Mayer, A. M., Staples, R. C., & Gil-ad, N. L. (2001). Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry, 58, 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Feng, X., & Cohen, M. (1998). Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell, 10, 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Herr, E. H., Orvar, B. L., Van Camp, W., Willekens, H., Inzé, D., et al. (1999a). Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proceedings of the National Academy of Science, 96, 14165–14170.

    Article  CAS  Google Scholar 

  • Mittler, R., Lam, E., Shulaev, V., & Cohen, M. (1999b). Signals controlling the expression of cytosolic ascorbate peroxidase during pathogen-induced programmed cell death in tobacco. Plant Molecular Biology, 39, 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Muckenschnabel, I., Williamson, B., Goodman, B. A., Lyon, G. D., Stewart, D., & Deighton, N. (2001). Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected by Botrytis cinerea. Planta, 212, 376–381.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologica Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  • Nagel, R., Elliot, A., Masel, A., Birch, R. G., & Manners, J. M. (1990). Electroporation of binary Ti plasmid vector into Agrobacterium tumefaciens and Agrobacterium rhizogenes. FEMS Microbiology Letters, 67, 325–328.

    Article  CAS  Google Scholar 

  • Noyes, R. D., & Hancock, J. G. (1981). Role of oxalic acid in the Sclerotinia wilt of sunflower. Physiological Plant Pathology, 18, 123–132.

    CAS  Google Scholar 

  • Orozco-Cardenas, M. L., Narvaez-Vasquez, J., & Ryan, C. A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell, 13, 179–191.

    Article  PubMed  CAS  Google Scholar 

  • Örvar, B. L., & Ellis, B. E. (1997). Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant Journal, 11, 1297–1305.

    Article  Google Scholar 

  • Pedras, M. S. C., & Ahiahonu, P. W. K. (2004). Phytotoxin production and phytoalexin elicitation by the phytopathogenic fungus Sclerotinia sclerotiorum. Journal of Chemical Ecology, 30, 2163–2179.

    Article  PubMed  CAS  Google Scholar 

  • Purdy, L. H. (1979). Sclerotinia sclerotiorum: History, disease, and symptom pathology, host range, geographic distribution and impact. Phytopathology, 69, 875–880.

    Article  Google Scholar 

  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes. Plant Physiology, 115, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Rolke, Y., Liu, S., Quidde, T., Williamson, B., Schouten, A., Weltring, K. M., et al. (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BCSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BCGOD1) is dispensable. Molecular Plant Pathology, 5, 17–27.

    Article  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning, a laboratory manual, 2nd Edition. Cold Spring Harbour, New York, USA: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  • Sasabe, M., Takeuchi, K., Kamoun, S., Ichinose, Y., Govers, F., Toyoda, K., et al. (2000). Independent pathways leading to apoptotic cell death, oxdiative burst and defense gene expression in response to elictin in tobacco cell suspension culture. European Journal of Biochemistry, 267, 5005–5013.

    Article  PubMed  CAS  Google Scholar 

  • Schouten, A., Tenberge, K. B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B., et al. (2002). Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology, 3, 227–238.

    Article  CAS  Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, E., & Levine, A. (1999). The involvement of cysteine protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell, 11, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Tenberge, K. B., Beckedorf, M., Hoppe, B., Schouten, A., Solf, M., & van den Driesch, M. (2002). In situ localisation of AOS in host–pathogen interactions. Microscopical Microanalysis, 8, 250–251.

    Google Scholar 

  • Tenhaken, R., Levine, A., Brisson, L. F., Dixon, R. A., & Lamb, C. (1995). Function of the oxidative burst in hypersensitive disease resistance. Proceedings of the National Academy of Sciences, 92, 4158–4163.

    Article  CAS  Google Scholar 

  • Thomma, B. P. H. J., Tierens, K. F. M. J., Penninckx, I. A. M. A., Mauch-Mani, B., & Broekaert, W. F. (2001). Different microorganisms differentially induce Arabidopsis disease response pathways. Plant Physiology and Biochemistry, 39, 673–680.

    Article  CAS  Google Scholar 

  • Van Breusegem, F., Vranova, E., Dat, E. J. F., & Inze, D. (2001). The role of active oxygen species in plant signal transduction. Plant Science, 161, 405–414.

    Article  Google Scholar 

  • Van der Vlugt-Bergmans, C. J. B., Wagemakers, C. A. M., Dees, D. C. T., & Van Kan, J. A. L. (1997). Catalase A from Botrytis cinerea is not expressed during infection on tomato leaves. Physiological and Molecualr Plant Pathology,50, 1–15.

    Article  Google Scholar 

  • Van Kan, J. A. L. (2006). Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Vannini, A., Smart, C. D., & Fullbright, D. W. (1993). The comparison of oxalic acid production in vivo and in vitro by virulent and hypovirulent Cryptonectria (Endothia) parasitica. Physiological and Molecular Plant Pathology, 43, 443–451.

    Article  CAS  Google Scholar 

  • Von Tiedemann, A. (1997). Evidence for a primary role of active oxygen species in induction of host cell death during the infection of bean leaves with Botrytis cinerea. Physiological and Molecular Plant Pathology, 50, 151–166.

    Article  CAS  Google Scholar 

  • Walton, J. D. (1996). Host-selective toxins: Agents of compatibility. Plant Cell, 8, 1723–1733.

    Article  PubMed  CAS  Google Scholar 

  • Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., et al. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal, 16, 4806–4816.

    Article  PubMed  CAS  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    PubMed  CAS  Google Scholar 

  • Wolpert, T. J., Dunkle, L. D., & Ciuffetti, L. M. (2002). Host-selective toxins and avirulence determinants: what’s in a name? Annual Review of Phytopathology, 40, 251–285.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Van Breusegem and D. Inzé, University of Ghent, Belgium, for the CAT1AS tobacco plants. This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Walz.

Additional information

The nucleotide sequence data is available from the NCBI Genbank nucleotide-sequence database under the number AY370675

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walz, A., Zingen-Sell, I., Theisen, S. et al. Reactive oxygen intermediates and oxalic acid in the pathogenesis of the necrotrophic fungus Sclerotinia sclerotiorum . Eur J Plant Pathol 120, 317–330 (2008). https://doi.org/10.1007/s10658-007-9218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9218-5

Keywords

Navigation