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Abstract Biochar has been intensively investigated

for carbon sequestration, soil fertility enhancement,

and immobilization of heavy metals and organic

pollutants. Large-scale use of biochar in agricultural

production and environmental remediation, however,

has been constrained by its high cost. Here, we

demonstrated the production of low-cost biochar

($20/ton) in the field from Robinia pseudoacacia

biowaste via a combined aerobic and oxygen-limited

carbonization process and a fire-water-coupled

method. It involved aerobic combustion at the outer

side of biomass, oxygen-limited pyrolysis in the inner

core of biomass, and the termination of the carboniza-

tion by water spray. The properties of biochar thus

produced were greatly affected by exposure time (the

gap between a burning char fell to the ground and

being extinguished by water spray). Biochar formed

by zero exposure time showed a larger specific surface

area (155.77 m2/g), a higher carbon content (67.45%),

a lower ash content (15.38%), and a higher content of

carboxyl and phenolic-hydroxyl groups (1.74 and

0.86 mol/kg, respectively) than biochars formed with

longer exposure times (5–30 min). Fourier-transform

infrared spectroscopic (FTIR) spectra indicated that

oxygen-containing functional groups of biochar

played a role in Cd and oxytetracycline sorption

though a quantitative relationship could not be estab-

lished as the relative contribution of carbon and ash

moieties of biochar to the sorption was unknown.

Outcomes from this research provide an option for

inexpensive production of biochar to support its use as

a soil amendment in developing countries.

Keywords Biowaste � Exposure times � Functional
groups � Cadmium � Oxytetracycline

Introduction

Terra preta, deep carbon-rich soil in the Amazon basin

with a higher fertility and crop yield than surrounding

soils, has stimulated investigations into its mysterious

past (Marris 2006). The burning of plant residues by

ancient Amazonian natives was believed the cause of

the higher fertility and carbon content, and the latter

considered to have the potential for carbon
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sequestration (Harder 2006), which, in turn, has made

biochar research a hotspot in environmental studies.

Biochar is a porous, carbon-rich material with a

high specific surface area, abundant functional groups,

and rich nutrients (Chagger et al. 1998; Antal and

Gronli 2003; Lehmann 2007; Wang et al. 2013;

Ahmad et al. 2014; Xiao et al. 2014). It is typically

produced by pyrolysis of biowaste under limited

oxygen conditions (Glaser et al. 2002; Kookana et al.

2011), and its properties are influenced by feedstock

types, pyrolysis temperature, heating rate and resi-

dence time (Al-Wabel et al. 2018; Weber and Quicker

2018). In spite of policy promotion and intensive

research in recent years on the beneficial use of biochar

in agriculture and environmental remediation (Marris

2006; Houben et al. 2013; Zhang et al. 2013; Dai et al.

2017; Yang et al. 2018; Al-Wabel et al. 2019), biochar

applications on large scale are rare (Zhou et al. 2018;

Saifullah et al. 2018). The cost in association with the

transportation of biowaste and biochar, equipment

purchase, pyrolysis process, and high-use dosage often

makes agricultural and environmental use of biochar

infeasible (Blackwell et al. 2009; Marousěk et al.

2017). In general, biochar may cost between $222 and

$584/ton to produce, deliver, and spread on fields

(Shackley et al. 2011; Huang et al. 2014; Shabangu

et al. 2014; Ahmed et al. 2015), which is more than the

profit improvement of $96.13/ton from biochar being

used as soil amendment (Galinato et al. 2011; Camp-

bell et al. 2018). Biochar as a commodity for agricul-

tural use has been challengeable (Vochozka et al.

2016), prompting the development of methods for

inexpensive biochar production (Saifullah et al. 2018).

If biochar could be produced in the field from local

biowaste for local use, its transportation cost would be

eliminated, and overall cost would be greatly reduced,

thus making biochar use as a soil amendment more

feasible. Filed production of biochar can be achieved

via a couple of methods. The first method involved

coupled oxygen-limiting and mist-spraying tech-

niques, as reported by Xiao et al. (2019a), though its

production efficiency is not very high. The second

method is a result of a reconsideration of the

preconceived notions of biochar production via pyrol-

ysis of biowaste in the absence of oxygen. Inspired by

charcoal production in nature, where wood and humus

have been converted into charcoal by forest fire since

time immemorial (Wardle et al. 2008), we hypothe-

sized that biochar could be produced in the field by

manipulating the pyrolysis of biowaste with fire and

water. This hypothesis has been proven feasible via a

combination of aerobic combustion on the exterior

surface of biomass and oxygen-limited pyrolysis

inside of the biomass in a brick-constructed trough

and by using a fire-water-coupled method. Biochar

was produced in the field at an estimated cost of

$24/ton (Xiao et al. 2019b). Moving the brick-

constructed trough to another area, however, is

inconvenient. Thus, a simplified version is proposed

here to produce biochar from biowaste by coordinat-

ing the use of fire and water. It involved three sub-

processes: (1) open burning of a biomass stack to

instantly reach a high temperature to mimic a high

carbonization temperature and a fast heating rate in

conventional pyrolysis where biomass is heated

(Crombie et al. 2013); (2) oxygen-limiting pyrolysis

in the inner core of biomass to form dark red char that

subsequently fell to the ground; and (3) termination of

pyrolysis in the fallen dark red char at a controlled

time by water spray (Xiao et al. 2019b) to mimic the

residence time in conventional pyrolysis. Thus, three

parameters (heating rate, carbonization temperature,

and residence time) that control the properties of

biochar in conventional pyrolysis (Al-Wabel et al.

2018) have been simplified to a single operating

parameter: exposure time, with a hypothesis that this

single operating parameter can control biochar prop-

erties. Exposure time is the duration between a

burning char fell to the ground and water spray was

applied to terminate the pyrolysis.

In this study, Robinia pseudoacacia branch was

used as a feedstock to produce biochar in the field via a

combination of aerobic and oxygen-limited carboniza-

tion with a fire-water-coupled method. The purpose of

this study was threefold: (1) to report a method for

low-cost production of biochar in field; (2) to ascertain

the influence of exposure time on biochar properties;

and (3) to estimate the potential of the biochar to

adsorb two common contaminants, cadmium (Cd) and

oxytetracycline (OTC).

Materials and methods

Biochar production in the field

Biowaste pruned from Robinia pseudoacacia in

Pucheng County, Shaanxi Province, was used as
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feedstock for biochar production. The air-dried

branches were 0.2–0.6 m long, with a diameter of

0.8–4.5 cm, and water content of 11.38 ± 0.15%.

The feedstock was converted to biochar via a

combination of aerobic and oxygen-limited carboniza-

tion processes. Briefly, Robinia pseudoacacia

branches were randomly piled into stacks of 1.5 m

long and 0.6 m high, with a trapezoidal cross

section. Two groups, each with five random stacks,

were used as duplicated treatments. The stacks were

first ignited from four sides to start an aerobic burning

process to reach a high temperature instantly. Occur-

ring inside the branches was oxygen-limited pyrolysis

that turned the feedstock to dark red char. It was

named oxygen-limited for two reasons: oxygen of the

feedstock (e.g., in carbohydrate) could still be con-

sumed in the pyrolysis and oxygen diffusion from

outside to the core of feedstock could not be excluded.

The dark red char was knocked down to the ground,

collected by using a fork and shovel, and water-mist

sprayed to extinguish either immediately (i.e., expo-

sure time = 0) or after 5, 10, 15 and 30 min of

exposure to the air (exposure time = 5, 10, 15 and

30 min). The formed biochars were labeled as I, II, III,

IV, and V, respectively (Fig. 1).

Pyrolysis termination temperature, defined as the

temperature on the surface of the dark red char on the

ground before water spray starts, was measured with a

non-contact infrared thermometer (DT-8833, Beijing

Huashengchang) with a range of- 50 to 800 �C and a

resolution of 0.1 �C. The obtained biochar was oven-

dried at 85 �C and then ground to pass through a

100-mesh sieve for laboratory analysis and sorption

experiment.

The above combination of aerobic and oxygen-

limited carbonization processes inevitably produced

smoke, particularly at the initial stage. If required, this

problem is solvable by a combination of physical

filtering of large particles, high-voltage electric burn-

ing of small charcoal particles, and sorption of gases

by a mud suspension to control the emissions of

particulate matter (PM 2.5 and PM 10) and volatile

organic matter to meet environmental standard (Xiao

et al. 2019b).

Cadmium sorption experiment

Cadmium solutions: 0.2747 g of cadmium nitrate

(Cd(NO3)2�4H2O, analytical purity) was dissolved in

deionized water to a volume of 100 mL to prepare a

stock solution with a Cd(II) concentration of 1 g/L. It

was used to make a working solution that contained

50 mg Cd/L and 1 mM NaNO3 as a background

electrolyte for use in Cd sorption experiment.

Sorption experiment was carried out in duplicate

with blanks and controls. Briefly, 0.040 g of biochar

with different exposure times were weighed into

50 mL centrifuge tubes that contained 40 mL solution

of 50 mg Cd/L and 1 mM NaNO3. The tubes were

capped, shaken at 300 rpm in an oscillator at 25 �C for

24 h, and then centrifuged at 4000 rpm for 10 min.

The supernatant was filtered through a 0.45 lm

Fig. 1 Diagrams of low-cost biochar production in the field via a combination of aerobic and oxygen-limited carbonization with

different exposure times
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membrane for Cd concentration analysis by an atomic

absorption spectrophotometer (Shimadzu, AA-7000).

The residue in tubes was freeze-dried for Fourier-

transform infrared spectroscopy (FTIR) analysis. The

amount of sorbed Cd was calculated from the differ-

ence between the initial and equilibrium concentra-

tions of Cd.

Oxytetracycline sorption experiment

Oxytetracycline solutions: 0.5000 g of OTC was

dissolved in a methanol solution, diluted to 500 mL

to obtain 1 g/L OTC stock solution, sealed, and stored

in a refrigerator at 4 �C. 0.5850 g of NaCl and 0.1 g of

NaN3 (an inhibitor to avoid OTC biodegradation) were

dissolved in Milli-Q water and diluted to 1 L to obtain

0.01 M NaCl background electrolyte solution.

Sorption experiment was carried out in duplicate

with blanks and controls. Briefly, 0.040 g of biochar

with different exposure times were weighted into

50 mL centrifuge tubes that contained 40 mL solution

of 50 mg OTC/L and 0.01 M NaCl as background

electrolyte. The capped tubes were shaken at 120 rpm

at 25 �C for 24 h and then centrifuged at 4000 rpm for

10 min. The supernatant was filtered through a

0.45 lm membrane to determine OTC concentrations

via a UV–Vis spectrophotometer (Thermo Genesys

10S) at a wavelength of 276 nm. The residue in tubes

was freeze-dried for FTIR analysis. The amount of

sorbed OTC was calculated from the difference

between the initial and equilibrium concentrations of

OTC.

Analytical methods

The ash content of biochar was determined by ignition

in a muffle furnace at 800 �C for 4 h (Bao 2000). The

pH of biochar was measured with deionized water at a

ratio of 1:5 (w/v, shaking at 160 r/min for 24 h) using

a pH meter (Five Easy Plus, METTLER TOLEDO).

Elemental compositions of biochar were determined

by an elemental analyzer (Vario Micro cube, Elemen-

tar). Functional groups of biochar were characterized

by FTIR (Thermo Fisher Nicolet iS5) with a scan

range of 500–4000 cm-1 and a resolution of 2.0 cm-1

(Wang 2013). Oxygen-containing functional groups

were determined by the titration method of the

International Humic Substances Society (http://

humic-substances.org/) (International Humic

Substances Society (IHSS) 2019). Specific surface

area (SSA) was analyzed by the nitrogen sorption BET

method on a fully automatic specific surface area and

pore size distribution analyzer (Autosorb-iQ,

Quantachrome).

Data processing

Excel 2010, SPSS 16.0, and Origin 8.0 were used for

calculation, data analysis, and figure drawing. One-

way ANOVA was performed for statistical signifi-

cance analysis (Duncan’s test) of the biochar

properties.

Results and discussion

The combination of aerobic and oxygen-limited

carbonization process

The burning process of Robinia pseudoacacia

branches could be divided into three stages (Shafiza-

deh 1982; Hamelinck et al. 2005): (1) surface charred

immediately but with an unburned core; (2) surface

grayed out, the core was in a self-ignition state with

high temperature and limited oxygen, and dark red

char fell to the ground; and (3) the dark red char

gradually burned out and became ash. Spraying water

on the dark red char prevented the occurrence of the

3rd stage, thus favoring the formation of biochar

instead of ash.

To help understand this effect, we can conceive a

Robinia pseudoacacia branch as a miniature furnace:

the outer part of the branch is similar to the furnace

wall, whereas the inner core is equivalent to the

biomass in the furnace. In other words, the carboniza-

tion process is a combination of surface combustion

and oxygen-limited pyrolysis at the inner core.

The aerobic and oxygen-limited carbonization

differs from the traditional pyrolysis in three aspects.

First, the temperature is raised instantly in the former

rather than slowly in the latter (Manyà 2012). Second,

the residence time is much shorter in aerobic and

oxygen-limited carbonization than in conventional

pyrolysis (Crombie et al. 2013). A water spray

immediately terminates the carbonization in aerobic

and oxygen-limited method, whereas in conventional

pyrolysis the carbonization lasts for hours. Third, a

single operating parameter, exposure time, is used to
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control the properties of the formed biochar in aerobic

and oxygen-limited method, whereas in conventional

pyrolysis three parameters (heating rate, temperature,

and residence time) are combined to affect biochar

properties.

The effect of exposure time on biochar properties

As shown in Fig. 2, all biochars produced with

different exposure times were alkaline (pH from

9.42 to 9.49), with no significant difference. In

contrast, as exposure time increased from 0 to

30 min pyrolysis termination temperature gradually

decreased from 523.0, 493.4, 446.7, 402.4 to

238.3 �C, accompanied by an increase in ash content

from 15.38, 23.40, 29.32, 36.64 to 48.45%. This

negative effect of exposure time on biochar formation

was further evidenced by a decrease in C, N, H, and S

contents of biochar with the increasing exposure time

(Fig. 3). C, N, H, and S contents at 0 min of exposure

time were the highest (67.45%, 1.19%, 2.43%, and

0.86%, respectively), and a significant difference was

observed between 0 and 5 min. As exposure time

increased, these elements converted to carbon, nitro-

gen, and sulfur oxide gases, resulting in biochars with

a lighter color. As the C content of biochar formed at

0 min of exposure time was 67.45%, it could be

classified as class 1 according to both European

Biochar Certificate (EBC) Version 4.8 and Interna-

tional Biochar Initiative (IBI) Biochar Standards

Version 2.0 (Campbell et al. 2018).

Figure 4 indicates that the SSA of biochars, an

important indicator of their adsorptive capacity,
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gradually decreased with exposure time. The decrease

was most evident (41.7%) in the 0–5 min period.

Generally speaking, a larger SSA indicated more pores

and a better sorption performance (Joseph et al. 2009).

The SSA of the biochar with 0 min exposure time was

highest (155.77 m2/g), suggesting its good adsorptive

capacity than others (Genuino et al. 2018).

A higher pyrolysis temperature usually produces

biochar with a larger SSA and pore volume (Keiluweit

et al. 2010). Figure 2 shows that pyrolysis termination

temperature at 0 min exposure time was the highest

(523 �C), resulting in fluffy biochar with a porous

structure (Fig. 5), lightweight, and a large SSA

(155.77 m2/g). With a rise in exposure time, aerobic

combustion lasted longer, causing the collapse of the

carbon skeleton, the filling of pores by ash, and a

decrease in SSA. It is conceivable that if exposure time

further increased, the end product would be ash. At

70 min of exposure time, the ask-like product had a

SSA of 10.23 m2/g, much lower than those of biochars

formed at 0 to 30 min of exposure times. After

comparing 93 biochar samples, Yuan et al. (2016)

found that the SSA of most wood biochar was below

100 m2/g. According to EBC Version 4.8 and IBI

Biochar Standards Version 2.0 (Campbell et al. 2018),

biochar formed at 0 min of exposure time was

preferable.

Figure 6 shows that phenolic-hydroxyl and car-

boxyl groups of biochar significantly decreased with

exposure time from 0 to 10 min. Their contents were

highest at 0 min, being 0.86 mol/kg for phenolic-OH

and 1.74 mol/kg for –COOH groups. Due to their roles

in ion exchange, sorption, and the complexation of

metal and organic pollutants, oxygen-containing func-

tional groups of biochar indicate its sorption ability

(Chen et al. 2008). Phenolic-hydroxyl and carboxyl

groups, formed during the oxygen-limiting thermal

cracking process of Robinia pseudoacacia branches,

were consumed as exposure time increased.

Effect of exposure time on biochar to sorb Cd

and OTC

Cd sorption on biochar first decreased and then

increased with exposure time (Fig. 7), and the sorption

capacities were higher at 0 and 30 min than between.

The sorption capacity of this research was similar to

those of wood biochars (0.3–5.5 mg/g), as Inyang

et al. (2016) summarized. Cautions, however, should

be exercised in comparing sorption capacities as they

depend on experimental conditions (e.g., pH, co-

existing ions). Estimating sorption capacity from a

single concentration sorption experiment provides a

convenient way for fast screening of adsorbents, as

routinely done in soil testing of phosphorus sorption

potential.

As Oliveira et al. (2017) and Wu et al. (2019)

summarized, metal ion immobilization by biochar

involves mechanisms of (i) electrostatic attraction

between cationic heavy metals and negatively charged

minerals on biochars; (ii) cation exchange between

metal ions and mineral ions on biochars; (iii) com-

plexation of metals with surface functional groups of

biochars; and (iv) precipitation of heavy metals with

biochar minerals (e.g., SiO3
2-, PO4

3-, OH-, CO3
2-).

At 0 and 5 min of exposure times the ash content of

biochar (15.38%, 23.40%) was low, so was its

contribution to Cd sorption. The high oxygen-con-

taining functional groups of biochar at 0 min would

favor Cd sorption through complexation or ion

exchange. At exposure times of 10, 15, and 30 min,

the sum of –COOH and phenolic-OH groups, being

1.94, 1.92, and 1.94 mol/kg, respectively, was about

the same, but the corresponding ash content increased

to 29.32, 36.64 and 48.45%. The high ash content

promoted Cd sorption onto biochar, as Inyang et al.

(2016) and Hass and Lima (2018) reported. Further,

the high pH (9.42–9.49) would favor Cd precipitation.

Similarly, Wei et al. (2019b) reported that high ash

content and pH contributed to Cu sorption by

halophyte biochar via precipitation and formation of
Fig. 5 SEM image of biochar produced in 0 min of exposure

time
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mineral langite. Overall, functional groups and ash

content of biochar jointly affect Cd sorption (Singh

and Prasad 2015).

The FTIR spectra of biochar before and after Cd

sorption are shown in Fig. 9. The assignment of the

peaks was based on the work of Singh and Prasad

(2015) and Wei et al. (2019a, c). After Cd sorption the

peak of phenolic-OH functional group at 3740 cm-1

disappeared, and the peaks of –COOH functional

group at 1700 cm-1 and the C=O/C=C functional

group at 1570 cm-1 moved toward low wavenumbers

(i.e., red shift occurred), which indicates that oxygen-

containing functional groups play an important role in

Cd sorption by biochar.

OTC sorption on biochar was highest at 0 min

exposure time, and it decreased with rising exposure

time (Fig. 8). The sorption capacities were similar to

those of other wood biochars (Zhang and Wang 2018;

Dai et al. 2019). Again, caution is required in the direct

comparison of sorption capacities from different

experimental conditions. The sorption trend agreed
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with the SSA of biochars (Fig. 4) and the contents of –

COOH and phenolic-OH groups (Fig. 6). As OTC is a

bulky molecule its sorption on biochar is enhanced by

a large SSA for pore filling, and H-bonding is the

dominant mechanism for the sorption (Fu et al. 2016).

The FTIR spectra (Fig. 9) show that after OTC

sorption the absorption peaks of structural groups of

biochar at 0 min exposure time either disappeared

(phenolic-OH functional group) or moved to lower

wavenumbers (–COOH and C=O/C=C functional

groups). These changes indicate the formation of

hydrogen bonds and the existence of p-p electron

donor-acceptor interactions (Ji et al. 2011; Fu et al.

2016), and are consistent with the reports of Ahmed

et al. (2016, 2017).

Conclusions and prospects

Inspired by the charcoal formation in nature, we have

proved that low-cost biochar can be produced in field

by the combination of aerobic and oxygen-limited

carbonization of Robinia pseudoacacia branches,

involving combustion at the outer side of biomass,

oxygen-limited pyrolysis in the inner core of biomass,

and the termination of the pyrolysis by water spray.

The properties of obtained biochars could be adjusted

by a single factor—exposure time, the duration

between burning char fell to the ground and water

was sprayed to extinguish. In other words, water spray

inhibits further carbonization of dark red char and

forms biochar. Biochar formed by a fast termination

(0 min exposure time) showed a larger specific surface

area (155.77 m2/g), higher contents of carbon content

(67.45%), carboxyl (1.74 mol/kg), and phenolic-hy-

droxyl groups (0.86 mol/kg), and a lower ash content

(15.38%) than biochars formed from a slow termina-

tion (5–30 min of exposure time). As this aerobic and

oxygen-limited carbonization method eliminated

transportation and equipment costs, biochars could

be produced in a village of northwestern China at

$20/ton. This research may help accelerate a paradigm

shift in biochar production from a sophisticated

stationary facility to a simple method for practical

use in the field. Low-cost is a great advantage that

would help agricultural and environmental applica-

tions of biochar.
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