Skip to main content

Advertisement

Log in

Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo–larval development of marine medaka (Oryzias melastigma)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Ocean acidification (OA) and crude oil pollution have been highlighted as some of the most pervasive anthropogenic influences on the ocean.In marine teleosts, early life-history stages are particularly vulnerable to disturbance by CO2-driven acidification as they lack pH-mediated intracellular regulation. Embryos exposed to trace levels of crude oil constituents dissolved in water exhibit a common syndrome of developmental abnormalities. So far, little is known about the combined effects of OA and crude oil on the early life history of marine fish. Eggs and larvae of the marine medaka (Oryzias melastigma) were treated with CO2 (1080 μatm atmospheric CO2), the water-soluble fraction (WSF) of crude oil (500 μg/L) and a CO2 (1080 μatm atmospheric CO2)/WSF (500 μg/L) mixture within 4 h after oviposition. Isolated and combined OA/WSF had no detectable effect on embryonic duration, egg survival rate and size at hatching. Histopathological anomalies of tissue and lipid metabolic disorder were significant when CO2 or WSF was given alone at 30 days of age. Combination of CO2 and WSF enhanced their toxicity compared to their separate administration. Since the early life-history stage of marine fish is thought to be impacted more heavily by increasing CO2 partial pressure (pCO2) levels and crude oil pollution, OA and crude oil pollution have the potential to act as an additional source of natural mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali, L. N., Mantoura, C., & Rowland, S. J. (1995). The dissolution and photodegradation of Kuwaiti crude oil in seawater. Part 1. Quantitative dissolution and analysis of the seawater-soluble fraction. Marine Environmental Research, 40(1), 1–17.

    Article  CAS  Google Scholar 

  • Arlt, V. M., Krais, A. M., Godschalk, R. W., Riffovasquez, Y., Mrizova, I., Roufosse, C. A., et al. (2015). Pulmonary inflammation impacts on CYP1A1-mediated respiratory tract DNA damage induced by the carcinogenic air pollutant benzo[a] pyrene. Toxicological Sciences, 146(2), 213–225.

    Article  CAS  Google Scholar 

  • Arnberg, M. (2016). Combined effects of ocean acidification, ocean warming and oil spill on aspects of development of marine invertebrates. Doctoral dissertation. University of Plymouth, Plymouth.

  • Arukwe, A., Nordtug, T., Kortner, T. M., Mortensen, A. S., & Brakstad, O. G. (2008). Modulation of steroidogenesis and xenobiotic biotransformation responses in zebrafish (Danio rerio) exposed to water-soluble fraction of crude oil. Environmental Research, 107(3), 362–370.

    Article  CAS  Google Scholar 

  • Barron, M. G., Carls, M. G., Short, J. W., & Rice, S. D. (2003). Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska North Slope crude oil to Pacific herring eggs and larvae. Environmental Toxicology and Chemistry, 22(3), 650–660.

    Article  CAS  Google Scholar 

  • Baumann, H., Talmage, S. C., & Gobler, C. J. (2012). Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Climate Change, 2(1), 38–41.

    Article  CAS  Google Scholar 

  • Bobulescu, I. A., Dubree, M. I., Zhang, J., McLeroy, P., & Moe, O. W. (2008). Effect of renal lipid accumulation on proximal tubule Na+/H+ exchange and ammonium secretion. American Journal of Physiology-Renal Physiology, 294(6), F1315–F1322.

    Article  CAS  Google Scholar 

  • Carls, M. G., Holland, L., Larsen, M., Collier, T. K., Scholz, N. L., & Incardona, J. P. (2008). Fish embryos are damaged by dissolved PAHs, not oil particles. Aquatic Toxicology, 88(2), 121–127.

    Article  CAS  Google Scholar 

  • Carls, M. G., Rice, S. D., & Hose, J. E. (1999). Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (Clupea pallasi). Environmental Toxicology and Chemistry, 18(3), 481–493.

    Article  CAS  Google Scholar 

  • Checkley, D. M., Dickson, A. G., Takahashi, M., Radich, J. A., Eisenkolb, N., & Asch, R. (2009). Elevated CO2 enhances otolith growth in young fish. Science, 324(5935), 1683.

    Article  CAS  Google Scholar 

  • Claiborne, J. B., Edwards, S. L., & Morrison-Shetlar, A. I. (2002). Acid–base regulation in fishes: Cellular and molecular mechanisms. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 293(3), 302–319.

    Article  CAS  Google Scholar 

  • Cole, V. J., Parker, L. M., O’Connor, S. J., O’Connor, W. A., Scanes, E., & Byrne, M. (2016). Effects of multiple climate change stressors: Ocean acidification interacts with warming, hyposalinity, and low food supply on the larvae of the brooding flat oyster Ostrea angasi. Marine Biology, 163(5), 1–17.

    Article  CAS  Google Scholar 

  • Collier, T. K., Anulacion, B. F., Stein, J. E., Varanasi, U., & Goksøyr, A. (1995). A field evaluation of cytochrome P4501A as a biomarker of contaminant exposure in three species of flatfish. Environmental Toxicology and Chemistry, 14, 143–152.

    Article  CAS  Google Scholar 

  • Darling, E., & Cote, I. M. (2008). Quantifying the evidence for ecological synergies. Ecology Letters, 11(12), 1278–1286.

    Article  Google Scholar 

  • Davis, S. J., & Caldeira, K. (2010). Consumption-based accounting of CO2 emissions. Proceedings of the National Academy of Sciences, 107(12), 5687–5692.

    Article  CAS  Google Scholar 

  • Denman, K., Christian, J. R., Steiner, N., Pörtner, H. O., & Nojiri, Y. (2011). Potential impacts of future ocean acidification on marine ecosystems and fisheries: Current knowledge and recommendations for future research. ICES Journal of Marine Science, 68(6), 1019–1029.

    Article  Google Scholar 

  • Duarte, C., Navarro, J. M., Acuna, K., Torres, R., Manríquez, P. H., Lardies, M. A., et al. (2014). Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. Journal of Sea Research, 85, 308–314.

    Article  Google Scholar 

  • Esbaugh, A. J., Heuer, R., & Grosell, M. (2012). Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B, 182(7), 921–934.

    Article  CAS  Google Scholar 

  • Ferrari, M. C. O., Dixson, D. L., Munday, P. L., McCormick, M. I., Meekan, M. G., Sih, A., et al. (2011). Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: Implications for climate change projections on marine communities. Nature Climate Change, 17(9), 2980–2986.

    Google Scholar 

  • Folch, J., Lees, M., & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1), 497–509.

    CAS  Google Scholar 

  • Frommel, A. Y., Maneja, R. H., Lowe, D., Malzahn, A. M., Geffen, A. J., Folkvord, A., et al. (2012). Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change, 2(1), 42–46.

    Article  CAS  Google Scholar 

  • Gilmour, K. M., & Perry, S. F. (2009). Carbonic anhydrase and acid–base regulation in fish. Journal of Experimental Biology, 212(11), 1647–1661.

    Article  CAS  Google Scholar 

  • Gooding, R. A., Harley, C. D. G., & Tang, E. (2009). Elevated water temperature and carbon dioxide concentration increase the growth of a keystone echinoderm. Proceedings of the National Academy of Sciences, 106(23), 9316–9321.

    Article  CAS  Google Scholar 

  • Hamm, J. T., Wilson, B. W., & Hinton, D. E. (2001). Increasing uptake and bioactivation with development positively modulate diazinon toxicity in early life stage medaka (Oryzias latipes). Toxicological Sciences, 61(2), 304–313.

    Article  CAS  Google Scholar 

  • Heintz, R. A., Rice, S. D., Wertheimer, A. C., Bradshaw, R. F., Thrower, F. P., Joyce, J. E., et al. (2000). Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Marine Ecology Progress Series, 208, 205–216.

    Article  Google Scholar 

  • Helaleh, M. I., Al-Omair, A., Nisar, A., & Gevao, B. (2005). Validation of various extraction techniques for the quantitative analysis of polycyclic aromatic hydrocarbons in sewage sludges using gas chromatography-ion trap mass spectrometry. Journal of Chromatography A, 1083(1), 153–160.

    Article  CAS  Google Scholar 

  • Hicken, C. E., Linbo, T. L., Baldwin, D. H., Willis, M. L., Myers, M. S., Holland, L., et al. (2011). Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proceedings of the National Academy of Sciences, 108(17), 7086–7090.

    Article  CAS  Google Scholar 

  • Incardona, J. P., Carls, M. G., Day, H. L., Sloan, C. A., Bolton, J. L., Collier, T. K., et al. (2009). Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environmental Science and Technology, 43(1), 201–207.

    Article  CAS  Google Scholar 

  • Ishimatsu, A., Hayashi, M., & Kikkawa, T. (2008). Fishes in high-CO2, acidified oceans. Marine Ecology Progress Series, 373, 295–302.

    Article  CAS  Google Scholar 

  • Keshavarzifard, M., Moore, F., Keshavarzi, B., & Sharifi, R. (2017). Distribution, source apportionment and health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in intertidal sediment of Asaluyeh, Persian Gulf. Environmental Geochemistry and Health, 40(2), 721–735.

    Article  CAS  Google Scholar 

  • Kim, R.-O., Kim, B.-M., Hwang, D.-S., Au, D. W., Jung, J. H., Shim, W. J., et al. (2013). Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 157(2), 172–182.

    CAS  Google Scholar 

  • Kong, R. Y. C., Giesy, J. P., Wu, R. S. S., Chen, E. X. H., Chiang, M. W. L., Lim, P., et al. (2008). Development of a marine fish model for studying in vivo molecular responses in ecotoxicology. Aquatic Toxicology, 86(2), 131–141.

    Article  CAS  Google Scholar 

  • Kurihara, H., & Ishimatsu, A. (2008). Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Marine Pollution Bulletin, 56(6), 1086–1090.

    Article  CAS  Google Scholar 

  • Larsen, B. K., Portner, H. O., & Jensen, F. B. (1997). Extra- and intracellular acid–base balance and ionic regulation in cod (Gadus morhua) during combined and isolated exposures to hypercapnia and copper. Marine Biology, 128(2), 337–346.

    Article  CAS  Google Scholar 

  • Lavarías, S., García, F., Pollero, R. J., & Heras, H. (2007). Effect of the water-soluble fraction of petroleum on microsomal lipid metabolism of Macrobrachium borellii (Arthropoda: Crustacea). Aquatic Toxicology, 82(4), 265–271.

    Article  CAS  Google Scholar 

  • Lewis, C. N., Brown, K. A., Edwards, L. A., Cooper, G., & Findlay, H. S. (2013). Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proceedings of the National Academy of Sciences, 110(51), E4960–E4967.

    Article  CAS  Google Scholar 

  • Lewis, C., Ellis, R. P., Vernon, E., Elliot, K., Newbatt, S., & Wilson, R. W. (2016). Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid–base responses. Scientific Reports, 6, 21554.

    Article  CAS  Google Scholar 

  • Marty, G. D., Nunez, J. M., Lauren, D. J., & Hinton, D. E. (1990). Age-dependent changes in toxicity of N-nitroso compounds to Japanese medaka (Oryzias Latipes) embryos. Aquatic Toxicology, 17(1), 45–62.

    Article  CAS  Google Scholar 

  • McNutt, M. K., Camilli, R., Crone, T. J., Guthrie, G. D., Hsieh, P. A., Ryerson, T. B., et al. (2012). Review of flow rate estimates of the Deepwater Horizon oil spill. Proceedings of the National Academy of Sciences, 109(50), 20260–20267.

    Article  Google Scholar 

  • Melzner, F., Thomsen, J., Koeve, W., Oschlies, A., Gutowska, M. A., Bange, H. W., et al. (2013). Future ocean acidification will be amplified by hypoxia in coastal habitats. Marine Biology, 160(8), 1875–1888.

    Article  CAS  Google Scholar 

  • Michaelidis, B., Spring, A., & Pörtner, H. O. (2007). Effects of long-term acclimation to environmental hypercapnia on extracellular acid–base status and metabolic capacity in Mediterranean fish Sparus aurata. Marine Biology, 150(6), 1417–1429.

    Article  Google Scholar 

  • Mu, J., Jin, F., Wang, J., Zheng, N., & Cong, Y. (2015). Effects of CO2-driven ocean acidification on early life stages of marine medaka (Oryzias melastigma). Biogeosciences, 12(12), 3861–3868.

    Article  Google Scholar 

  • Murray, C. S., Malvezzi, A., Gobler, C. J., & Baumann, H. (2014). Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Marine Ecology Progress Series, 504, 1–11.

    Article  Google Scholar 

  • Nahrgang, J., Camus, L., Carls, M. G., Gonzalez, P., Jönsson, M., Taban, I. C., et al. (2010). Biomarker responses in polar cod (Boreogadus saida) exposed to the water soluble fraction of crude oil. Aquatic Toxicology, 97(3), 234–242.

    Article  CAS  Google Scholar 

  • Nghiem, D. D., Olson, P. R., & Ormond, D. (2004). The “fatty pancreas allograft”: Anatomopathologic findings and clinical experience. Transplantation Proceedings, 36(4), 1045–1047.

    Article  CAS  Google Scholar 

  • Nilsson, G. E., Östlund-Nilsson, S., Penfold, R., & Grutter, A. S. (2007). From record performance to hypoxia tolerance: Respiratory transition in damselfish larvae settling on a coral reef. Proceedings of the Royal Society of London B: Biological Sciences, 274(1606), 79–85.

    Article  CAS  Google Scholar 

  • Ohiozebau, E., Tendler, B., Hill, A., Codling, G., Kelly, E., Giesy, J. P., et al. (2016). Products of biotransformation of polycyclic aromatic hydrocarbons in fishes of the Athabasca/Slave river system, Canada. Environmental Geochemistry and Health, 38(2), 577–591.

    Article  CAS  Google Scholar 

  • Paine, M. D., Legget, W. C., McRuer, J. K., & Frank, K. T. (1992). Effects of Hibernia crude oil on capelin (Mallotus villosus) embryos and larvae. Marine Environmental Research, 33(3), 159–187.

    Article  Google Scholar 

  • Perry, S. F., & Gilmour, K. M. (2009). Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models. Respiratory Physiology and Neurobiology, 154(1), 199–215.

    Google Scholar 

  • Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D., Jaris, H., et al. (2013). Evolutionary change during experimental ocean acidification. Proceedings of the National Academy of Sciences, 110(17), 6937–6942.

    Article  CAS  Google Scholar 

  • Pfaffl, M. W., Graham, W. H., & Dempfle, L. (2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), 1–10.

    Article  Google Scholar 

  • Schunter, C., Welch, M. J., Ryu, T., Zhang, H., Berumen, M. L., Nilsson, G. E., et al. (2016). Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nature Climate Change, 6, 1014–1018.

    Article  CAS  Google Scholar 

  • Snoeck, A., Remackle, C., Reusens, B., & Hoet, J. J. (1990). Effects of low protein diet during pregnancy on the fetal rat endocrine pancreas. Neonatology, 57(2), 107–118.

    Article  CAS  Google Scholar 

  • Stiasny, M. H., Mittermayer, F. H., Sswat, M., Voss, R., Jutfelt, F., Chierici, M., et al. (2016). Ocean acidification effects on Atlantic cod larval survival and recruitment to the fished population. PLoS ONE, 11(8), e0155448.

    Article  CAS  Google Scholar 

  • Sun, L., Zuo, Z., Luo, H., Chen, M., Zhong, Y., Chen, Y., et al. (2011). Chronic exposure to phenanthrene influences the spermatogenesis of male Sebastiscus marmoratus U-shaped effects and the reason for them. Environmental Science and Technology, 5(23), 10212–10218.

    Article  CAS  Google Scholar 

  • Wang, X., Xu, L., Li, W., Li, L., & Qian, A. (2003). Petroleum hydrocarbon distribution features in water and sediment off Fujian shore. Chinese Journal of Oceanology and Limnology, 21(2), 187–192.

    Article  CAS  Google Scholar 

  • Whitehead, A., Dubansky, B., Bodinier, C., Garcia, T. I., Miles, S., Pilley, C., et al. (2012). Genomic and physiological footprint of the Deepwater Horizon oil spill on resident marsh fishes. Proceedings of the National Academy of Sciences, 109(50), 20298–20302.

    Article  CAS  Google Scholar 

  • Widdicombe, S., Blackford, J. C., & Spicer, J. I. (2013). Assessing the environmental consequences of CO2 leakage from geological CCS: Generating evidence to support environmental risk assessment. Marine Pollution Bulletin, 73(2), 399–401.

    Article  CAS  Google Scholar 

  • Zeng, X., Chen, X., & Zhuang, J. (2015). The positive relationship between ocean acidification and pollution. Marine Pollution Bulletin, 91(1), 14–21.

    Article  CAS  Google Scholar 

  • Zhang, Z. B., Hu, J. Y., Zhen, H. J., Wu, X. Q., & Huang, C. (2008). Reproductive inhibition and transgenerational toxicity of triphenyltin on medaka (Oryzias latipes) at environmentally relevant levels. Environmental Science and Technology, 33(21), 8133–8139.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian Province of China (No. 2018J01067), the Program for Xiamen Southern Oceanographic Center (14GST69NF33), and the Ocean Public Welfare Scientific Research Special Appropriation Project (201405017); Professor John Hodgkiss of The University of Hong Kong is thanked for his help with English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Zuo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Ruan, J., Lu, M. et al. Combined effects of ocean acidification and crude oil pollution on tissue damage and lipid metabolism in embryo–larval development of marine medaka (Oryzias melastigma). Environ Geochem Health 41, 1847–1860 (2019). https://doi.org/10.1007/s10653-018-0159-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0159-z

Keywords

Navigation