Skip to main content
Log in

Assessment of the environmental conditions of the Sarno river basin (south Italy): a stream sediment approach

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Sarno river basin covers an area of 500 km2 collecting the waters of Solofrana and Cavaiola tributaries. Originally it manly represents a source of livelihood for inhabitants by fishing and transporting goods; currently, the Sarno river, still partially used for irrigation, is affected by an extreme environmental degradation as a result of uncontrolled outflow of industrial waste. Within the framework of a wider geochemical prospecting project aiming at characterizing the whole territory of the Campania region, 89 stream sediment samples with a sampling density of 1 sample per 5 km2 were collected in the river basin and analyzed by means of inductively coupled plasma-mass spectrometry in order to assess the environmental conditions at a regional scale. A GIS-aided technique, based on both the actual distribution of potentially harmful elements and their regional background values, was used to generate the maps of the contamination factors and of the contamination degrees for As, Cd, Cr, Cu, Hg, Pb and Zn. Furthermore, a factor analysis was performed to assess the nature and the extent of contamination sources for the river sediments. Results showed that the Sarno river basin could be divided in two “environmental status” units: one, low contaminated, corresponding to the hilly and mountain areas, and the second, from moderately to very highly contaminated, corresponding to the economically developed areas of the valley floor characterized by a high population density. This work was developed within a project that aims to investigate the relationships between environmental pollution and human health by analyzing environmental media (stream sediments, water, soil and vegetation) together with human hair of resident population. In this context, the spatial correlation between the extremely compromised environmental conditions of developed areas and the incidence rate of liver cancer in the same area was also explored posing the need of a careful costs/benefits analysis to assess whether the deterioration of the environment, that could adversely affect the conditions of public health, is worth the economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu, M. M., Matias, M. J., Clara, M., Magalhães, F., & Basto, M. J. (2008). Impacts on water, soil and plants from the abandoned Miguel Vacas copper mine, Portugal. Journal of Geochemical Exploration, 96, 161–170.

    Article  CAS  Google Scholar 

  • Adamo, P., Colombo, C., Terribile, F., & De Santo, A. (1999). Degradation processes in volcanic soils (pp. 24–47). Joint Meeting WG3/4 Cost Action 622, Napoli, May 27–30, 1999.

  • Adamo, P., Denaix, L., Terribile, F., & Zampella, M. (2003). Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma, 117, 347–366.

    Article  CAS  Google Scholar 

  • Adamo, P., Zampella, M., Gianfreda, L., Renella, G., Rutigliano, F. A., & Terribile, F. (2006). Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part I. Trace element speciation in relation to soil properties. Environmental Pollution, 144, 308–316.

    Article  CAS  Google Scholar 

  • Aiuppa, A., D’Alessandro, W., Federico, C., Palumbo, B., & Valenza, M. (2003). The aquatic geochemistry of arsenic in volcanic groundwaters from southern Italy. Applied Geochemistry, 18, 1283–1296.

    Article  CAS  Google Scholar 

  • Albanese, S., De Vivo, B., Lima, A., & Cicchella, D. (2007). Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration, 93, 21–34.

    Article  CAS  Google Scholar 

  • Alexakis, D. (2011). Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environmental Earth Sciences, 63, 1369–1383. doi:10.1007/s12665-010-0807-9.

    Article  CAS  Google Scholar 

  • Arienzo, M., Adamo, P., Bianco, M. R., & Violante, P. (2001). Impact of land use and urban runoff on the contamination of the Sarno river basin in southwestern Italy. Water, Air, and Soil pollution, 131, 349–366.

    Article  CAS  Google Scholar 

  • Baptista Neto, J. A., Smith, B. J., & McAllister, J. J. (2000). Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environmental Pollution, 109, 1–9.

    Article  CAS  Google Scholar 

  • Basile, G., Palmieri, F., & Violante, P. (1985). Il fiume Sarno: valutazione delle variazioni dell’inquinamento (pp. 258–293). Atti del Convegno Nazionale Inquinamento idrico e conservazione dell’Ecosistema. Vico Equense, February, 22–23, 1985.

  • Belay, A. A. (2010). Impacts of chromium from tannery effluent and evaluation of alternative treatment options. Journal of Environmental Protection, 1, 53–58.

    Article  CAS  Google Scholar 

  • Bertin, C., & Bourg, A. C. M. (1995). Trends in the heavy metal content (Cd, Pb, Zn) of river sediments in the drainage basin of smelting activities. Water Research, 29(7), 1729–1736.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, Á. A., Signes-Pastor, A. J., Vázquez-Araújo, L., Burló, F., & Sengupta, B. (2009). Presence of arsenic in agricultural products from arsenic-endemic areas and strategies to reduce arsenic intake in rural villages. Molecular Nutrition & Food Research, 53, 531–541.

    Article  CAS  Google Scholar 

  • Chapman, P. M., & Wang, F. Y. (1999). Appropriate applications of sediment quality values for metals and metalloids. Environmental Science and Technology, 33, 3937–3941.

    Article  CAS  Google Scholar 

  • Cheng, Q. (2003). GeoData Analysis System (GeoDAS) for mineral exploration and environmental assessment, user’s guide (GeoDAS Phase III). Toronto, ON: York University.

    Google Scholar 

  • Cinque, A., Aucelli, P. P. C., Brancaccio, L., Mele, R., Milia, A., Robustelli, G., et al. (1997). Volcanism, tectonics and recent geomorphological change in the Bay of Naples. Geografia Fisica e Dinamica Quaternaria, 2(Suppl 3), 123–141.

    Google Scholar 

  • D’Ascoli, R., Rao, M. A., Adamo, P., Renella, G., Landi, L., Rutigliano, F. A., et al. (2006). Impact of river overflowing on trace element contamination of volcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation. Environmental Pollution, 144, 317–326.

    Article  Google Scholar 

  • Dauvalter, V., & Rognerud, S. (2001). Heavy metal pollution in sediments of the Pasvik river drainage. Chemosphere, 42, 9–18.

    Article  CAS  Google Scholar 

  • De Pippo, T., Donadio, C., Guida, M., & Petrosino, C. (2006). The case of Sarno river (southern Italy). Effects of geomorphology on the environmental impacts. Environmental Science and Pollution Research, 13(3), 184–191.

    Article  Google Scholar 

  • De Vivo, B., Lima, A., Albanese, S., & Cicchella, D. (2006). Atlante geochimico-ambientale della Regione Campania. Roma: Aracne Editrice. ISBN 88-548-0819-9.

  • Fitzmaurice, A. G., Bilgin, A. A., O’Day, P. A., Illera, V., Burris, D. R., & Reisinger, H. J. (2009). Geochemical and hydrologic controls on the mobilization of arsenic derived from herbicide application. Applied Geochemistry, 24, 2152–2162.

    Article  CAS  Google Scholar 

  • Förstner, U., & Wittmann, G. (1983). Metal pollution in the aquatic environment. Berlin: Springer.

    Google Scholar 

  • Giuffré de López Camelo, L., Rato de Miguez, S., & Marbán, L. (1997). Heavy metals input with phosphate fertilizers used in Argentina. Science of the Total Environment, 204, 245–250.

    Article  Google Scholar 

  • Greven, M., Green, S., Robinson, B., Clothier, B., Vogeler, I., Agnew, R., et al. (2007). The impact of CCA-treated posts in vineyards on soil and ground water. Water Science and Technology, 56(2), 161–168.

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control of sediment ecological approach. Water Research, 14, 975–1000.

    Article  Google Scholar 

  • HMTRI (Hazardous Materials Training, Research Institute). (1997). Site characterization: Sampling and analysis. New York: Van Nostrand Reinhold.

    Google Scholar 

  • ISTAT. (2001). Censimento generale dell’industria e dei servizi, Roma, Italy.

  • Jain, C. K., & Sharma, M. K. (2001). Distribution of trace metals in the Hindon river system, India. Journal of Hydrology, 253, 81–90.

    Article  CAS  Google Scholar 

  • Kapourchal, S. A., Lazarjan, S. E., & Homaee, M. (2011). Phytoremediation of cadmium polluted soils from phosphorus fertilizers. Current Opinion in Biotechnology, 22(1), S37.

    Article  Google Scholar 

  • Kratz, S., & Schnug, E. (2006). Rock phosphates and P fertilizers as sources of U contamination in agricultural soils. In B. J. Merkel & A. Hasche-Berger (Eds.), Uranium in the environment (pp. 57–68). Berlin: Springer.

    Chapter  Google Scholar 

  • Lima, A., De Vivo, B., Cicchella, D., Cortini, M., & Albanese, S. (2003). Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of Campania region (Italy). Applied Geochemistry, 18, 1853–1865.

    Article  CAS  Google Scholar 

  • Manzo, G. (1999). Chimica e Tecnologia del Cuoio (p. 824). Marnate (VA): Media Service Edizioni.

    Google Scholar 

  • McGrath, S. P., & Loveland, P. J. (1992). The soil geochemical atlas of England and Wales (p. 101). London: BlackieAcademic & Professional.

    Google Scholar 

  • Miesch Programs. (1990). G-RFAC. USA: Grand Junction, CO.

    Google Scholar 

  • Nash, D., Halliwell, D., Hannah, M., Clemow, L., & Webb, B. (2003). Phosphorus and selected metals mobilized from two commercial fertilizers into overland flow during border irrigation. Nutrient Cycling in Agroecosystems, 67, 255–264.

    Article  CAS  Google Scholar 

  • O’Connor, P. J., & Reimann, C. (1993). Multielement regional geochemical reconnaissance as an aid to target selection in Irish Caledonian terrains. Journal of Geochemical Exploration, 47(1–3), 63–87.

    Article  Google Scholar 

  • Peña Icart, M., Villanueva Tagle, M. E., Alonso-Hernández, C., Rodríguez Hernández, J., Behar, M., & Pomares Alfonso, M. S. (2011). Comparative study of digestion methods EPA 3050B (HNO3-H2O2-HCl) and ISO 11466.3 (aqua regia) for Cu, Ni and Pb contamination assessment in marine sediments. Marine Environmental Research, 72, 60–66.

    Article  Google Scholar 

  • Perez-Santana, S., Pomares Alfonso, M., Villanueva Tagle, M., Peña Icart, M., Brunori, C., & Morabito, R. (2007). Total and partial digestion of sediments for the evaluation of trace element environmental pollution. Chemosphere, 66, 545–1553.

    Article  Google Scholar 

  • Plant, J., Smith, D., Smith, B., & Williams, L. (2001). Environmental geochemistry at the global scale. Applied Geochemistry, 16, 1291–1308.

    Article  CAS  Google Scholar 

  • Quercia, F. (2001) CLARINETThe Contaminated Land Rehabilitation Network for Environmental Technologies in Europe. Policy: Contaminated Land Approaches in 16 European Countries. Italy. http://www.clarinet.at/.

  • Romic, D., Romic, M., Zovko, M., Bakic, H., & Ondrasek, G. (2012). Trace metals in the coastal soils developed from estuarine floodplain sediments in the Croatian Mediterranean region. Environmental Geochemistry and Health,. doi:10.1007/s10653-012-9449-z.

    Google Scholar 

  • Saadia, R. T., Munir, H. S., & Shaheen, N. (2009). Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil. Journal of Hazardous Materials, 169, 285–290.

    Article  Google Scholar 

  • Salminen, R. (1995). Alueellinen geokemiallinen kartoitus suomessa vuosina—1994. English summary: Regional geochemical mapping in Finland in 1982–1994. Report of Investigation, 130. Geological Survey of Finland 1995, Espoo.

  • Salminen, R., Tarvainen, T., Demetriades, A., Duris, M., Fordyce, F. M., Gregorauskiene, V., et al. (1998). FOREGS geochemical mapping field manual. Espoo: Guide 47, Geological Survey of Finland.

    Google Scholar 

  • Sánchez-Martin, M. J., Sánchez-Camazano, M., & Lorenzo, L. F. (2000). Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: Influence of traffic intensity. Bulletin of Environmental Contamination and Toxicology, 64, 250–257.

    Article  Google Scholar 

  • Santos, A., Alonso, E., Callejon, M., & Jimenez, J. C. (2002). Heavy metal content and speciation in groundwater of the Guadiamar river basin. Chemosphere, 48, 279–285.

    Article  CAS  Google Scholar 

  • Sastre, J., Sahuquillo, A., Vidal, M., & Rauret, G. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: Microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.

    Article  CAS  Google Scholar 

  • Scheib, A. J., Lapworth, D. J., Pitfield, P. E. J., Ralison, A. V., Randriamananjara, T., Rabarimanana, M., et al. (2011). Geochemical signatures of stream sediments within the main geological domains and terranes of North and Central Madagascar. Applied Earth Science, 120(2), 97–110.

    CAS  Google Scholar 

  • Schipper, L. A., Sparling, G. P., Fisk, L. M., Dodd, M. B., Power, I. L., & Littler, R. A. (2011). Rates of accumulation of cadmium and uranium in a New Zealand hill farm soil as a result of long-term use of phosphate fertilizer. Agriculture, Ecosystems & Environment, 144(1), 95–101.

    Article  CAS  Google Scholar 

  • Singh, M., Ansari, A. A., Müller, G., & Singh, I. B. (1997). Heavy metals in freshly deposited sediments of the Gomati river (a tributary of the Ganga river): Effects of human activities. Environmental Geology, 29, 246–252.

    Article  CAS  Google Scholar 

  • Terribile, F., & Di Gennaro, A. (1996) Rapporto conclusivo U.O.T. Convenzione Regione Campania. Carta dei suoli (1:50.000) dell’Agro Nocerino Sarnese.

  • Ufficio Idrografico e Mareografico di Napoli, 1960–1995. Annali Idrologici. Bacini con foce al litorale tirrenico dal Garigliano al Busento. Servizi Tecnici Nazionali, Presidenza del Consiglio dei Ministri. Istituto Poligrafico dello Stato, Rome.

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642.

    Article  CAS  Google Scholar 

  • Won, J. H., Park, J. Y., & Lee, T. G. (2007). Mercury emissions from automobiles using gasoline, diesel, and LPG. Atmospheric Environment, 41, 7547–7552.

    Article  CAS  Google Scholar 

  • Zheng, N., Wang, Q. C., Liang, Z. Z., & Zheng, D. M. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154, 135–142.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out as part of a FARO project. Within the project, funded by the University of Napoli Federico II, in addition to stream sediments, other environmental media (water, soil and vegetation) have been collected together with human hair of resident population in order to investigate the relationships between environmental pollution and human health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Albanese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albanese, S., Iavazzo, P., Adamo, P. et al. Assessment of the environmental conditions of the Sarno river basin (south Italy): a stream sediment approach. Environ Geochem Health 35, 283–297 (2013). https://doi.org/10.1007/s10653-012-9483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-012-9483-x

Keywords

Navigation