Skip to main content
Log in

A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil

  • Original paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The concentrations and loadings of major and trace elements in coal mine drainage (CMD) from 49 abandoned mines located in the coal fields of the Brazilian state of Santa Catarina were determined. The CMD sites typically displayed a wide spatial and temporal variability in physical and geochemical conditions. The results of our CMD analyses in Santa Catarina State were used to illustrate that the geochemical processes in the rock piles can be deduced from multiple data sets. The observed relationship between the pH and constituent concentrations were attributed to (1) dilution of acidic water by near-neutral or alkaline groundwater and (2) solubility control of Al, Fe, Mn, Ba and Sr by hydroxide, sulfate, and/or carbonate minerals. The preliminary results of the CMD analyses and environmental health in the Santa Catarina region, Brazil, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ABMC. (2008). Available at: http://www.carvaomineral.com.br. Accessed 12 May 2008.

  • Baker, R., & Schofield, C. L. (1982). Aluminum toxicity to fish in acidic waters. Water, Air, and Soil pollution, 18, 289–309.

    Article  CAS  Google Scholar 

  • Bigham, J. M., & Nordstrom, D. K. (2000). Iron and aluminum hydroxysulfate minerals from acid sulfate waters. Reviews in Mineralogy and Geochemistry, 40, 351–403.

    CAS  Google Scholar 

  • Borda, M., Elsetinow, A., Schoonen, M., & Strongin, D. (2001). Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early Earth. Astrobiology, 1, 283–288.

    Article  CAS  Google Scholar 

  • Brigs, P. H. (2002) Chapter F: The determination of twenty-seven elements in aqueous samples by inductively coupled plasma-atomic emission spectrometry. In J. E. Taggart, Jr (Ed.), Analytical Methods for Chemical Analysis of Geologic and Other Materials. U.S. Geological Survey Open File Report 02-223. Reston, VA: U.S. Geological Survey.

  • Carlson, L., Bigham, J. M., Schwertmann, U., Kyek, A., & Wagner, F. (2002). Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues. Environmental Science and Technology, 36, 1712–1719.

    Article  CAS  Google Scholar 

  • Clescerial, L. S., Greenberg, A. E., & Eatan, A. D. (1998). Standard methods for examination of water and waste water (pp.3.37–3.38), 20th edn. Washington, DC: APHA, AWWA.

  • Cohn, C. A., Borda, M. J., & Schoonen, M. A. (2004). RNA decomposition by pyrite-induced radicals and possible role of lipids during the emergence of life. Earth and Planetary Science Letters, 225, 271–278.

    Article  CAS  Google Scholar 

  • Cohn, C., Mueller, S., Wimmer, E., Leifer, N., Greenbaum, S., Strongin, D. R., et al. (2006). Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochemical Transactions, 7, 3.

    Article  Google Scholar 

  • Cohn, C. A., Pak, A., Schoonen, M. A. A., & Strongin, D. R. (2005). Quantifying hydrogen peroxide in iron-containing solutions using leuco crystal violet. Geochemical Transactions, 6, 47–52.

    Article  CAS  Google Scholar 

  • Cravotta, A. C. (2008). Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: Constituent quantities and correlations. Applied Geochemistry, 23, 166–202.

    Article  CAS  Google Scholar 

  • Crock, J. G., Arbogast, B. F., & Lamothe, P. J. (1999). Laboratory methods for the analysis of environmental samples. Economic Geology, 6, 265–287.

    Google Scholar 

  • Earle, J., & Callaghan, T. (1998). Effects of mine drainage on aquatic life, water uses, and manmade structures. In K. B. C. Brady, & M. W. J. Smith (Eds.), Coal mine drainage prediction and pollution prevention in Pennsylvania, 5600-BK-DEP2256, 4.1–4.10. Harrisburg, PA: Pennsylvania Department of Environmental Protection.

  • Foose, M. P., Zientek, M. L,, & Klein, D. P. (1986). Magmatic sulphide deposits, pp. 11. Available at: http://pubs.usgs.gov/of/1995/ofr-95-0831/CHAP4.pdf.

  • Herr, C., & Gray, N. F. (1995). Sampling riverine sediments impacted by acid mine drainage: Problems and solutions. Environmental Geology, 29, 37–45.

    Article  Google Scholar 

  • Kairies, C. L. (2003). Characterization of precipitates associated with bituminous coal mine drainage, northern Appalachian region, USA. Ph.D. thesis. Pittsburgh: University of Pittsburgh.

  • Kalkreuth, W., Holz, M., Kern, M., Machado, G., Mexias, A., Silva, M. B., et al. (2006). Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota coal fields, Rio Grande do Sul, Brazil. International Journal of Coal Geology, 68, 79–116.

    Article  CAS  Google Scholar 

  • Lambert, D. C., McDonough, K. M., & Dzombak, D. A. (2004). Long-term changes in quality of discharge water from abandoned underground coal mines in Uniontown Syncline, Fayette County, PA, USA. Water Research, 38, 277–288.

    Article  CAS  Google Scholar 

  • Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice-Hall.

    Google Scholar 

  • Mugunthan, P., McDonough, K. M., & Dzombak, D. A. (2004). Geochemical approach to estimate the quality of water entering abandoned underground coal mines. Environmental Geology, 45, 769–780.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K. (2004). Modeling low-temperature geochemical processes. In J. I. Drever (Ed.), Surface and ground water weathering, and soils, treatise on geochemistry (pp. 37–72), vol. 5. New York: Elsevier.

  • Nordstrom, D. K., & Ball, J. W. (1986). The geochemical behavior of aluminum in acidified surface waters. Science, 232, 54–56.

    Article  CAS  Google Scholar 

  • Oliveira, M. L. S., & Silva, L. F. O. (2006). In: 1st Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility—Madehuman I. Salvador, Brazil.

  • Pires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60, 57–72.

    Article  CAS  Google Scholar 

  • Querol, X., Izquierdo, M., Monfort, E., Alvarez, E., Font, O., Moreno, T., et al. (2008). Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. International Journal of Coal Geology, 75, 93–104.

    Article  CAS  Google Scholar 

  • Rose, A. W., & Cravotta, C. A. (1998). Geochemistry of coal mine drainage. In K. B. C. Brady, M. W. Smith, & J. H. Schueck (Eds.), Coal mine drainage prediction and pollution prevention in Pennsylvania. Harrisburg: Pennsylvania Department of Environmental Protection.

    Google Scholar 

  • Schmidt, T. S., Soucek, D. J., & Cherry, D. S. (2002). Integrative assessment of benthic macroinvertebrate community impairment from metal-contaminated waters in tributaries of the Upper Powell River, Virginia, USA. Environmental Toxicology and Chemistry, 21, 2233–2241.

    Article  CAS  Google Scholar 

  • Sekine, Y., Sakajiri, K., Kikuchi, E., & Matsukata, M. (2008). Release behavior of trace elements from coal during high-temperature processing. Powder Technology, 180, 210–215.

    Article  CAS  Google Scholar 

  • SIECESC (2008). Available at: http://www.siecesc.com.br/ Accessed 18 June 2008.

  • Silva, L. F. O. (2006). Geochemical and variability of acid mine drainage (AMD) compositions. Proceedings of the International Congress of Environment and Human Development: Biodiversity, Water Resources and Social ResponsibilityMadehuman I. Salvador, Brazil.

  • Silva, L. F. O., da Boit, K. M., & Oliveira, M. L. S. (2007). Prediction of induced health and environmental problems linking Coal Mining in Santa Catarina (Brazil). Proceedings of the II International Congress of Environment and Human Development: Biodiversity, Water Resources and Social Responsibility. Foz do Iguaçu, Brazil.

  • Silva, L., Moreno, T., & Querol, X. (2009a). An introductory TEM study of Fe-nanominerals within coal fly ash. Science of the Total Environment, 407, 4972–4974.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Oliveira, M. L. S., da Boit, K. M., & Finkelman, R. B. (2009b). Characterization of Santa Catarina (Brazil) coal with respect to Human Health and Environmental Concerns. Environmental Geochemistry and Health, 31, 475–485.

    Article  CAS  Google Scholar 

  • Silva, L. F. O., Macias, F., Oliveira, M. L. S., da Boit, K. M., & Waanders, F. (2010a). Coal cleaning residues and Fe-minerals implications. Environmental Monitoring and Assessment. doi: 10.1007/s10661-010-1340-8.

  • Silva, L. F., Izquierdo M., Querol X., Finkelman R. B., Oliveira M. L. S., Wollenschlager M., et al. (2010b). Leaching of potential hazardous elements of coal cleaning rejects. Environmental Monitoring and Assessment.

  • Simmons, J. A., Lawrence, E. R., & Jones, T. G. (2005). Treated and untreated acid mine drainage effects on stream periphyton biomass, leaf composition, and macroinvertebrate diversity. Journal of Freshwater Ecology, 20, 413–424.

    Article  Google Scholar 

  • Smith, K. S., & Huyck, H. L. O. (1999). An overview of the abundance, relative mobility, bioavailability, and human toxicity of metals. Reviews in Economic Geology, 6A, 29–70.

    Google Scholar 

  • Sparks, D. L. (2005). Toxic metals in the environment—the role of surfaces. Elements, 1, 193–197.

    Article  CAS  Google Scholar 

  • Swaine, D. J. (1990). Trace elements in coal. London: Butterworths.

    Google Scholar 

  • US Environmental Protection Agency (2002a). National primary drinking water standards. EPA/816-F-02-013. U.S. Environment Protection Agency. Available at: http://www.epa.gov/safewater.

  • US Environmental Protection Agency (2002b). National recommended water quality criteria–2002. EPA/822-R-02-047. Washington, DC: U.S. Environment Protection Agency.

Download references

Acknowledgments

This work was conducted by FEHIDRO and Environmental Foundation of Santa Catarina State (FATMA). We are grateful to Mr. Frans Waanders, R.B. Finkelman, Cidnei Galvani, Rui, Fernando A.R. Guedes, and Marcio Pink and for invaluable collaboration in the structural work. BASF, S.A. (Brazilian) conducted most of the chemical analyses (in special management, Bruno Sina). The authors acknowledge logistical support from the coal mining companies (access to samples).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. O. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, L.F.O., Wollenschlager, M. & Oliveira, M.L.S. A preliminary study of coal mining drainage and environmental health in the Santa Catarina region, Brazil. Environ Geochem Health 33, 55–65 (2011). https://doi.org/10.1007/s10653-010-9322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-010-9322-x

Keywords

Navigation