Skip to main content
Log in

Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Arsenite [As(III)]-oxidizing bacteria play important roles in reducing arsenic [As] toxicity and mobility in As-contaminated areas. As-resistant bacteria were isolated from the soils of two abandoned mines in the Republic of Korea. The isolated bacteria showed relatively high resistances to As(III) up to 26 mM. The PCR-based 16S rRNA analysis revealed that the isolated As-resistant bacteria were close relatives to Serratia marcescensa, Pseudomonas putida, Pantoea agglomerans, and Alcaligenes sp. Among the five As-resistant bacterial isolates, Alcaligenes sp. strain RS-19 showed the highest As(III)-oxidizing activity in batch tests, completely oxidizing 1 mM of As(III) to As(V) within 40 h during heterotrophic growth. This study suggests that the indigenous bacteria have evolved to retain the ability to resist toxic As in the As-contaminated environments and moreover to convert the species to a less toxic form [e.g., from As(III) to As(V)] and also contribute the biogeochemical cycling of As by being involved in speciation of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, G. L., Kove, M., & Zeider, B. K. (2003). Metabolic energy from arsenite oxidation in Alcaligenes faecalis. Journal of Physiology, 107, 49–59.

    CAS  Google Scholar 

  • Anderson, G. L., Williams, J., & Hille, R. L. (1992). The purification and characterization of arsenite oxidase from Alcaligenes faecalis, a molybdenum-containing hydroxylase. Journal of Biological Chemistry, 267, 23674–23682.

    CAS  Google Scholar 

  • Bardgett, R. D., Speir, T. W., Ross, D. J., Yeates, G. W., & Kettles, H. A. (1994). Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes. Biology and Fertility of Soils, 18, 71–79.

    Article  CAS  Google Scholar 

  • Canovas, D., Cases, I., & de Lornezo, V. (2003). Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environmental Microbiology, 5, 1242–1256.

    Article  CAS  Google Scholar 

  • Cervantes, C., Ji, G., Ramírez, J. L., & Siver, S. (1994). Resistance to arsenic compounds in microorganism. FEMS Microbiology Reviews, 15, 355–367.

    Article  CAS  Google Scholar 

  • Chang, J. S., Yoon, I. H., & Kim, K. W. (2007). Isolation and ars detoxification of arsenite-oxidizing bacteria from abandoned arsenic-contaminated mines. Journal of Microbiology and Biotechnology, 17, 812–821.

    CAS  Google Scholar 

  • Cheng, C. N., & Focht, D. D. (1979). Production of arsine and methylarsines in soil and in culture. Applied and Environmental Microbiology, 38, 494–498.

    CAS  Google Scholar 

  • Di Cell, F., Pepi, M., Baldi, F., & Fani, R. (1997). Molecular characterization of an n-alkane-degrafing bacterial community and identification of a new species. Research in Microbiology, 148, 237–249.

    Article  Google Scholar 

  • Edvantoro, B. B., Naidu, R., Megharaj, M., & Singleton, I. (2003). Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dip sites. Ecotoxicology and Environmental Safety, 55, 344–351.

    Article  CAS  Google Scholar 

  • Ellis, P. J., Conrads, T., Hille, R., & Kuhn, P. (2001). Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 and 2.03 Å. Structure, 9, 125–132.

    Article  CAS  Google Scholar 

  • Ferguson, J. F., & Gavis, J. (1972). A review of the arsenic cycling in natural water. Water Research, 6, 1259–1274.

    Article  CAS  Google Scholar 

  • Frankenberger, W. T., Jr. (2002). Metal-oxide adsorption, ion exchange, and coagulation-microfiltration for arsenic removal from water. In D. A. Clifford & G. Ghurye (Eds.), Environmental chemistry of arsenic (pp. 217–245). New York: Marcel Dekker.

    Google Scholar 

  • Hiroki, M. (1993). Effect of arsenic pollution on soil microbial-population. Soil Science and Plant Nutrition, 39, 227–235.

    CAS  Google Scholar 

  • Jain, C. K., & Ali, I. (2000). Arsenic: Occurrence, toxicity and speciation techniques. Water Research, 34, 4304–4312.

    Article  CAS  Google Scholar 

  • Kashyap, D. R., Botero, L. M., Franck, W. L., Hassett, D. J., & McDermott, T. R. (2006). Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. Journal of Bacteriology, 188, 1081–1088.

    Article  CAS  Google Scholar 

  • Le, X. C., Yalcin, S., & Ma, M. (2000). Speciation of submicrogram per liter levels of arsenic in water: On site species separation integrated with sample collection. Environmental Science and Technology, 34, 2342–2347.

    Article  CAS  Google Scholar 

  • Malasarn, D., Saltikov, C. W., Campbell, K. M., Santini, J. M., Hering, J. G., & Newman, D. K. (2004). arrA is a reliable marker for As(V) respiration. Science, 306, 455.

    Article  CAS  Google Scholar 

  • Maliszewska, W., Dec, S., Wierzbica, H., & Wozniakowska, A. (1985). The influence of various heavy metal compounds on the development and activity of soil microorganisms. Environmental Pollution A, 37, 195–215.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.

    Article  CAS  Google Scholar 

  • Masscheleyn, P. H., Delaune, R. D., & Patrick, W. H. (1991). Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology, 25, 1414–1419.

    Article  CAS  Google Scholar 

  • Muller, D., Lievremont, D., Simeonobva, D. D., Hubert, J. C., & Lett, M. C. (2003). Arsenite oxidase aox genes from a metal-resistant β-proteobacterium. Journal of Bacteriology, 185, 135–141.

    Article  CAS  Google Scholar 

  • Nicomart, D., Dick, W. A., & Tuovinen, O. H. (2006). Assessment of the microbial community in a constructed wetland that receives acid mine drainage. Microbial Ecology, 51, 83–89.

    Article  Google Scholar 

  • Oremland, R. S., Hoeft, S. E., Santiono, J. M., Bano, N., Hollibaugh, R. A., & Hollbaugh, J. Y. (2002). Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Applied and Environmental Microbiology, 68, 4795–4802.

    Article  CAS  Google Scholar 

  • Oremland, R. S., & Stolz, J. F. (2003). The ecology of arsenic. Science, 300, 939–944.

    Article  CAS  Google Scholar 

  • Osborn, F. H., & Ehrlich, H. L. (1976). Oxidation of arsenite by a soil isolate of Alcaligenes. Journal of Applied Bacteriology, 41, 295–305.

    Google Scholar 

  • Parvez, F., Chen, Y., Argos, M., Hussain Iftikhar, A. Z. M., Momotaj, H., Dhar, R., et al. (2006). Prevalence of arsenic exposure from drinking water and awareness of its health risks in a Bangladeshi population: Results from a large population-based study. Environmental Health Perspectives, 108, 393–397.

    Google Scholar 

  • Phillips, S. E., & Taylor, M. L. (1976). Oxidation of arsenite to arsenate by Alcaligenes faecalis. Applied and Environmental Microbiology, 32, 392–399.

    CAS  Google Scholar 

  • Pierce, M. L., & Moore, C. B. (1982). Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Research, 6, 1247–1253.

    Article  Google Scholar 

  • Protass, J. J., Speyer, J. F., & Lengyer, P. (1964). Amino acid code in Alcaligenes faecalis. Science, 143, 1174–1176.

    Article  CAS  Google Scholar 

  • Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Letters, 529, 86–92.

    Article  CAS  Google Scholar 

  • Salmassi, T. M., Venkateswaren, K., Satomi, M., Nealson, K. H., Newman, D. K., & Hering, J. G. (2002). Oxidation of arsenite by Agrobacterium albertimagni, AOL15, sp. nov., isolated from hot creek, California. Geomicrobiology Journal, 19, 53–66.

    Article  CAS  Google Scholar 

  • Saltikov, C. W., & Newman, D. K. (2003). Genetic identification of a respiratory arsenate reductase. Proceedings of the National Academy of Sciences of the United States of America, 100, 10983–10988.

    Article  CAS  Google Scholar 

  • Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Santini, J. M., Aimin Wen, L. I., Comrie, D., Wulf-Durand, P. D., & Macy, J. M. (2002). New arsenite-oxidizing bacteria isolated from Australian gold mining environments-phylogenetic relationships. Geomicrobiology Journal, 19, 67–76.

    Article  CAS  Google Scholar 

  • Santini, J. M., Sly, L. I., Schnagl, R. D., & Macy, J. M. (2000). A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology, 66, 92–97.

    Article  CAS  Google Scholar 

  • Santini, J. M., & vanden Heven, R. N. (2004). Molybodenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. Journal of Bacteriology, 186, 1614–1619.

    Article  CAS  Google Scholar 

  • Silver, S. (1996). Bacterial resistances to toxic metals—a review. Gene, 179, 9–19.

    Article  CAS  Google Scholar 

  • Silver, S., & Phung, L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology, 71, 599–608.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 512–568.

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., & Doudoroff, M. (1966). The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology, 43, 159–271.

    CAS  Google Scholar 

  • Tamaki, S., & Frankenberger, W. T., Jr. (1992). Environmental biochemistry of arsenic. Reviews of Environmental Contamination and Toxicology, 124, 79–110.

    CAS  Google Scholar 

  • Tchounwou, P. B., Centeno, J. A., & Patlolla, A. K. (2004). Arsenic toxicity, mutagenesis, and carcinogenesis—a health risk assessment and management approach. Molecular and Cellular Biochemistry, 255, 47–55.

    Article  CAS  Google Scholar 

  • Ure, A. M. (1995). In B. J. Alloway (Ed.), Heavy metals in soils (pp. 55–68). Glasgow: Chapman & Hall.

  • US EPA. (2001). National primary drinking water regulations; arsenic and clarifications to compliance and new source contaminants monitoring. Federal Resister, 66, 6976–7066.

    Google Scholar 

  • Vanden Hoven, R. N., & Santini, J. M. (2004). Arsenite oxidation by the heterotroph Hydrogenophaga sp. Strain. NT-14: The arsenite oxidase and its physiological electron acceptor. Biochemica et Biophysica Acta, 1656, 148–155.

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Ayres, M. R., & Morris, S. G. (2003). Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environmental Pollution A, 124, 331–339.

    Article  CAS  Google Scholar 

  • Walker, C., Goodyear, C., Anderson, D., & Titball, R. W. (2000). Identification of arsenic resistant bacteria in the soil of a former munitions factory at Löcknitz, Germany. Land Contamination and Reclamation, 8, 13–18.

    Google Scholar 

  • Weeger, W., Lievremont, D., Perret, M., Lagarde, F., Hubert, J. C., Leroy, M., et al. (1999). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. BioMetals, 12, 141–149.

    Article  CAS  Google Scholar 

  • Yoshida, T., Yamauchi, H., & Sun, G. F. (2004). Chronic health effects in people exposed to arsenic via the drinking water: Dose–response relationships in review. Toxicology and Applied Pharmacology, 198, 243–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. The program was funded by the Korean Ministry of Science and Technology (no. M10300000298-06J0000-29810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, IH., Chang, JS., Lee, JH. et al. Arsenite oxidation by Alcaligenes sp. strain RS-19 isolated from arsenic-contaminated mines in the Republic of Korea. Environ Geochem Health 31, 109–117 (2009). https://doi.org/10.1007/s10653-008-9170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9170-0

Keywords

Navigation