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Abstract

The Lanzhou reach of the Yellow River, located at the upstream of Lanzhou, 
has been contaminated by heavy metals and polycyclic aromatic 
hydrocarbons over a long-time. We hypothesized that indigenous microbial 
communities would remediate those contaminants and some unique 
populations could play an important role in this process. In this study, we 
investigated the sediment microbial community structure and function from 
the Lanzhou reach. Sediment samples were collected from two nearby sites 
(site A and site B) in the Lanzhou reach along the Yellow River. Sediment 
geochemical property data showed that site A sediment samples contained 
significantly (p < 0.05) higher heavy metals than site B, such as chromium 
(Cr), manganese (Mn), and copper (Cu). Both site A and B samples were 
incubated with or without hexavalent chromium (Cr (VI)) for 30 days in the 
laboratory, and Cr (VI) reduction was only observed in site A sediment 
samples. After incubation, MiSeq sequencing of 16S rRNA gene amplicons 
revealed that the phylogenetic composition and structure of microbial 
communities changed in both samples, and especially Proteobacteria, as the
most abundant phylum increased from 45.1 % to 68.2 % in site A, and 50.1 
% to 71.3 % in site B, respectively. Some unique OTUs and populations 
affiliated with Geobacter, Clostridium, 
Desulfosporosinusand Desulfosporosinus might be involved in Cr (VI) 
reduction in site A. Furthermore, GeoChip 4.0 (a comprehensive functional 
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gene array) data showed that genes involved in carbon and nitrogen cycling 
and metal resistance significantly (p < 0.05) increased in site A sediment 
samples. All the results indicated that indigenous sediment microbial 
communities might be able to remediate contaminants like Cr (VI), and this 
information provides possible strategies for future bioremediation of the 
Lanzhou reach.

Keywords
Yellow River Cr (VI) reduction GeoChip MiSeq sequencing Microbial 
community diversity 
Zhengsheng Yu and Zhili He contributed equally to this work.

Introduction

The Lanzhou reach is located in one of the biggest industrial bases of the 
northwest of China, which is in the upper reaches of the Yellow River 
(Supplementary Fig. S1). Over a hundred industrial companies are placed in 
this area, causing a lot of environmental contaminations in air, water and 
soil, especially with heavy metals, and organic contaminants (Chu et 
al. 2008  ; Zeng et al. 2007  ). For example, a recent tap water contamination 
accident revealed that this area had been contaminated by industrial 
wastewater since 1950s (Xiaoyan et al. 1989  ; Yan and Desheng 2007  ; Zhao et
al. 2010  ). These contaminants might influence the growth of plants 
(Nagajyoti et al. 2010  ), threaten human and animal health (Bjerregaard and 
Hansen 2000  ), and impact water and soil microbial communities in 
surrounding areas (Hemme et al. 2010  ). Microbial communities within this 
area might have developed unique structure and function to such 
environments. However, the influence of these contaminants on sediment 
microbial communities has not yet been investigated.

Chromium is a major contamination in sediment/soil and water 
environments due to its widely industrial applications in Lanzhou (Liu et 
al. 2009  ). Chromium accumulation is harmful for the human body. It could 
cause diseases, damage to organs (Velma and Tchounwou 2013  ), and lead to
canceration of cell (Zhang et al. 2011  ). Microorganisms play important roles 
in the cycling of elements, such as carbon (C), nitrogen (N), phosphorus (P), 
sulfur (S) and metals, and modify the fate of environmental contaminants 
(e.g., uranium, chromium) (Cervantes et al. 2001  ; Faybishenko et al. 2008  ; 
Gihring et al. 2011  ). Some studies have reported microbes could reduce Cr 
(VI) to less toxic and soluble form (Cr (III)). It is believed that in situ microbial
metal reduction is a promising approach for heavy metal remediation (Liang 
et al. 2012  ), such as Cr (VI) reduction (Liu et al. 2011  ; Somenahally et 
al. 2013  ).
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Recently, high-throughput metagenomic technologies, such as microarrays 
(He et al. 2012  ; He et al. 2010  ; Tu et al. 2014  ) and sequencing technologies 
(Loman et al. 2012  ) have been applied to microbial community analysis. 
MiSeq of 16S rRNA gene amplicons is suitable to detect the phylogenetic 
diversity of microbial communities (Caporaso et al. 2012  ), while high-
throughput metagenomic technology may provide functional profiles of 
microbial communities (He et al. 2012  ; He et al. 2012  ). GeoChip 4.0 contains 
about 84,000 probes and covers 152,000 gene sequences in 410 functional 
families involved in a variety of key functional processes, such as C, N, P, 
and S cycling, metal resistance, and antibiotic resistance (Tu et al. 2014  ). It is
preferable to analyze the phylogenetic/taxonomical and functional diversity, 
composition and structure of microbial communities complementarily using 
both technologies.

Understanding the functional diversity, composition, structure and 
potential/activity of microbial communities is essential to develop new 
strategies for bioremediation of contaminated sites. Earlier research 
reported several methods for the study of soil microbial community 
response to environment changes such as in situ bioremediation (Liang et 
al. 2011  ) and laboratory incubation (Degens et al. 2001  ; Nie et al. 2013  ). In 
situ bioremediation is better for understanding the changes of microbial 
community structure in response to complicated environments (Xu et 
al. 2010  ), while laboratory incubation could be used to realize the influence 
of specific factors to microbial communities and their possible mechanisms 
(Westergaard et al. 2001  ). For example, Hueso et al. (2012  ) examined the 
change of the microbial community structure under drought conditions with 
laboratory incubation, and found that drought affected the physiology of the
microbial community, and soil amended with manure compost mitigated the
influence (Hueso et al. 2012  ). Another study is to observe the effect of 
cadmium (Cd) and lead (Pb) on soil microbial community structure and 
activities, and the results revealed that bacteria were more sensitive to 
heavy metals than actinomycetes and fungi (Khan et al. 2010  ). Therefore, it 
is important to combine in situ analysis and laboratory incubation for 
understanding microbial community composition, structure, and function as 
well as their linkages with environmental factors.

The aim of this study is to examine the influence of Cr (VI) on the microbial 
community diversity, composition and structure, and how microorganisms 
respond to Cr (VI). We hypothesized that indigenous microbial communities 
would remediate those contaminants and some unique populations could 
play an important role in this process. Sediment samples were taken from 
the Lanzhou reach and incubated at the laboratory for 30 days with K2Cr2O7, 
and analyzed by two high throughput metagenomic approaches: GeoChip 
4.0 and MiSeq sequencing of 16S rRNA genes. We found that only site A 
sediment microbial communities had the ability to reduce Cr (VI), and that 
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some unique OTUs/populations as well as functional genes involved in 
sulfate and metal reduction increased after Cr (VI) reduction in site A. This 
study provides new insights into our understanding of Cr (VI) reduction 
mechanisms and possible strategies for bioremediation of contaminated 
sites in Lanzhou reach of the Yellow River.

Materials and methods
Site description and field sampling

Sediment samples (10–20 cm depth) were collected from two sites (A and B) 
near the industrial discharging site of the Lanzhou reach with three 
replicates for each site (Supplementary Fig. S1). Site A is close to the Yellow 
River at latitude N 36°07′57.3″ and longitude E 103°38′07.3″ with an 
elevation of 1534 m above sea level, while site B is near the discharge point 
at latitude N 36°07′53.5″ and longitude E 103°38′02.7″ with an elevation of 
1535 m above sea level. There are many petrochemical, metallurgical and 
mechanical industries in this district, and these industries have seriously 
polluted air (Chu et al. 2008  ; Ta et al. 2004  ) and water (Wang et al. 2010  ). The
distance between A and B is forty meters. The pH and temperature of both 
sites were measured on site. All samples were collected in sterile boxes and 
transported to the laboratory within two hours at room temperature. After 
transportation to the laboratory, each sample was weighed and divided into 
three sub-samples: the first set of sub-samples were used for the laboratory 
incubation with Cr (VI) immediately; the second was kept at −80 °C for DNA 
extraction and downstream analyses; the third was kept at room 
temperature for determining sediment physical and chemical properties.

Determination of sediment physical and chemical properties

Water contents of sediment samples were measured by air-drying at room 
temperature. The concentrations of organic carbon (OC), and available N, P, 
potassium (K), magnesium (Mg) and calcium (Ca) were measured as 
previously described (Jackson and Barak 2005  ; Lu 2000  ). Cd, Cu, Cr, Pb and 
Mn concentrations were determined using a Varian AA240 by atomic 
absorption spectrum (Citak and Tuzen 2010  ; Olmedo et al. 2010  ).

Laboratory incubation setup and sampling

For the treatment group, 15 g of sediment (fresh weight) was taken for each 
sample and mixed with 60 mL sterile water and 2 mL K2Cr2O7 (2 mM) in a 
100-mL glass flask, and then incubated without shaking at 37 °C, while the 
corresponding control group was incubated without Cr (VI) (distilled water 
instead of K2Cr2O7 was added) at 37 °C. Also, two other control groups were 
set up: one was incubated without Cr (VI) at 16 °C, which is similar to the 
temperature in situ, and the other was the abiotic group, for which samples 
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were autoclaved three times at 121 °C for 20 min. The abiotic control was 
set to eliminate the effect of Cr (VI) absorbed by sediment samples and to 
determine whether microbial communities play an important role in 
decrease of Cr (VI) in the supernatant. Totally, there were eight groups: aA 
(abiotic control for sediment A), 37A (control for sediment A incubated at 37 
°C), 16A (control for sediment A incubated at 16 °C), A (sediment A), aB 
(abiotic control for sediment B), 37B (control for sediment B incubated at 37 
°C), 16B (control for sediment B incubated at 16 °C), and B (sediment B) 
with three replicates for each group. After incubating for 114 h, another 2 mL
K2Cr2O7 (2 mM) was added to aA, A, aB and B groups. Sediment samples were
collected at day 0 (A0 and B0) (samples kept at −80 °C after transportation 
to the laboratory) and day 30 (A30 and B30) for DNA extraction, GeoChip 
analysis and MiSeq sequencing. For samples collected in day 30, the 
supernatant in 100 mL glass flasks was removed gently using a 10-mL 
injector first, and then a sterile spoon was used to obtain sediment samples 
for DNA extraction.

Determination of Cr (VI) reduction

During the incubation, Cr (VI) concentrations in aA, A, aB, and B samples 
were measured by diphenylcarbazide method (Lovley and Phillips 1994  ). 
Briefly, 500 μL supernatant was withdrawn with a syringe and needle and 
added to 2.5 mL diphenylcarbazide reagent (0.2 g diphenylcarbazide 
dissolved in 100 mL acetone, and then mixed with 400 mL (1:9) H2SO4), and 
the A540 of each sample was measured.

Sediment DNA extraction

The sediment microbial community DNA was extracted from 0.5 g sediment 
samples using an E.Z.N.A. Soil DNA Kit (Omega Bio-Tek Inc., USA) in 
accordance with the manufacturer’s instructions. DNA quality was estimated
using a NanoDrop ND-2000 spectrophotometer (Thermo Fisher Scientific 
Inc., USA) to measure the absorbance ratios of A260 /A280 and A260/A230. DNA was
used for further analysis only when the ratios of A260/A280 and A260/A230 > 1.8 
and 1.7, respectively. Then the purified DNA was dried by CentriVap DNA 
Concentrator (Labconco, U.S.A) and stored at −20 °C.

MiSeq sequencing of 16S rRNA gene amplicons

The universal primer 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-
GGACTACHVGGGTWTCTAAT-3′) with unique barcode was used to amplify the 
V4 hypervariable region of 16S rRNA genes and sequence using MiSeq 
sequencer (Caporaso et al. 2012  ; Caporaso et al. 2011  ). The PCR mixture (25 
μL) contained 1 × PCR buffer, 1.5 mM MgCl2, each deoxynucleoside 
triphosphate at 0.4 μM, each primer at 1.0 μM and 0.5 U of Ex Taq and 10 ng 
soil genomic DNA. The PCR amplification program included initial 
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denaturation at 94 °C for 3 min, followed by 30 cycles of 94 °C for 40 s, 56 °C
for 60 s, and 72 °C for 60 s, and a final extension at 72 °C for 10 min. Two 
PCR reactions were performed for each sample, and they were combined 
after PCR amplification. PCR products were subjected to electrophoresis 
using 1.0 % agarose gel. The band with a correct size was excised and 
purified using SanPrep DNA Gel Extraction Kit (Sangon Biotech, China, Cat# 
SK8132) and quantified with Nanodrop. All samples were pooled together 
with an equal molar amount from each sample. The sequencing samples 
were prepared using TruSeq DNA kit according to the manufacturer’s 
instruction. The purified library was diluted, denatured, re-diluted, mixed 
with PhiX (equal to 30 % of final DNA amount) as described in the Illumina 
library preparation protocols, and then applied to an Illumina MiSeq system 
for sequencing with the Reagent Kit v2 2 × 250 bp as described in the 
manufacture manual.

Sequencing data analysis

The sequence data were processed using QIIME Pipeline–Version 1.7.0 
(http://qiime.org/  ). All sequence reads were trimmed and assigned to each 
sample based on their barcodes. The sequences with high quality (length > 
150 bp, without ambiguous base ‘N’, and average base quality score > 30) 
were used for downstream analyses. Sequences were clustered into 
operational taxonomic units (OTUs) at a 97 % identity threshold. All the 
samples were randomly-resampled to 12600 reads. Taxonomy was assigned 
using the Ribosomal Database Project classifier (Wang et al. 2007  ). 
Permutational multivariate analysis of variance (ADONIS) was performed to 
test the dissimilarity between each group using the Bray-Curtis method 
based on all OTUs detected. Alpha-diversity (phylogenetic distance whole 
tree, Chao1 estimator of richness, observed species and Shannon’s diversity
index) was calculated based on MiSeq sequence data. Also, the rarefaction 
curves were generated from the observed OTUs. Detrended correspondence 
analysis (DCA) was performed based on the final OTU table. All the 
sequence data have been submitted to NCBI, the accession numbers are : 
SAMN05292835 (16A1), SAMN05292836 (16A2), SAMN05292837 (16A3), 
SAMN05292838 (16B1), SAMN05292839 (16B2), SAMN05292840 (16B3), 
SAMN05292841 (37A1), SAMN05292842 (37A2), SAMN05292843 (37A3), 
SAMN05292844 (37B1), SAMN05292845 (37B2), SAMN05292846 (37B3), 
SAMN05292847 (A1), SAMN05292848 (A2), SAMN05292849 (A3), 
SAMN05292850 (A301), SAMN05292851 (A302), SAMN05292852 (A303), 
SAMN05292853 (B1), SAMN05292854 (B2), SAMN05292855 (B3), 
SAMN05292856 (B301), SAMN05292857 (B302), and SAMN05292858 
(B303).

GeoChip analysis
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GeoChip 4.0 was used to analyze the functional diversity, composition and 
structure of sediment microbial communities. The purified sediment DNA 
(1.0 µg) was labeled with Cy3 and hybridized with GeoChip 4.0 (NimbleGen, 
Madison, WI) at 42 °C with 40 % formamide for 16 h (Tu et al. 2014  ). After 
hybridization, the arrays were scanned (NimbleGen MS200, Madison, WI) at 
a laser power of 100 %. Signal intensities were background subtracted and 
only the spots with signal-to-noise ratios (signal intensity-background 
intensity/background standard deviation) > 2.0 were considered as positive 
signals and used for further analysis.

The unique and overlapped genes of all samples, and functional gene 
diversity indices, including Shannon-Weaver index (H’), Simpson’s reciprocal 
index (1/D) and Pielou evenness (J) were obtained using the pipeline at the 
Institute for Environmental Genomics, University of Oklahoma 
(http://ieg2.ou.edu/NimbleGen  ). DCA and clustering analysis were used to 
examine the overall functional structure of microbial communities among 
different treatments. Canonical correspondence analysis (CCA) and CCA-
based variation partitioning analysis (VPA) were performed to evaluate the 
relationship between the microbial community structure and environmental 
variables. DCA, CCA and VPA were performed using R version 2.15.2 
(Team 2010  ). The variance inflation factors (VIFs) were used for selecting 
environmental variables, and an environmental variable (e.g., K) with the 
highest VIF was removed, and this CCA repeated until all VIFs < 20. As a 
result, Pb, Cr, OC and moisture were chosen for VPA.

Results
Sediment chemical properties
Moisture, available nitrogen (N), OC, Mn, Cr, Cu, available potassium (K), Fe, 
Mg and Ca of sediment samples were significantly different (p < 0.05) 
among the four treatments (A0, B0, A30, and B30) although there were no 
significant differences for pH, Pb and Cd (Table 1  ). Also, moisture, and 
concentrations of N, available phosphorus (P), OC, Mn, Cr and Cu were 
higher in site A (A0) than in site B (B0) before incubation. After incubation 
with Cr (VI) for 30 days, some of these geochemical properties significantly 
(p < 0.05) changed for site A samples (A0 vs. A30) with moisture, N, OC, K, 
Mg, Mn, and Cr increased, and Fe and Ca decreased despite no changes for 
Cu, while in site B (B0 vs. B30), moisture, and concentrations of N, Mn, and 
Cr significantly (p < 0.05) increased, the concentrations of K, Fe, Mg and Ca 
significantly (p < 0.05) decreased, and OC and Cu remained unchanged 
(Table 1  ). Such differences may be due to changed microbial activities, e.g., 
Cr (VI) reduction, which is in turn expected to modify the sediment microbial
community composition, structure and function.
Table 1
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Geochemical data of site A sample (A0), site B sample (B0) and samples 
incubated with Cr (VI) for 30 days from site A (A30), or from site B (B30)

Sediment 
geochemical 
property

A0 B0 A30 B30

pH 6.65 ± 
0.013a

6.693 ± 
0.01a

6.721 ± 
0.021a

6.568 ± 
0.017a

Moisture (%) 41.09 ± 
1.31b

32.91 ± 
1.96c

74.10 ± 
2.18a

72.48 ± 
2.62a

N (mg/g) 1.19 ± 0.01c 0.86 ± 0.01d 3.51 ± 0.17a 1.44 ± 0.06b

P (mg/g) 1.51 ± 0.02a 1.18 ± 0.01b nd nd

OC (mg/g) 17.61 ± 
0.21b

14.15 ± 
0.12c

28.17 ± 
1.67a

13.40 ± 
1.21c

K (mg/g) 19.1 ± 0.24b 18.91 ± 
0.23b

21.69 ± 
0.11a

17.91 ± 
0.16c

Fe (mg/g) 46.87 ± 
0.34a

44.97 ± 
0.72a

34.70 ± 
0.07b

30.71 ± 
0.15c

Mg (mg/g) 17.05 ± 
0.18b

17.05 ± 
0.11b

18.04 ± 
0.24a

15.44 ± 
0.10c

Ca (mg/g) 177.54 ± 
0.39a

190.08 ± 
9.38a

51.69 ± 
0.73b

50.29 ± 
0.96b

Mn (mg/Kg) 595.63 ± 
12.6b

462.05 ± 
3.38d

647.56 ± 
7.43a

556.71 ± 
6.1c

Pb (mg/Kg) 34.88 ± 
7.27a

30.23 ± 
1.20a

29.73 ± 
2.14a

35.02 ± 
3.63a

Cd (mg/Kg) 0.487 ± 
0.14a

0.487 ± 
0.14a

0.472 ± 
0.11a

0.465 ± 
0.15a

Cr (mg/Kg) 81.34 ± 
2.86c

73.57 ± 
0.66d

2968 ± 
17.7a

1231.67 ± 
22.5b

Cu (mg/Kg) 32.61 ± 1.7a 26.81 ± 
0.17b

35.1 ± 2.83a 28.58 ± 
3.48b



All the geochemical data were obtained from the sediment samples. The 
moisture contents in A0 and B0 were determined directly from the field 
samples, and those in A30 and B30 were determined after the laboratory 
incubation with Cr (VI). The differences among the four groups were 
analyzed by ANOVA and Tukey’s test with p < 0.05 as significance.

N available nitrogen, P available phosphorus, K available 
potassium, OC organic carbon, ndnot determined

Cr (VI) reduction of sediment samples under laboratory incubation
For each sample, 15 g of sediment was mixed with 60 mL sterile water with 
2 mL K2Cr2O7 (2 mM) added, and incubated at 37 °C. The concentration of Cr 
(VI) decreased with time for the site A sediment samples, but this 
phenomenon was not observed for the site B sediment samples (Fig. 1   and 
Supplementary Fig. S2). Also, when the same amount of Cr (VI) were re-
added to all the samples, a decrease of Cr (VI) concentration was only 
observed in site A sediment samples. These results indicated that the 
sediment microbial community from site A could have the capability of Cr 
(VI) reduction, and that some microorganisms would play an important role 
in the Cr (VI) reduction process.
Open image in new window      

Fig. 1
Concentrations of K2Cr2O7 over time in A (▼), B (▢), aA (×) and aB (■) 
sediments aA and aB are control group as described before. In short, 60 mL 
sterile water and 2 mL K2Cr2O7 solution (2 mM) were added in the four groups.
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After incubating 114 h, K2Cr2O7were added again. Each group had three 
replicates. Samples were collected for DNA extraction and metagenomics 
analysis at the beginning of incubation and after 30-day incubation

Alternations of the taxonomical/phylogenetic composition of 
microbial populations in response to Cr (VI)
To further examine how microbial populations respond to incubation with Cr 
(VI), MiSeq sequencing of 16S rRNA gene amplicons was performed and all 
sequences/OTUs were classified into their possibly affiliated taxa. Alpha-
diversity (phylogenetic distance whole tree, Chao1 estimator of richness, 
observed species and Shannon’s diversity index) was calculated based on 
MiSeq sequencing data (Supplementary Table S1). Rarefaction curves 
(Supplementary Fig. S3) indicated the sequencing depth was enough for all 
samples. Microbial community compositions and structures had no 
significant changes in these two sites after incubated without Cr (VI) at 16 °C
(Supplementary Fig. S4 and Supplementary Table S2 and S3). However, the 
microbial community compositions and structure changed after incubation 
at 37 °C in both sites, such as phylum Bacteroidetes, and 
genus Flavobacterium (Supplementary Fig. S4, Fig. S5 and Supplementary 
Table S2). But Adonis results showed no significant difference between A0 
and 37A (p = 0.26), or between B0 and 37B (p = 0.622) (Supplementary 
Table S3). Alpha-diversity of microbial communities decreased after Cr (VI) 
incubation (Supplementary Table S1), and DCA of MiSeq sequence data 
showed that all samples were clustered into three different groups: the first 
group with A30 samples, the second group with B30 samples, and the third 
group with all other samples (Fig. 2  ). Adonis results showed microbial 
communities significantly changed (p < 0.05) after Cr (VI) incubation in both 
sites (Supplementary Table S3). DCA results and Adonis results revealed that
Cr (VI) had greater influence than incubation conditions on microbial 
communities.

https://link.springer.com/article/10.1007%2Fs10646-016-1719-6#Fig2
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Fig. 2
Detrended correspondence analysis (DCA) of all treatments based on MiSeq 
sequence data. DCA was performed based on the abundance of OTUs 
detected. Different labels represent different treatments: 37A (control for 
sediment A incubated at 37 °C after 30 days), 16A (control for sediment A 
incubated at 16 °C after 30 days), A0 (sediment A), A30 (sediment A 
incubated with Cr (VI) at 37 °C after 30 days), 37B (control for sediment B 
incubated at 37 °C after 30 days), 16B (control for sediment B incubated at 
16 °C after 30 days), B0 (sediment B), and B30 (sediment B incubated with 
Cr (VI) at 37 °C after 30 days)

Microbial communities changed after Cr (VI) incubation (Supplementary Fig. 
S4, Supplementary Table S2 and S3), and the main changes at the phylum 
level and genus levels are shown (Supplementary Fig. S5). The percentages 
of Proteobacteria, as the most abundant phylum in those tested samples 
increased from 45.1 % to 68.2 % in site A, and 50.1 % to 71.3 % in site B 
after incubated with Cr (VI) for 30 days, while the percentages of 
Proteobacteria were 38.3 % and 31.9 % for site A (37A) and site B (37B), 
respectively in the control group incubated at 37 °C. At the genus 
level, Flavobacterium decreased from 28.8 % (A0) and 20.1 % (B0) to 6.2 % 
(37A) and 3.8 % (37B), respectively after incubation without Cr (VI), and 
decreased to 1.7 % (A30) and 2.5 % (B30) after Cr (VI) incubation 
(Supplementary Fig. S5a and Supplementary Table S2), revealing both 
laboratory incubation and Cr (VI) had negative effect 
on Flavobacterium abundances. Rhodoferax occupied similar percentages in
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site A (2.1 %) and site B (2.7 %) before incubation, and after Cr (VI) 
incubation, the Rhodoferax populations increased to 17.3 % in site A, and 
9.1 % in site B, indicating that that Rhodoferax populations could tolerate 
high concentrations of Cr (VI) in both sites. Also, Adonis results showed the 
overall microbial community composition had significant (p < 0.05) 
difference between A0 and B0 samples, and between A30 and B30 samples. 
Furthermore, a total of 472 OTUs were increased after Cr (VI) incubation in 
site A samples, most of which were affiliated with Geobacter, Clostridium, 
Desulfotomaculum and Desulfosporosinus (Supplementary Table S4) whose 
members are known to reduce metals (e.g., Cr (VI)) as well as other electron
acceptors (e.g., nitrate, sulfate). These OTUs contributed about 9 % of the 
OTU abundance in A30.

Shifts of the microbial community functional structure in response 
to Cr (VI)
To examine if the site and Cr (VI) addition affect the functional structure of 
microbial communities, GeoChip analysis of key functional genes was 
performed. No significant changes of functional gene number detected by 
GeoChip were observed between two sites, or between before and after 
incubation with Cr (VI) for 30 days although their numbers slightly increased
in the site A samples (A30), and decreased in the site B samples (B30) 
compared to their original samples (A0 and B0) (Table 2  ). Interestingly, A0 
and A30 showed the lowest overlapped genes (83.95 %) while B0 and B30 
had the highest overlapped genes (90.83 %), and A0 had the lowest unique 
genes (372, or 0.85 %) detected while B0 had the highest unique genes 
(1,446, or 2.89 %) detected (Table 2  ). However, no significant differences in 
diversity indices (Shannon, Simpson, and Pielou evenness) were observed 
(Table 2  ). DCA of all detected genes showed that all samples were clearly 
clustered into four groups with site separated by the first axis, and 
incubation time (0 or 30 days) separated by the first and second axis 
(Fig. 3  ). In addition, similar results were seen when those data sets were 
analyzed by clustering analysis (Supplementary Fig. S6). Therefore, the 
results indicated that the sediment microbial gene composition was 
significantly (p < 0.05) different between two sites, or between before and 
after incubation with Cr (VI) for 30 days.
Table 2
Total number and percentage of functional genes detected by GeoChip, 
unique and overlapped genes and diversity indices

 A0 B0 B30 A30

Number (%) of genes detected

 A0 372 (0.85 
%)

42892 (84.18 
%)

42526 (84.69 
%)

41025 (83.95 
%)
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 A0 B0 B30 A30

 B0  1446 (2.89 %) 47163 (90.83 
%)

44659 (86.58 
%)

 B30   1033 (2.11 %) 44135 (86.54 
%)

 A30    788 (1.71 %)

Total genes 
detected

43749 50095 48991 46146

Diversity indices     

Shannon 
Index H

10.34918 10.42618 10.38899 10.35553

Simpson 
Index D

21515.62 22332.19 20715.18 20546.68

Pielou 
evenness J

0.9684601 0.9634529 0.9619975 0.9642406

Numbers in italics represent unique genes in each sample; numbers in bold 
represent genes overlapped between two samples
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Fig. 3
Detrended correspondence analysis (DCA) of all detected genes by GeoChip 
4.0. As described, A0 group genes (A1, A2 and A3) and B0 group genes (B1, 
B2 and B3) were collected from the initial sediments which hadn’t been 
dealt with Cr (VI), A30 group genes (A301, A302 and A303) and B30 group 
genes (B301, B302 and B303) were collected from the sediments incubated 
with Cr (VI) for 30 days

Effects of Cr (VI) on key functional genes
Key functional genes involved in metal resistance/reduction, and C and N 
cycling were further analyzed, and their significances among different 
groups were accessed by ANOVA and Tukey’s test. First, we examined 
functional genes involved in metal resistance or reduction, showing that the 
abundance of seven genes (arsC, cadA, czcA, chrA, copA, mer and silC) 
significantly (p < 0.05) increased in the site A samples but only two 
(cadA and silC) in the site B samples after 30-day incubation with Cr (VI) 
(Fig. 4a  ). The results are consistent with our observations of sediment 
geochemistry that showed the concentrations of Cr were higher in site A 
than site B (Table 1  ), suggesting that chrA may play an important role in Cr 
reduction. Second, the abundance of several genes 
(aceB, acet, amyA, xylA, pcc and pmoA) involved in C cycling was found to 
be significantly (p < 0.05) increased after incubation with Cr (VI) in the site A
samples but not in the site B samples (Fig. 4b  ). The results are generally 
consistent with higher concentrations of organic C in site A (Table 1  ). Third, 
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the abundance of several nitrogen cycling genes 
(ureC, narG, nirK, nirSand nifH ) significantly (p < 0.05) increased in site A 
samples but only narG abundance was increased in site B samples after 
incubation with Cr (VI) (Fig. 4c  ). The results appeared to be consistent with 
higher N concentrations in site A (Table 1  ). All these genes normalized 
average signal intensity were supplied in supplementary data 
(Supplementary Table S5).
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Fig. 4
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Significantly changed functional gene families involved in metal 
resistance/reduction (a), carbon cycling (b), and N cycling (c). Four groups 
contain site A day 0 (▢), site A day 30 (▨), site B day 0 (▤) and site B day 
30 (▧). For each functional gene, the normalized signal intensities were 
averaged among 3 replicates. All data are presented with mean ± SE and 
each gene in four groups was compared by Turkey’s Test. The metal 
resistance/reduction gene include arsC encoding arsenate 
reductase, cadA encoding a cadmium-efflux , czcA and chrA transport 
chromates out of bacteria, copA is related to Cu resistance through 
translocation or/and maintenance of Cu homeostasis and mer is related to 
mercury resistance and reduction in bacteria

CCA analysis
CCA and VPA were performed to evaluate the relationships between the 
microbial community composition/structure (based on GeoChip data) and 
sediment geochemical data. From CCA results, we found that Cr and carbon 
sources were the main factors, which separated all samples into three parts:
samples from site A without Cr treatment (A0), samples from site A 
incubated with Cr (VI) for 30 days (A30), and samples from site B 
with/without Cr (VI) incubation (B0 and B30). The CCA1 and CCA2 explained 
about 67 % of the total variation with 35.8 % explained by the first axis and 
31.8 % by the second axis (Fig. 5  ). The results indicate Cr, OC and moisture 
largely shaped the microbial community functional structure in those four 
groups studied. The VPA results also confirmed that metal content (Cr and 
Pb) and carbon sources had an effect on the microbial community functional
structure (Fig. 6  ).
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Fig. 5
Canonical correspondence analysis (CCA) of GeoChip 4.0 data. Variables: Pb,
Cr, organic carbon (C) and moisture content (water). A1, A2 and A3 are 
samples from site A; B1, B2 and B3 are samples from site B; A301, A302 and
A303 are site A samples incubated with Cr (VI) for 30 days; B301, B302 and 
B303 are site B samples incubated with Cr (VI) for 30 days
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Fig. 6
Variation partitioning analysis (VPA) based on CCA for all functional gene 
signal intensities. a General outline, b all functional genes. A CCA-based VIF 
was used to identify common sets of metal content and carbon sources 
variables which have influence on the microbial community structure

Discussion

This study used GeoChip and MiSeq sequencing technologies to examine the
changes of microbial community diversity, composition, structure and 
function during Cr (VI) incubation in the laboratory. The changes of Cr (VI) 
concentrations over time indicated they have different ability of Cr (VI) 
reduction (Fig. 1  ). GeoChip data showed that nine genes involved in C and N 
cycling, and metal resistance increased after 30-day incubation with Cr (VI) 
in site A, and MiSeq sequencing of 16S rRNA gene amplicons also revealed 
that unique OTUs related to phylum Chloroflexi (e.g., Anaerolinea), 
Firmicutes (e.g., Clostridium) and Proteobacteria (e.g., Geobacter) in site A 
samples increased after Cr (VI) incubation (Supplementary Table S2 and S4).

One of our hypotheses is that the microbial community diversity, 
composition and structure would differ among different sites, which is 
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largely influenced by available electron donors/acceptors, nutrients and 
environmental contaminants, and indigenous microbial communities would 
remediate those contaminants. A previous study at the Oak Ridge FRC site 
showed that the injection of ethanol as an electron donor stimulated U (VI)-
reducing microbial communities and key functional genes, resulting in a shift
of microbial community composition and structure (Xu et al. 2010  ). Another 
study used a slow-release hydrogen release compound (HRC) to provide 
electron donors and carbon sources for indigenous microbial growth and 
reduction of available electron acceptors like Cr (VI) for over 3.5 years 
(Faybishenko et al. 2008  ). In this study, although electron donors were not 
measured, the concentrations of nutrients (e.g., C, N) and electron acceptors
(e.g., Cr ) were significantly higher in site A compared to site B, and such 
differences might lead to shifts of microbial community diversity, 
composition and structure. This hypothesis is supported by CCA, showing 
that Cr, moisture, OC and Pb largely shaped the microbial community 
structure. Moisture, available nitrogen, OC, Mn, Cr, and Cu of sediment 
samples were different between the two sites although the two sites are 
very close, indicating environmental factors may play a major role in 
shaping the microbial community structure (Nowakowska and Oliver 2013  ; 
Tien et al. 2013  ) and function (Pepi et al. 2013  ; Piccirillo et al. 2013  ). In this 
case, chromium concentration may be a major reason for reconstructing 
sediment microbial communities.

Some microorganisms could adapt to high concentrations of environmental 
contaminants (e.g., Cr (VI)) and perform in situ bioremediation of such 
contaminants. In this study, we detected such unique OTUs/populations 
affiliated with Geobacter, Clostridium, 
Desulfotomaculum and Desulfosporosinus in site A. A previous study 
suggested that some populations of phylum Proteobacteria could take part 
in biotransformation of Cr (VI) to Cr (III) (Garavaglia et al. 2010  ), and the 
genus Geobacter is known to be involved in multiple metal reduction 
processes (Liu et al. 2015  ; Orellana et al. 2013  ; Shelobolina et al. 2007  ), which
are consistent with our results, showing that some OTUs related to 
Proteobacteria, especially the genus Geobacter, increased in site A samples 
after incubation with Cr(VI). Also, the abundance of OTUs related to the 
genus Clostridium increased after Cr (VI) incubation in A30 samples 
(Supplementary Table S4). Clostridium populations (belongs to class 
Clostridia) are known to be able to reduce U (VI) to U (IV) under anaerobic 
condition (Francis et al. 1994  ). Clostridia populations are also involved in 
reduction of other metals, such as U(VI) and Fe (III) (Francis et 
al. 1994  ;Slobodkin et al. 2006  ). Sulfate reducing bacteria 
from Desulfotomaculum and Desulfosporosinus were also enriched in A30 
samples after Cr (VI) incubation, and they are known to be involved in 
sulfate and/or metal (e.g., Cr (VI)) reduction processes (Otwell et 
al. 2016  ;Tebo and Obraztsova 1998  ). In addition, other populations related to 
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the Chloroflexi phylum known to play a role in Fe (III) reduction (Kawaichi et 
al. 2013  ), increased after Cr (VI) incubation in site A samples. Although these
populations only occupied low percentages (about 9 % of OTU abundance) of
the community, they might play important roles in Cr (VI) reduction in site A.
For example, a previous study reported low-
abundance Desulfosporosinus populations (only 0.006 % of the microbial 
community) could be responsible for sulfate reduction in a peatland system 
(Pester et al. 2010  ), and another study indicated low-abundance bacteria 
drived sulfate reduction-dependent degradation of fermentation products in 
peat soil microcosms (Hausmann et al. 2016  ). Therefore, those detected 
unique OTUs/populations in site A affiliated with Geobacter, Clostridium, 
Desulfotomaculum and Desulfosporosinus may play important roles in Cr 
(VI) reduction in the Lanzhou reach of the Yellow River, and further 
identification and functional characterization of those specific populations 
(e.g., isolation) are in progress.

Genes involved in metal resistance significantly changed after Cr (VI) 
incubation, especially in site A samples. In these genes, czcA and chrA are 
known to transport chromate out of bacteria (Alvarez et al. 1999  ; Nies et 
al. 1990  ; Nies et al. 1998  ). An increase of abundance of two genes and a 
decrease of Cr (VI) concentrations in the supernatant at the same time 
indicated that microbial Cr (VI) reduction might be performed in site A 
samples. Also, some genes related to resistance to, or reduction of other 
metals increased significantly. For example, copA gene which is related to 
Cu resistance through translocation or/and maintenance of Cu homeostasis 
(Samanovic et al. 2012  ) increased after the incubation. Our previous study 
used RNA-Seq to determine the response to Cr (VI) stress in Staphylococcus 
aureus LZ-01, showing that some heavy metal transporters upregulated 
after Cr (VI) incubation (Zhang et al. 2014  ). And the similar phenomenon was
observed when GeoChip was used to measure the changes of genes under 
Cr (VI) stress in this study. The mechanism of these results needs further 
study and investigation. In addition, genes related to carbon and nitrogen 
metabolism showed significant increased after incubation, for 
example, aceB, which encodes the malate synthase A involved in glyoxylate 
cycle (Byrne et al. 1988  ; Griffin et al. 1996  ) and pmoA, which is involved in 
methane consumption (McDonald and Murrell 2006  ), and some genes are 
involved in N fixation (e.g., nifH) (Roberts et al. 1978  ), N mineralization 
(e.g., ureC) (Puskas et al. 2000  ), and denitrification (e.g., narG, nirS, nirK) 
(Kandeler et al. 2006  ). This may be due to energy requirements by 
microorganisms in the process of metal resistance and reduction. A previous
study showed that C degradation related genes changed during uranium 
reduction (Liang et al. 2012  ). Consistently, our CCA and VPA results showed 
that C sources and metal were the main factors affecting the microbial 
communities in this study.
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Conclusions

The phylogenetic and functional structure of sediment microbial 
communities changed during Cr (VI) treatment, and site A sediment samples
showed the ability of Cr (VI) reduction. We found key functional genes 
related to metal resistance increased and unique OTUs/populations related 
to metal and sulfate reduction in site A samples after Cr (VI) incubation. 
These unique OTUs/populations might play an important role in Cr (VI) 
reduction in site A. Overall, as the first report about microbial communities 
in the Lanzhou reach, this study provides a new insight and a potential of 
bioremediation of contaminated Lanzhou reach of the Yellow River.
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