Skip to main content
Log in

Effect of Cd+2 on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australis-rhizosphere

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The aims of this work were to evaluate the phosphate-solubilization and hydrogen peroxide (H2O2) production by the soil-borne micromycetes, Aspergillus japonicus, Penicillium italicum and Penicillium dipodomyicola, isolated from Phragmites australis rhizosphere and to study the effect of several concentrations of Cadmium (Cd2+) on both variables. Our results showed that P. italicum achieved a higher P-solubilization and H2O2 production than A. japonicus and P. dipodomyicola, as only P. italicum showed a positive correlation (R2 = 0.71) between P-solubilization and H2O2 production. In dose–response assays, P. italicum was also more tolerant to Cd2+ (0.31 mM) in comparison to A. japonicus (0.26 mM). Analysis of the 24 factorial experimental design showed that P-solubilization by P. italicum was negatively affected by increases in Cd2+ (p = 0.04) and yeast extract (p = 0.02) in the culture medium. The production of H2O2 was positively affected only by glucose (p = 0.002). Fungal biomass production was reduced significantly (p = 0.0009) by Cd2+ and increased (p = 0.0003) by high glucose concentration in the culture medium. The tolerance and correlation between P-solubilization and H2O2 production in the presence of Cd2+ was strain and species dependent. The effects of Cd2+, glucose, ammonium sulfate and yeast extract on those variables were evaluated through a two-level factorial design. P. italicum is promising for P-solubilization in soils contaminated with Cd2+ and may be an alternative for manufacture of biofertilizers to replace chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad I, Zafar S, Ahmad F (2005) Heavy metal biosorption potential of Aspergillus and Rhizopussp. isolated from waste water treated soil. J Appl Sci Environ Manag 9(1):123–126

    Google Scholar 

  • Ahmed N, Shahab S (2009) Phosphate solubilization: their mechanism genetics and application. Int J Microbiol 9(1):4408–4412

    Google Scholar 

  • Al-Falih MA (2005) Phosphate solubilization in vitro by some soil yeasts. Qatar Univ Sci J 25:119–125

    CAS  Google Scholar 

  • Arthur E, Rice P, Anderson T, Baladi S, Henderson K, Coats J (2005) Phytoremediation: an overview. Crit Rev Plant Sci 24:109–122

    Article  CAS  Google Scholar 

  • Azevedo M, Carvalho A, Pascoal C, Rodrigues F, Cassio F (2007) Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi. Sci Total Environ 377(2–3):233–243

    Article  CAS  Google Scholar 

  • Baars O, Abouchami W, Galer SJ, Boye M, Croot PL (2014) Dissolved cadmium in the Southern Ocean: distribution, speciation, and relation to phosphate. Limnol Oceanogr 59(2):385–399

    Article  CAS  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23(4):267–302

    Article  CAS  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32(1):78–91

    Article  CAS  Google Scholar 

  • Baldrian P, Gabriel J (2003) Lignocellulose degradation by Pleurotus ostreatus in the presence of cadmium. FEMS Microbiol Lett 220(2):235–240

    Article  CAS  Google Scholar 

  • Chaiharn M, Lumyong S (2009) Phosphate solubilization potential and stress tolerance of rhizobacteria from rice soil in Nothern Thailand. World J Microbiol Biotechnol 25(2):305–314

    Article  CAS  Google Scholar 

  • Chakraborty BN, Chakraborty U, Saha A, Sunar K, Dey PL (2010) Evaluation of phosphate solubilizers from soils of North Bengal and their diversity analysis. World J Agric Sci 6(2):195–200

    CAS  Google Scholar 

  • Challen MP, Moore AJ, Martinez-Carrera D (1995) Facile extraction and purification of filamentous fungal DNA. Biotechniques 18(6):975–978

    CAS  Google Scholar 

  • Chen CR, Condron LM, Davis, Sherlock RR (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34(4):487–499

    Article  CAS  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 435:575–584

    Article  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23(7):867–902

    Article  CAS  Google Scholar 

  • Coats V, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol 5(1):1–10

    Google Scholar 

  • Deepa V, Aadarsh P, Balakrishna MP, Sridhar R (2010) Efficient phosphate solubilization by fungal strains isolated from rice-rhizosphere soils for the phosphorus release. Res J Agric Biol Sci 6(4):487–492

    CAS  Google Scholar 

  • Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107(7):861–871

    Article  CAS  Google Scholar 

  • Frisvad JC, Filtenborg O, Lund F, Samson RA (2000) The homogeneous species and series in subgenus Penicillium are related to mammal nutrition and excretion. In: Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic, Amsterdam, pp 265–283

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application to bioremediation. Geoderma 122(2–4):109–119

    Article  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  CAS  Google Scholar 

  • Gharieb MM (2001) Pattern of cadmium accumulation and essential cations during growth of cadmium-tolerant fungi. BioMetals 14(2):143–151

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Kumar GN, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245(1):83–93

    Article  CAS  Google Scholar 

  • Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008) Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol 38(1):12–19

    Article  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2000) Reactive oxygen species as agents of wood decay by fungi. Enzym Microb Technol 30(4):445–453

    Article  Google Scholar 

  • Hechmi N, Aissa NB, Jedidi N (2014) Evaluating the phytoremediation potential of Phragmites australis growth in pentachlorophenol and cadmium co-contaminated soils. Environ Sci Pollut Res Int 21(2):1304–1313

    Article  CAS  Google Scholar 

  • Hernández-Montiel LG, Ochoa JL (2007) Fruit rot caused by Penicillium italicum on Lemon (Citrus aurantifolia) in Colima, Mexico. Plant Dis 91(6):767–777

    Article  Google Scholar 

  • Hong CO, Chung DY, Lee DK, Kim PJ (2010) Comparison of phosphate materials for immobilizing cadmium in soil. Arch Environ Contam Toxicol 58(2):268–274

    Article  CAS  Google Scholar 

  • Huerta G, Martínez-Carrera D, Sánchez JE, Leal-Lara E, Vilgalys R (2010) Genetic relationships between Mexican species of Pleurotus analyzing the ITS-region from rDNA. Micol Apl Int 22(1):15–25

    Google Scholar 

  • Jacob DL, Yellick AH, Kissoon LTT, Asgary A, Wijeyaratne DN, Saini-Eidukat B, Otte ML (2013) Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA. Environ Pollut 178(1):211–219

    Article  CAS  Google Scholar 

  • Johnson SE, Loeppert RH (2006) Role of organic acids in phosphate mobilization from iron oxide. Soil Sci Soc Am J 70(1):222–234

    Article  CAS  Google Scholar 

  • Jung T, Nechwatal J (2008) Phytophthora gallica sp. nov.a new species from rhizosphere soil of declining oak and reed stands in France and Germany. Mycol Res 112(10):1195–1205

    Article  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18(4):355–364

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27(1):29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56(1):73–98

    Article  CAS  Google Scholar 

  • Klassen NV, Marchington D, Mcgowan HCE (1994) H2O2 Determination by the I3-method and by KMnO4 titration. Anal Chem 66(18):2921–2925

    Article  CAS  Google Scholar 

  • Li Q, Harvey LM, McNeil B (2009) Oxidative stress in industrial fungi. Crit Rev Biotechnol 29(3):199–213

    Article  CAS  Google Scholar 

  • Ma ZY, Pu SC, Jiang JJ, Huang B, Fan MZ, Li ZZ (2011) A novel thermostable phytase from the fungus Aspergillus aculeatus RCEF 4894: gene cloning and expression in Pichia pastoris. World J Microbiol Biotechnol 27(3):679–686

    Article  CAS  Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz J, Lange L (eds) Advances in fungal bio/technology for industry, agriculture and medicine. Springer, Berlin, pp 307–340

    Chapter  Google Scholar 

  • Maitra N, Manna SK, Samanta S, Sarkar K, Debnath D, Bandopadhyay C, Sahu SK, Sharma AP (2015) Ecological significance and phosphorus release potential of phosphate solubilizing bacteria in freshwater ecosystems. Hydrobiologia 745(1):69–83

    Article  CAS  Google Scholar 

  • Mittal V, Singh O, Nayyar H, Kaur J, Tewari R (2008) Stimulatory effect of phosphate solubilizing fungal strains (Aspergillus awamori and Penicillium citrinum) on the yield of chickpea (Cicerarietinum L. cv. GPF2). Soil Biol Biochem 40(3):718–727

    Article  CAS  Google Scholar 

  • Morales A, Alvear M, Valenzuela E, Castillo CG, Borie F (2011) Screening, evaluation and selection of phosphate-solubilizing fungi as potential biofertilizer. J Soil Sci Plant Nutr 11(4):89–103

    Article  Google Scholar 

  • Muhammad A, Xu J, Li Z, Wang H, Yao H (2005) Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities. Chemosphere 60(4):508–514

    Article  CAS  Google Scholar 

  • Nahas E (2007) Phosphate solubilizing microorganisms In: Velázquez E, Rodriguez-Barrueco C (eds.) Effect of carbon, nitrogen, and phosphorus sources. First International Meeting on Microbial Phosphate Solubilization, Salamanca, Spain. pp. 111–115

  • Naik SK, Maurya S, Kumar R, Sadhna K, Gagrai S, Das B, Kumar S, Bhatt BP (2013) Inorganic phosphate solubilization by phosphate solubilizing fungi isolated from acidic soils. Afr J Microbiol Res 7(34):4310–4316

    Google Scholar 

  • Narula N, Kumar V, Behl RK, Deubel A, Gransee A, Merbach W (2000) Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163(4):393–398

    Article  CAS  Google Scholar 

  • Nenwani V, Doshi P, Saha T, Rajkumar S (2010) Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J Yeast Fungal Res 1:9–14

    CAS  Google Scholar 

  • Onthong J, Gimsanguan S, Pengnoo A, Nilnond C, Osaki M (2007) Effecf of pH and some cations on activity of acid phosphatase secreted from Ustilago sp. Isolated from acid sulphate soil. Songklanakarin. J Sci Technol 29:275–286

    Google Scholar 

  • Pandey A, Das N, Kumar B, Rinu K, Trivedi P (2008) Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 24(1):97–102

    Article  CAS  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Posada RH, Heredia-Abarca G, Sieverding E, Sánchez de Prager M (2013) Solubilization of iron and calcium phosphates by soil fungi isolated from coffee plantations. Arch Agron Soil Sci 59(2):185–196

    Article  CAS  Google Scholar 

  • Pradhan N, Sukla LB (2005) Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 5(10):850–854

    Google Scholar 

  • Rai PK (2008) Heavy-metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an eco sustainable approach. Int J Phytoremediation 10(2):133–160

    Article  CAS  Google Scholar 

  • Rashid M, Khalil S, Ayub N, Alam S, Latif F (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci 7(2):187–196

    Article  Google Scholar 

  • Relwani L, Krishna P, Reddy M (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr Microbiol 57(1):401–406

    Article  CAS  Google Scholar 

  • Rezaie H, Sahlezadeh M (2014) Performance removal nitrate and phosphate from treated municipal wastewater using Phragmites australis and Typha latifolia aquatic plants. J Civil Eng Urban 4(3):315–321

    Google Scholar 

  • Roberts TL (2014) Cadmium and phosphorus fertilizers: the issues and the science. Proc Eng 83:52–59

    Article  CAS  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma sp. in relation of P uptake and growth and yield parameters of chickpea (Cicerarietinum L.). Can J Microbiol 51(3):217–222

    Article  CAS  Google Scholar 

  • Saxena J, Basu P, Jaligam V, Chandra S (2013) Phosphate solubilization by a few fungal strains belonging to the genera Aspergillus and Penicillium. Afr J Microbiol Res 7(41):4862–4869

    Article  Google Scholar 

  • Sazanova K, Osmolovskaya N, Schiparev S, Yakkonen K, Kuchaeva L, Vlasov D (2015) Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions. Curr Microbiol 70(4):520–527

    Article  CAS  Google Scholar 

  • Scervino JM, Mesa MP, Della Mónica I, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46(1):755–763

    Article  CAS  Google Scholar 

  • Scervino JM, Papinutti VL, Godoy MS, Rodriguez MA, Della Mónica I, Recchi M, Pettinari MJ, Godeas AM (2011) Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J Appl Microbiol 110:1215–1223

    Article  CAS  Google Scholar 

  • Sharma SB, Sayyed R, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587–591

    Article  Google Scholar 

  • Standard Methods for the Examination of Water and Wastewater (2005) 21st ed. American Public Health Association APHA, Washington, DC

  • Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22(1):93–117

    Article  CAS  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus-perennial rye grass mutualistic association. Plant Cell 18(4):1052–1066

    Article  CAS  Google Scholar 

  • Tong Y, Lin G, Ke X, Liu F, Zhu G, Gao G, Shen J (2005) Comparison of microbial community between two shallow freshwater lakes in middle Yangtze basin, East China. Chemosphere 60(1):85–92

    Article  CAS  Google Scholar 

  • Tripura CB, Sashidhar B, Podile AR (2005) Transgenic mineral phosphate solubilizing bacteria for improved agricultural productivity. In: Satyanarayana T, Johri BN (eds) Microbial diversity current perspectives and potential applications. I. K. International Pvt. Ltd., New Delhi, pp 375–392

    Google Scholar 

  • Tuason MM, Arocena JM (2009) Calcium oxalate biomineralization by Piloderma fallax in response to various levels of calcium and phosphorus. Appl Environ Microbiol 72(22):7079–7085

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fert Soils 30:460–468

    Article  CAS  Google Scholar 

  • Vig K, Megharaj M, Sethunathan N, Naidu R (2003) Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Adv Environ Res 8(1):121–135

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  CAS  Google Scholar 

  • Walpola BC, Yoon M (2013) In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. Afr J Microbiol Res 7(27):3534–3541

    Google Scholar 

  • Wong CM, Wong KH, Chen CD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78(1):927–938

    Article  CAS  Google Scholar 

  • Xu X, Huang Q, Gu JD, Chen W (2012) Biosorption of cadmium by metal-resistant filamentous fungus isolated from chicken manure compost. Environ Technol 33(13–15):1661–1670

    Article  CAS  Google Scholar 

  • Zafar SF, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Biores Technol 98(13):2557–2561

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Gisselly Mendoza for their technical assistance. This work was funded by own resources from the Laboratory of Xenobiotics of CINVESTAV-IPN, Mexico. Also the first author wish to thank the Mexican National Council of Science and Technology (CONACyT) by his doctoral scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Refugio Rodríguez-Vázquez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga-Silva, J.R., Chan-Cupul, W., Kuschk, P. et al. Effect of Cd+2 on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australis-rhizosphere. Ecotoxicology 25, 367–379 (2016). https://doi.org/10.1007/s10646-015-1595-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1595-5

Keywords

Navigation