Skip to main content

Advertisement

Log in

Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Strain LZ-C, isolated from a petrochemical wastewater discharge site, was found to be resistant to heavy metals and to degrade various aromatic compounds, including naphenol, naphthalene, 2-methylnaphthalene and toluene. Data obtained from 16S rRNA gene sequencing showed that this strain was closely related to Delftia lacustris. The 5,889,360 bp genome of strain LZ-C was assembled into 239 contigs and 197 scaffolds containing 5855 predicted open reading frames (ORFs). Among these predicted ORFs, 464 were different from the type strain of Delftia. The minimal inhibitory concentrations were 4 mM, 30 µM, 2 mM and 1 mM for Cr(VI), Hg(II), Cd(II) and Pb(II), respectively. Both genome sequencing and quantitative real-time PCR data revealed that genes related to Chr, Czc and Mer family genes play important roles in heavy metal resistance in strain LZ-C. In addition, the Na+/H+ antiporter NhaA is important for adaptation to high salinity resistance (2.5 M NaCl). The complete pathways of benzene and benzoate degradation were identified through KEGG analysis. Interestingly, strain LZ-C also degrades naphthalene but lacks the key naphthalene degradation gene NahA. Thus, we propose that strain LZ-C exhibits a novel protein with a function similar to NahA. This study is the first to reveal the mechanisms of heavy metal resistance and salinity tolerance in D. lacustris and to identify a potential 2-methylnaphthalene degradation protein in this strain. Through whole-genome sequencing analysis, strain LZ-C might be a good candidate for the bioremediation of heavy metals and polycyclic aromatic hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100

    Article  CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Environ 407(8):3024–3032

    Article  CAS  Google Scholar 

  • Antonio Ventosa JJN, Oren Aharon (1998) Biology of Moderately Halophilic Aerobic Bacteria. Microbiol Mol Biol Rev 62(2):504–544

    Google Scholar 

  • Banerjee A, Ghoshal AK (2011) Phenol degradation performance by isolated Bacillus cereus immobilized in alginate. Int Biodeterior Biodegrad 65(7):1052–1060. doi:10.1016/j.ibiod.2011.04.011

    Article  CAS  Google Scholar 

  • Baquero F, Martínez J-L, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19(3):260–265

    Article  CAS  Google Scholar 

  • Bautista-Hernández DA (2012) Zinc and Lead biosorption by Delftia tsuruhatensis: A bacterial strain resistant to metals isolated from mine tailings. J Water Res Prot. doi:10.4236/jwarp.2012.44023

    Google Scholar 

  • Boscha Rafael, García-Valdés E, Moore ERB (1999) Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236(1):149–157

    Article  Google Scholar 

  • Brown N, Shih Y, Leang C, Glendinning K, Hobman J, Wilson J (2002) Mercury transport and resistance. Biochem Soc Trans 30(4):715

    Article  CAS  Google Scholar 

  • Busenlehner LS, Pennella MA, Giedroc DP (2003) The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev 27:131–143. doi:10.1016/S0168-6445(03)00054-8

    Article  CAS  Google Scholar 

  • Calo D, Guan Z, Naparstek S, Eichler J (2011) Different routes to the same ending: comparing the N-glycosylation processes of Haloferax volcanii and Haloarcula marismortui, two halophilic archaea from the Dead Sea. Mol Microbiol 81(5):1166–1177

    Article  CAS  Google Scholar 

  • Choudhury R, Srivastava S (2001) Zinc resistance mechanisms in bacteria. Curr Sci 81(7):768–775

    CAS  Google Scholar 

  • Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinform. doi:10.1002/0471250953.bi1003s00

    Google Scholar 

  • Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679. doi:10.1093/bioinformatics/btm009

    Article  CAS  Google Scholar 

  • Derraik JG (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44(9):842–852

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152. doi:10.1007/s00253-002-1024-6

    Article  CAS  Google Scholar 

  • Fu B, Chen L (1995) Landscape diversity types and their ecological significance. Di li xue bao/Chung-kuo ti li hsueh hui pien chi 51:454–462

    Google Scholar 

  • Gao H, Zhou L, Ma M-Q, Chen X-G, Hu Z-D (2004) Composition and source of unknown organic pollutants in atmospheric particulates of the Xigu District, Lanzhou, People’s Republic of China. Bull Environl Contam Toxicol 72(5):923–930

    CAS  Google Scholar 

  • Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N, Hooker J, Madsen R, Coleman ML, Gilbert JA (2014) Human and environmental impacts on river sediment microbial communities. PloS One. doi:10.1371/journal.pone.0097435

    Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11(3):236–243

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10):1389–1414

    Article  CAS  Google Scholar 

  • Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  CAS  Google Scholar 

  • Groning JA, Eulberg D, Tischler D, Kaschabek SR, Schlomann M (2014) Gene redundancy of two-component (chloro)phenol hydroxylases in Rhodococcus opacus 1CP. FEMS Microbiol Lett 361(1):68–75. doi:10.1111/1574-6968.12616

    Article  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Sitnik M, Wojcieszyńska D (2013) High activity catechol 1, 2-dioxygenase from Stenotrophomonas maltophilia strain KB2 as a useful tool in cis, cis-muconic acid production. Antonie van Leeuwenhoek 103:1297–1307

    Article  CAS  Google Scholar 

  • Hobman JL, Julian DJ, Brown NL (2012) Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34. BMC Microbiol 12(1):109. doi:10.1186/1471-2180-12-109

    Article  CAS  Google Scholar 

  • Huaiman C, Chunrong Z, Shenqiang W and Cong T (2000) Combined pollution and pollution index of heavy metals in red soil. Pedosphere

  • Huyuan Zhang QZ, Yang Bo, Wang Jinfang (2014) Compacted Sewage sludge as a barrier for tailings: the heavy metal speciation and total organic carbon content in the compacted sludge specimen. PloS One. doi:10.1371/journal.pone.0100932.t001

    Google Scholar 

  • Intorne AC, de Oliveira MVV, de M Pereira L, de Souza Filho GA (2012) Essential role of the czc determinant for cadmium, cobalt and zinc resistance in Gluconacetobacter diazotrophicus PAl 5. Int Microbiol 15(2):69–78. doi:10.2436/20.1501.01.160

    CAS  Google Scholar 

  • Jain S, Bhatt A (2013) Molecular and in situ characterization of cadmium-resistant diversified extremophilic strains of Pseudomonas for their bioremediation potential. 3Biotech 4(3):297–304. doi:10.1007/s13205-013-0155-z

    Google Scholar 

  • Jinlong N, Faqiang L, Lin H, Yuanyuan J, Xuehong D, Yuanjun S (2012) Advanced treatment technology of the COD of chemical outward-discharged wastewater. Ind Water Treat 8:021

    Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, Ananou S, El Ghachtouli N (2014) Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). Environ Sci Pollut Res Int 21(4):3060–3072. doi:10.1007/s11356-013-2249-x

    Article  Google Scholar 

  • Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9. doi:10.1016/j.apsoil.2011.12.008

    Article  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114

  • Kauppi B (1998) Structure of an aromatic-ring-hydroxylation dioxygenase-naphthalene 1, 2-dioxygenases. Structure 6(5):571–586

    Article  CAS  Google Scholar 

  • Korf I, Gish W (2000) MPBLAST: improved BLAST performance with multiplexed queries. Bioinformatics 16(11):1052–1053

    Article  CAS  Google Scholar 

  • Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manag 85(2):496–512

    Article  CAS  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306. doi:10.1093/Bib/Bbn017

    Article  CAS  Google Scholar 

  • Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35(9):3100–3108. doi:10.1093/nar/gkm160

    Article  CAS  Google Scholar 

  • Lalitha S (2000) Primer premier 5. Biotech Softw Internet Rep 1(6):270–272

    Article  Google Scholar 

  • Lee S-W, Glickmann E, Cooksey DA (2001) Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol 67(4):1437–1444

    Article  CAS  Google Scholar 

  • Leedjärv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. J Bacteriol 190(8):2680–2689

    Article  Google Scholar 

  • Liu C, Xu J, Liu C, Zhang P, Dai M (2009) Heavy metals in the surface sediments in Lanzhou Reach of Yellow River, China. Bull Environ Contam Toxicol 82(1):26–30

    Article  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964

    Article  CAS  Google Scholar 

  • Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76(21):6971–6981. doi:10.1128/AEM.01868-10

    Article  CAS  Google Scholar 

  • Mager T, Rimon A, Padan E, Fendler K (2011) Transport mechanism and pH regulation of the Na+/H+ antiporter NhaA from Escherichia coli: an electrophysiological study. J Biol Chem 286(26):23570–23581. doi:10.1074/jbc.M111.230235

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663. doi:10.1007/s002530100701

    Article  CAS  Google Scholar 

  • Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N (2011) Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24(6):1133–1151

    Article  CAS  Google Scholar 

  • Morais PV, Branco R, Francisco R (2011) Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals 24(3):401–410. doi:10.1007/s10534-011-9446-1

    Article  CAS  Google Scholar 

  • Morel MA, Ubalde MC, Braña V, Castro-Sowinski S (2011) Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol 193(1):63–68

    Article  CAS  Google Scholar 

  • Mueller-Spitz S, Crawford K (2014) Silver nanoparticle inhibition of polycyclic aromatic hydrocarbons degradation by Mycobacterium species RJGII-135. Lett Appl Microbiol 58(4):330–337

    Article  CAS  Google Scholar 

  • Qixing Z (1999) Combined chromium and phenol pollution in a marine prawn fishery. Bull Environl Contam Toxicol 62(4):476–482

    Article  CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332

    Article  Google Scholar 

  • Saa L, Jaureguibeitia A, Largo E, Llama MJ, Serra JL (2010) Cloning, purification and characterization of two components of phenol hydroxylase from Rhodococcus erythropolis UPV-1. Appl Microbiol Biotechnol 86(1):201–211. doi:10.1007/s00253-009-2251-x

    Article  CAS  Google Scholar 

  • Sánchez-Andrea I, Triana D, Sanz JL (2012) Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Sci Technol 66(11):2425–2431

    Article  Google Scholar 

  • Sedlmeier R, Altenbuchner J (1992) Cloning and DNA-sequence analysis of the mercury resistance genes of Streptomyces-lividans. Mol Gen Genet 236(1):76–85

    CAS  Google Scholar 

  • Shen G, Lu Y, Wang M, Sun Y (2005) Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China. J Environ Manag 76(4):355–362

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50(1):753–789

    Article  CAS  Google Scholar 

  • Stearman R, Yuan DS, Yamaguchi-Iwai Y, Klausner RD, Dancis A (1996) A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 27:1552–1557

    Article  Google Scholar 

  • Sundar K, Vidya R, Mukherjee A, Chandrasekaran N (2010) High chromium tolerant bacterial strains from Palar River Basin: Impact of tannery pollution. Res J Environ Earth Sci 2(2):112–117

    CAS  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62(2):625–630

    CAS  Google Scholar 

  • Swaathy S, Kavitha V, Pravin AS, Mandal AB, Gnanamani A (2014) Microbial surfactant mediated degradation of anthracene in aqueous phase by marine Bacillus licheniformis MTCC 5514. Biotechnol Rep 4:161–170. doi:10.1016/j.btre.2014.10.004

    Article  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28(1):33–36

    Article  CAS  Google Scholar 

  • Tikilili PV, Nkhalambayausi-Chirwa EM (2011) Characterization and biodegradation of polycyclic aromatic hydrocarbons in radioactive wastewater. J Hazard Mater 192(3):1589–1596

    Article  CAS  Google Scholar 

  • Uhlik O, Wald J, Strejcek M, Musilova L, Ridl J, Hroudova M, Vlcek C, Cardenas E, Mackova M, Macek T (2012) Identification of bacteria utilizing biphenyl, benzoate, and naphthalene in long-term contaminated soil. PloS One 7(7):e40653. doi:10.1371/journal.pone.0040653

    Article  CAS  Google Scholar 

  • Umrania VV (2006) Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresour Technol 97(10):1237–1242. doi:10.1016/j.biortech.2005.04.048

    Article  CAS  Google Scholar 

  • Vimont S, Berche P (2000) NhaA, an Na+/H+ antiporter involved in environmental survival of Vibrio cholerae. J Bacteriol 182(10):2937–2944

    Article  CAS  Google Scholar 

  • Wasay S, Barrington S, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol 19(4):369–379

    Article  CAS  Google Scholar 

  • Wu G, Sun M, Liu P, Zhang X, Yu Z, Zheng Z, Chen Y, Li X (2014) Enterococcus faecalis strain LZ-11 isolated from Lanzhou reach of the Yellow River is able to resist and absorb cadmium. J Appl Microbiol 116(5):1172–1180. doi:10.1111/jam.12460

    Article  CAS  Google Scholar 

  • Xu X, Hu H, Dailey AB, Kearney G, Talbott EO, Cook RL (2013) Potential health impacts of heavy metals on HIV-infected population in USA. PloS One. doi:10.1371/journal.pone.0074288

    Google Scholar 

  • Yang LF, Jiang JQ, Zhao BS, Zhang B, Feng DQ, Lu WD, Wang L, Yang SS (2006) A Na+/H+ antiporter gene of the moderately halophilic bacterium Halobacillus dabanensis D-8T: cloning and molecular characterization. FEMS Microbiol Lett 255(1):89–95

    Article  CAS  Google Scholar 

  • Yu Z, Li J, Li Y, Wang Q, Zhai X, Wu G, Liu P, Li X (2014) A mer operon confers mercury reduction in a Staphylococcus epidermidis strain isolated from Lanzhou reach of the Yellow River. Int Biodeterior Biodegrad 90:57–63

    Article  CAS  Google Scholar 

  • Yuka Sone RN, Pan-Hou Hidemitsu, Itoh Tomoo, Kiyono Masako (2013) Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli. Biol Pharm Bull 36(11):1835–1841

    Article  Google Scholar 

  • Zhang X, Krumholz LR, Yu Z, Chen Y, Liu P, Li X (2013) A novel subspecies of Staphylococcus aureus from sediments of Lanzhou reach of the yellow river aerobically reduces hexavalent chromium. J Biorem Biodegrad 4:4

  • Zhang X, Wu W, Virgo N, Zou L, Liu P, Li X (2014) Global transcriptome analysis of hexavalent chromium stress responses in Staphylococcus aureus LZ-01. Ecotoxicology 23(8):1534–1545. doi:10.1007/s10646-014-1294-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a National Natural Science Foundation Grants 31470224, 31200085, MOST international cooperation Grant 2014DFA91340 and Gansu Provincial International Cooperation Grant 134WCGA176.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Wenyang Wu and Haiying Huang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Cell growth over a range of temperatures (A) and pH values (B) (TIFF 957 kb)

10646_2015_1583_MOESM2_ESM.tif

COG functional classification. The total number of classification is based on the 5204 COG assignments across the 5179 protein-coding genes with at least one COG assignment. Within the COG category, not comprises hypothetical protein-coding and RNA genes (TIFF 41213 kb)

10646_2015_1583_MOESM3_ESM.tif

Global gene conservation in Delftia. Each circle represents the total number of gene types in each genome. Overlapping regions depict the number of genes types shared between the respective genomes. The numbers outside the circles indicate the total number of genes identified in each genome, including paralogs and gene duplications. Abbreviations: CCUG 15835, Delftia acidovorans CCUG 15835; CCUG 274B, Delftia acidovorans CCUG 274B; Cs1-4, Delftia sp. Cs1-4; SPH-1, Delftia acidovorans SPH-1 (TIFF 23312 kb)

10646_2015_1583_MOESM4_ESM.tif

The LZ-C genome was compared with other Delftia genomes. Dot plots were constructed using MUMmer 3.22 software, and nucleotide-based alignments were performed with MUMmer. The dot plots were generated using the MUMmerplot script and the gnuplot program (www.gnuplot.info/docs_4.0/gnuplot.html). The aligned segments are represented as dots or lines. Forward matches are shown in red, and reverse complement matches are shown in blue. Abbreviations: CCUG 15835, Delftia acidovorans CCUG 15835; CCUG 274B, Delftia acidovorans CCUG 274B; Cs1-4, Delftia sp. Cs1-4; SPH-1, Delftia acidovorans SPH-1 (TIFF 26060 kb)

The unique genes in LZ-C compared to other Delftia strains (XLSX 25 kb)

High salt tolerance genes identified in strain LZ-C (XLSX 9 kb)

Heavy metal resistance genes identified in strain LZ-C (XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Huang, H., Ling, Z. et al. Genome sequencing reveals mechanisms for heavy metal resistance and polycyclic aromatic hydrocarbon degradation in Delftia lacustris strain LZ-C. Ecotoxicology 25, 234–247 (2016). https://doi.org/10.1007/s10646-015-1583-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1583-9

Keywords

Navigation