Skip to main content
Log in

Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Pollution caused by petroleum is one of the most serious problems worldwide. To better understand the toxic effects of petroleum-contaminated soil on the microflora and phytocommunity, we conducted a comprehensive field study on toxic effects of petroleum contaminated soil collected from the city of Daqing, an oil producing region of China. Urease, protease, invertase, and dehydrogenase activity were significantly reduced in microflora exposed to contaminated soils compared to the controls, whereas polyphenol oxidase activity was significantly increased (P < 0.05). Soil pH, electrical conductivity, and organic matter content were correlated with total petroleum hydrocarbons (TPHs) and a correlation (P < 0.01) existed between the C/N ratio and TPHs. Protease, invertase and catalase were correlated with TPHs. The Vicia faba micronucleus (MN) test, chromosome aberrant (CA) analyses, and the mitotic index (MI) were used to detect genotoxicity of water extracts of the soil. Petroleum-contaminated samples indicated serious genotoxicity to plants, including decreased index level of MI, increased frequency of MN and CA. The combination of enzyme activities and genotoxicity test via Vicia faba can be used as an important indicator for assessing the impact of TPH on soil ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Achuba FI, Peretiemo-Clarke BO (2008) Effect of spent engine oil on soil catalase and dehydrogenase activities. Int Agrophys 22:1–4

    CAS  Google Scholar 

  • Acosta-Martinez V, Tabatabai MA (2000) Enzyme activities in a limed agricultural soil. Biol Fertl Soils 31:85–91

    Article  CAS  Google Scholar 

  • Aina R, Palin L, Citterio S (2006) Molecular evidence for benzo[a]pyrene and naphthalene genotoxicity in Trifolium repens L. Chemosphere 65:666–673

    Article  CAS  Google Scholar 

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C (2003) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    Google Scholar 

  • Baran S, Bielińska JE, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232

    Article  CAS  Google Scholar 

  • Bayer H, Mitterer M, Schinner F (1982) Der einfluss von insektiziden auf mikrobiogene prozesse in Ah-materialien eines landwirtschaftlich genutzten bodens. Pedobiologia 23:311–319

    CAS  Google Scholar 

  • Békaert C, Rast C, Ferrier V, Bispo A, Jourdain MJ, Vasseur P (1999) Use of in vitro (Ames and Mutatox tests) and in vivo (Amphibian Micronucleus test) assays to assess the genotoxicity of leachates from a contaminated soil. Org Geochem 30:953–962

    Article  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresource Technol 74:64–67

    Article  Google Scholar 

  • Canet R, Albiach R, Pomares F (2000) Indexes of biological activity as tools for diagnosing soil fertility in organic farming. In: Garcia C, Hernández T (eds) Research and perspectives of soil enzymology in Spain. Cebas-CSIC, Murcia, pp 27–39

    Google Scholar 

  • Claassens S, Van Rensburg L, Riedel KJ, Bezuidenhout JJ, Jansen Van Rensburg PJ (2006) Evaluation of the efficiency of various commercial products for the bioremediation of hydrocarbon contaminated soil. Environmentalist 26:51–62

    Article  Google Scholar 

  • Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946

    Article  CAS  Google Scholar 

  • Cotelle S, Masfaraud JF, Férard JF (1999) Assessment of the genotoxicity of contaminated soil with the Allium/Vicia-micronucleus and the Tradescantia-micronucleus assays. Mutat Res Fund Mol M 426:167–171

    Article  CAS  Google Scholar 

  • Deng SP, Tabatabai MA (1997) Effect of tillage and residue management on enzyme activities in soils: III phosphatases and arylsulfatase. Biol Fertl Soils 24:141–146

    Article  CAS  Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: Panhurst CE, Double BM, Gupta VV (eds) Biological indicators of soil health. Commonwealth Agricultural Bureaux International, Oxford, pp 121–157

    Google Scholar 

  • Dodor DE, Tabatabai MA (2002) Effects of cropping system and microbial biomass on arylamidase activity in soils. Biol Fertl Soils 35:253–261

    Article  CAS  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Muta Res Fund Mol M 455:81–95

    Article  CAS  Google Scholar 

  • Fiskesjö G, Levan A (1993) Evaluation of the first ten MEIC chemicals in the Allium test. ATLA 21:139–149

    Google Scholar 

  • Gestel KV, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

    Article  Google Scholar 

  • Gianfreda L, Rao MA, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 341:265–279

    Article  CAS  Google Scholar 

  • Gil-Sotres F, Trasar-Cepeda C, Leiros MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    Article  CAS  Google Scholar 

  • Grant WF (1999) Higher plants assays for the detection of chromosomal aberrations and gene mutations: a brief historical background on their use for screening environmental chemicals. Mutat Res Fund Mol M 426:107–112

    Article  CAS  Google Scholar 

  • Guo D, Ma J, Li R, Guo G (2010) Genotoxicity effect of nitrobenzene on soybean (Glycine max) root tip cells. J Hazard Mater 178:1030–1034

    Article  CAS  Google Scholar 

  • Howcroft CF, Gravato C, Amorim MJB, Novais SC, Soares AMVM, Guilhermino L (2011) Biochemical characterization of cholinesterases in Enchytraeus albidus and assessment of in vivo and in vitro effects of different soil properties, copper and phenmedipham. Ecotoxicology 20(1):119–130

    Article  CAS  Google Scholar 

  • Ihra N, Slet J, Petersell V (2003) Effect of heavy metals and PAH on soil assessed via dehydrogenase assay. Environ Int 28:779–782

    Article  Google Scholar 

  • Justino CI, Pereira R, Freitas AC, Rocha-Santos TA, Panteleitchouk TS, Duarte AC (2012) Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology 21(2):615–629

    Article  CAS  Google Scholar 

  • Kang H, Freeman C (1999) Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors. Soil Biol Biochem 31:449–454

    Article  CAS  Google Scholar 

  • Kiss S, Dragan-Bularda M, Radulescu D (1978) Soil polysaccharidases: activity and agricultural importance. In: Burns RG (ed) Soil enzymes. Academic Press, London, pp 117–147

    Google Scholar 

  • Kolesnikov SI, Tatosyan ML, Aznaur’yan DK (2007) Change in enzymatic activity of common chernozem polluted with crude oil and its products in model experiments. Russ Agric Sci 33:318–320

    Article  Google Scholar 

  • Krisch-Volders M, Vanhauwaert A, De Boeck M, Decordier I (2002) Importance of detecting numerical versus structural chromosome aberrations. Mutat Res Fund Mol M 504:137–148

    Article  Google Scholar 

  • Ladd JN, Brisbane PG, Butler JHA, Amato M (1976) Studies on soil fumigation. 3. Effects on enzyme-activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biol Biochem 8:255–260

    Article  CAS  Google Scholar 

  • Lah B, Vidic T, Glasencnik E, Cepeljnik T, Gorjanc G, Marinsek-Logar R (2008) Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environ Monit Assess 139:107–118

    Article  CAS  Google Scholar 

  • Leme DM, de Angelis DF, Marin-Morales MA (2008) Action mechanisms of petroleum hydrocarbons present in waters impacted by an oil spill on the genetic material of Allium cepa root cells. Aquat Toxicol 88:214–219

    Article  CAS  Google Scholar 

  • Linnainmaa K, Meretoja T, Sorsa M, Vainto H (1978) Cytogenetic effects of styrene and styrene oxide. Mutat Res Gen Tox En 58:277–286

    Article  CAS  Google Scholar 

  • Ma T-H, Xu Z, Chengen Xu, McConnell H, Valtierra Rabago E, Adriana Arreola G, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res Gen Tox En 334:185–195

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, Janusauskaite D (2007) Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different propertie. J Environ Qual 36:1635–1645

    Article  CAS  Google Scholar 

  • Marcano L, Carruyo I, Del Campo A, Montiel X (2004) Cytoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environ Res 94:221–226

    Article  CAS  Google Scholar 

  • Marcato-Romain CE, Guiresse M, Cecchi M, Cotelle S, Pinelli E (2009) New direct contact approach to evaluate soil genotoxicity using the Vicia faba micronucleus test. Chemosphere 77:345–350

    Article  CAS  Google Scholar 

  • Margesin R, Walder G, Schinner F (2000a) The impact of hydrocarbon remediation (diesel oil and polycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil. Acta Biotechnol 20:313–333

    Article  CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000b) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    Article  CAS  Google Scholar 

  • Megharaj M, Singleton I, McClure NC, Naidu R (2000) Influence of petroleum hydrocarbon contamination on microalgae and microbial activities in a long-term contaminated soil. Arch Environ Con Tox 38:439–445

    Article  CAS  Google Scholar 

  • Methods of Soil Analysis. (1996) In: Sparks DL (ed) Part 3 chemical methods. SSA book series, vol 5. Soil Science Society of America and American Society of Agronomy, Madison

  • Nannipieri PB, Kandler E, Ruggiero P (2002) Enzyme activity and microbial and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York

    Google Scholar 

  • Ohshima T, Tamura T, Sato M (2007) Influence of pulsed electric field on various enzyme activities. J Electrostat 65:156–161

    Article  CAS  Google Scholar 

  • Perucci P, Casucci C, Dumontet S (2000) An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biol Biochem 32:1927–1933

    Article  CAS  Google Scholar 

  • Riehm H (1958) Die ammonium lactates sigsaure-methode zur bestimmung der leichtloeslichen phosphosaure in karbonathaltigen boden. Agrochimica 3:49–65

    Google Scholar 

  • Romansik EM, Reilly CM, Kass PH, Moore PF, London CA (2007) Mitotic index is predictive for survival for canine cutaneous mast cell tumors. Vet Pathol 44:335–341

    Article  CAS  Google Scholar 

  • Sannino F, Gianfreda L (2001) Pesticide influence on soil enzymatic activities. Chemosphere 45:417–425

    Article  CAS  Google Scholar 

  • Shao Y, Zhang W, Liu Z, Sun Y, Chen D, Wu J, Fu S (2012) Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands. Ecotoxicology 21(8):2132–2142

    Article  CAS  Google Scholar 

  • Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15(11):2507–2524

    Article  CAS  Google Scholar 

  • Singh A, Ward OP, Kuhad RC (2005) Feasibility studies for microbial remediation hydrocarbon-contaminated soil. Monit Assess Soil Bioremediation 5:131–153

    Article  CAS  Google Scholar 

  • Stanislaw B, Bielińska JE, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232

    Article  Google Scholar 

  • Tabatabai MA (1982) Soil enzymes. In: Page AL, Millar EM, Keeney DR (eds) Methods of soil analysis. ASA and SSSA, Madison, pp 501–538

    Google Scholar 

  • Tang X, Baosheng Z, Mikael H, Lianyong F (2010) Forecast of oil reserves and production in Daqing oilfield of China. Energy 35:3097–3102

    Article  Google Scholar 

  • Taylor JP, Wilson B, Mills MS, Burns RG (2002) Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol Biochem 34:387–401

    Article  CAS  Google Scholar 

  • Top EM, Maila MP, Clerinx M, Goris J, De Vos P, Verstraete W (1999) Methane oxidation as method to evaluate the removal of 2,4-D from soil by plasmid-mediated bioaugumentation. FEMS Microbiol Ecol 28:203–213

    Article  CAS  Google Scholar 

  • Trasar-Cepeda C, Leirós MC, Seoane S, Gil-Sotres F (2000) Limitations of soil enzymes as indicators of soil pollution. Soil Biol Biochem 32:1867–1875

    Article  CAS  Google Scholar 

  • US EPA Method 3550 Ultrasonic Extraction. http://www.epa.gov/sw-846/pdfs/3550c.pdf. Accessed 27 Jan 2014

  • Verrhiest GJ, Clément B, Volat B, Montuelle B, Perrodin Y (2002) Interactions between a polycyclic aromatic hydrocarbon mixture and the microbial communities in a natural freshwater sediment. Chemosphere 46:187–196

    Article  CAS  Google Scholar 

  • Wang C, Tian Y, Wang X, Geng J, Jiang J, Yu H, Wang C (2010) Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology 19(6):1130–1139

    Article  CAS  Google Scholar 

  • Wyszkowska J, Kucharski J (2000) Biochemical properties of soil contaminated by petrol. Pol J Environ Stud 9:479–485

    CAS  Google Scholar 

  • Wyszkowska J, Wyszkowski M (2010) Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum. J Toxicol Env Health 73:1202–1210

    Article  CAS  Google Scholar 

  • Yao Y, Lu Z, Min H, Gao H, Zhu F (2012) The effect of tetrahydrofuran on the enzymatic activity and microbial community in activated sludge from a sequencing batch reactor. Ecotoxicology 21(1):56–65

    Article  CAS  Google Scholar 

  • Zantua MI, Bremner JM (1975) Preservation of soil samples for assay of urease activity. Soil Biol Biochem 7:297–299

    Article  CAS  Google Scholar 

  • Zhao Z, Zhuang YX, Gu JD (2012a) Abundance, composition and vertical distribution of polycyclic aromatic hydrocarbons in sediments of the Mai Po Inner Deep Bay of Hong Kong. Ecotoxicology 21:1734–1742

    Article  CAS  Google Scholar 

  • Zhao ZY, Chu YL, Gu JD (2012b) Distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Mai Po Inner Deep Bay Ramsar Site in Hong Kong. Ecotoxicology 21:1743–1752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Richard S Halbrook and Dr. JiDong Gu for their invaluable assistance in reviewing the manuscript. This study was supported by the National Natural Science Foundation of China (Grant No. 31170479), Programs for Science and Technology Development of Heilongjiang Province, China (Grant No. GC12B304), and Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Heilongjiang Province (2010TD10) and Harbin Normal University (KJTD2011-2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Shen, J., Liu, Q. et al. Risk assessment of petroleum-contaminated soil using soil enzyme activities and genotoxicity to Vicia faba . Ecotoxicology 23, 665–673 (2014). https://doi.org/10.1007/s10646-014-1196-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1196-8

Keywords

Navigation