Skip to main content

Advertisement

Log in

4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E–binding protein 1 (4E–BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345(6275):544–547

    Article  CAS  PubMed  Google Scholar 

  2. De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23(18):3189–3199

    Article  PubMed  Google Scholar 

  3. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    Article  CAS  PubMed  Google Scholar 

  4. Pelletier J, Graff J, Ruggero D, Sonenberg N (2015) Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 75(2):250–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20(3):265–273

    Article  CAS  PubMed  Google Scholar 

  6. Thumma SC, Kratzke RA (2007) Translational control: a target for cancer therapy. Cancer Lett 258(1):1–8

    Article  CAS  PubMed  Google Scholar 

  7. Rosenwald IB, Chen JJ, Wang S, Savas L, London IM, Pullman J (1999) Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene 18(15):2507–2517

    Article  CAS  PubMed  Google Scholar 

  8. Kerekatte V, Smiley K, Hu B, Smith A, Gelder F, De Benedetti A (1995) The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer 64(1):27–31

    Article  CAS  PubMed  Google Scholar 

  9. Crew JP, Fuggle S, Bicknell R, Cranston DW, de Benedetti A, Harris AL (2000) Eukaryotic initiation factor-4E in superficial and muscle invasive bladder cancer and its correlation with vascular endothelial growth factor expression and tumour progression. Br J Cancer 82(1):161–166

    Article  CAS  PubMed  Google Scholar 

  10. Nathan CO, Franklin S, Abreo FW, Nassar R, de Benedetti A, Williams J et al (1999) Expression of eIF4E during head and neck tumorigenesis: possible role in angiogenesis. Laryngoscope 109(8):1253–1258

    Article  CAS  PubMed  Google Scholar 

  11. Silvera D, Formenti SC, Schneider RJ (2010) Translational control in cancer. Nat Rev Cancer 10(4):254–266

    Article  CAS  PubMed  Google Scholar 

  12. Bitterman PB, Polunovsky VA (2015) eIF4E-mediated translational control of cancer incidence. Biochim Biophys Acta 1849(7):774–780

    Article  CAS  PubMed  Google Scholar 

  13. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3(6):707–716

    Article  CAS  PubMed  Google Scholar 

  14. Moerke NJ, Aktas H, Chen H, Cantel S, Reibarkh MY, Fahmy A et al (2007) Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell 128(2):257–267

    Article  CAS  PubMed  Google Scholar 

  15. Yi T, Kabha E, Papadopoulos E, Wagner G (2014) 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget 5(15):6028–6037

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang H, Huang F, Wang J, Wang P, Lv W, Hong L et al (2015) The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle 14(2):232–242

    Article  PubMed  PubMed Central  Google Scholar 

  17. Willimott S, Beck D, Ahearne MJ, Adams VC, Wagner SD (2013) Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin Cancer Res 19(12):3212–3223

    Article  CAS  PubMed  Google Scholar 

  18. Descamps G, Gomez-Bougie P, Tamburini J, Green A, Bouscary D, Maiga S et al (2012) The cap-translation inhibitor 4EGI-1 induces apoptosis in multiple myeloma through Noxa induction. Br J Cancer 106(10):1660–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang X, Dong QF, Li LW, Huo JL, Li PQ, Fei Z et al (2015) The cap-translation inhibitor 4EGI-1 induces mitochondrial dysfunction via regulation of mitochondrial dynamic proteins in human glioma U251 cells. Neurochem Int 90:98–106

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Zhang C, Li XJ, Liu Q, Wanggou S (2016) Anti-cancer effect of cap-translation inhibitor 4EGI-1 in human Glioma U87 cells: involvement of mitochondrial dysfunction and ER stress. Cell Physiol Biochem 40(5):1013–1028

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Aktas BH, Wang Y, He X, Sahoo R, Zhang N et al (2012) Tumor suppression by small molecule inhibitors of translation initiation. Oncotarget 3(8):869–881

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schwarzer A, Holtmann H, Brugman M, Meyer J, Schauerte C, Zuber J et al (2015) Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia. Oncogene 34(27):3593–3604

    Article  CAS  PubMed  Google Scholar 

  23. Sato A, Ueno H, Takase A, Ando A, Sekine Y, Yano T (2016) Cytotoxicity induced by a redox-silent analog of Tocotrienol in human mesothelioma H2452 cell line via suppression of cap-dependent protein translation. Anticancer Res 36(4):1527–1533

    CAS  PubMed  Google Scholar 

  24. Whitson BA, Kratzke RA (2006) Molecular pathways in malignant pleural mesothelioma. Cancer Lett 239(2):183–189

    Article  CAS  PubMed  Google Scholar 

  25. Lee AY, Raz DJ, He B, Jablons DM (2007) Update on the molecular biology of malignant mesothelioma. Cancer 109(8):1454–1461

    Article  CAS  PubMed  Google Scholar 

  26. Carbone M, Rizzo P, Grimley PM, Procopio A, Mew DJY, Shridhar V, De Batolomeis A, Esposito V, Giuliano MT, Steinberg SM, Levine AS, Giordano A, Pass HI (1997) Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 3(8):908–912

    Article  CAS  PubMed  Google Scholar 

  27. Carbone M, Kratzke RA, Testa JR (2002) The pathogenesis of mesothelioma. Semin Oncol 29(1):2–17

    Article  CAS  PubMed  Google Scholar 

  28. Antman KH, Pass HI, Recht A (1989) Benign and malignant mesothelioma. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: principle and practices of oncology, 3rd edn. J.B.Lippincot, Philadelphia, pp 1399–1417

    Google Scholar 

  29. Jacobson BA, De A, Kratzke MG, Patel MR, Dixon JJ, Whitson BA, Sadiq AA, Bitterman PB, Polunovsky VA, Kratzke RA (2009) Activated 4E-BP1 represses tumourigenesis and IGF-I-mediated activation of the eIF4F complex in mesothelioma. Br J Cancer 101(3):424–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S et al (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278(5):3015–3022

    Article  CAS  PubMed  Google Scholar 

  31. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wilson CL, Miller CJ (2005) Simpleaffy: a BioConductor package for Affymetrix quality control and data analysis. Bioinformatics 21(18):3683–3685

    Article  CAS  PubMed  Google Scholar 

  33. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33(20):e175

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sandberg R, Larsson O (2007) Improved precision and accuracy for microarrays using updated probe set definitions. BMC Bioinformatics 8:48

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98(9):5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K et al (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67(14):6814–6824

    Article  CAS  PubMed  Google Scholar 

  37. Wennmalm K, Wahlestedt C, Larsson O (2005) The expression signature of in vitro senescence resembles mouse but not human aging. Genome Biol 6(13):R109

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li S, Perlman DM, Peterson MS, Burrichter D, Avdulov S, Polunovsky VA et al (2004) Translation initiation factor 4E blocks endoplasmic reticulum-mediated apoptosis. J Biol Chem 279(20):21312–21317

    Article  CAS  PubMed  Google Scholar 

  39. Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C et al (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res

  40. Greillier L, Baas P, Welch JJ, Hasan B, Passioukov A (2008) Biomarkers for malignant pleural mesothelioma: current status. Mol Diagn Ther 12(6):375–390

    Article  CAS  PubMed  Google Scholar 

  41. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al (2004) Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5(6):553–563

    Article  CAS  PubMed  Google Scholar 

  42. Sekiyama N, Arthanari H, Papadopoulos E, Rodriguez-Mias RA, Wagner G, Leger-Abraham M (2015) Molecular mechanism of the dual activity of 4EGI-1: dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A 112(30):E4036–E4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P et al (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol 21(14):2636–2644

    Article  CAS  PubMed  Google Scholar 

  44. Kindler HL, van Meerbeeck JP (2002) The role of gemcitabine in the treatment of malignant mesothelioma. Semin Oncol 29(1):70–76

    Article  CAS  PubMed  Google Scholar 

  45. Fukazawa T, Matsuoka J, Naomoto Y, Maeda Y, Durbin ML, Tanaka N (2008) Malignant pleural mesothelioma-targeted CREBBP/EP300 inhibitory protein 1 promoter system for gene therapy and virotherapy. Cancer Res 68(17):7120–7129

    Article  CAS  PubMed  Google Scholar 

  46. Zhang C, Li K, Wei L, Li Z, Yu P, Teng L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60(11):1249–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miura TA, Cook JL, Potter TA, Ryan S, Routes JM (2007) The interaction of adenovirus E1A with p300 family members modulates cellular gene expression to reduce tumorigenicity. J Cell Biochem 100(4):929–940

    Article  CAS  PubMed  Google Scholar 

  48. Kawajiri K, Kobayashi Y, Ohtake F, Ikuta T, Matsushima Y, Mimura J et al (2009) Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proc Natl Acad Sci U S A 106(32):13481–13486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okino ST, Pookot D, Basak S, Dahiya R (2009) Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention. Cancer Prev Res (Phila) 2(3):251–256

    Article  CAS  Google Scholar 

  50. Ito T, Tsukumo S, Suzuki N, Motohashi H, Yamamoto M, Fujii-Kuriyama Y et al (2004) A constitutively active arylhydrocarbon receptor induces growth inhibition of jurkat T cells through changes in the expression of genes related to apoptosis and cell cycle arrest. J Biol Chem 279(24):25204–25210

    Article  CAS  PubMed  Google Scholar 

  51. Liang Y, Lin SY, Brunicardi FC, Goss J, Li K (2009) DNA damage response pathways in tumor suppression and cancer treatment. World J Surg 33(4):661–666

    Article  PubMed  Google Scholar 

  52. Ouyang G, Yao L, Ruan K, Song G, Mao Y, Bao S (2009) Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol Int

  53. Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486(2):95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. He H, Dai F, Yu L, She X, Zhao Y, Jiang J et al (2002) Identification and characterization of nine novel human small GTPases showing variable expressions in liver cancer tissues. Gene Expr 10(5–6):231–242

    Article  CAS  PubMed  Google Scholar 

  55. Bani MR, Nicoletti MI, Alkharouf NW, Ghilardi C, Petersen D, Erba E et al (2004) Gene expression correlating with response to paclitaxel in ovarian carcinoma xenografts. Mol Cancer Ther 3(2):111–121

    CAS  PubMed  Google Scholar 

  56. Asada K, Miyamoto K, Fukutomi T, Tsuda H, Yagi Y, Wakazono K et al (2003) Reduced expression of GNA11 and silencing of MCT1 in human breast cancers. Oncology 64(4):380–388

    Article  CAS  PubMed  Google Scholar 

  57. Li DQ, Wang L, Fei F, Hou YF, Luo JM, Zeng R et al (2006) Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Proteomics 6(11):3352–3368

    Article  CAS  PubMed  Google Scholar 

  58. van't Veer MB, Brooijmans AM, Langerak AW, Verhaaf B, Goudswaard CS, Graveland WJ et al (2006) The predictive value of lipoprotein lipase for survival in chronic lymphocytic leukemia. Haematologica 91(1):56–63

    PubMed  Google Scholar 

  59. Polunovsky VA, Bitterman PB (2006) The cap-dependent translation apparatus integrates and amplifies cancer pathways. RNA Biol 3(1):10–17

    Article  CAS  PubMed  Google Scholar 

  60. Bitterman PB, Polunovsky VA (2012) Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation. Mol Cancer Ther 11(5):1051–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jacobson BA, Thumma SC, Jay-Dixon J, Patel MR, Dubear Kroening K, Kratzke MG et al (2013) Targeting eukaryotic translation in mesothelioma cells with an eIF4E-specific antisense oligonucleotide. PLoS One 8(11):e81669

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jacobson BA, Alter MD, Kratzke MG, Frizelle SP, Zhang Y, Peterson MS et al (2006) Repression of cap-dependent translation attenuates the transformed phenotype in non-small cell lung cancer both in vitro and in vivo. Cancer Res 66(8):4256–4262

    Article  CAS  PubMed  Google Scholar 

  63. von der Haar T, Gross JD, Wagner G, McCarthy JE (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11(6):503–511

    Article  PubMed  Google Scholar 

  64. Watkins SJ, Norbury CJ (2002) Translation initiation and its deregulation during tumorigenesis. Br J Cancer 86(7):1023–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by a generous grant from the Mesothelioma Applied Research Foundation and is dedicated to the memory of Christopher Stoeckler. The authors are grateful to Dr. Joshua Baller, Research Informatics Scientific and Operations Lead with the Minnesota supercomputing Institute, for his bioinformatics assistance. We thank Michael J. Franklin, MS for editing the manuscript. All authors have read the journal’s authorship agreement and the policy on potential conflicts of interest.

Funding

This work is supported by a generous grant from the Mesothelioma Applied Research Foundation. Grant identification is: “Targeting cap-mediated translation for mesothelioma therapy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Kratzke.

Ethics declarations

Conflict of interest

All authors declare no potential conflicts of interest.

Ethical approval

This article does not contain studies involving human participants or animals.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, A., Jacobson, B.A., Peterson, M.S. et al. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma. Invest New Drugs 36, 217–229 (2018). https://doi.org/10.1007/s10637-017-0535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-017-0535-z

Keywords

Navigation