Skip to main content

Advertisement

Log in

Modulation of P-gp expression by lapatinib

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Chemotherapy drug resistance is a major obstacle in the treatment of cancer. It can result from an increase in levels of cellular drug efflux pumps, such as P-glycoprotein (P-gp). Lapatinib, a growth factor receptor tyrosine kinase inhibitor, is currently in clinical trials for treatment of breast cancer. We examined the impact of co-incubation of chemotherapy drugs in combination with lapatinib in P-gp over-expressing drug resistant cells. Unexpectedly, lapatinib treatment, at clinically relevant concentrations, increased levels of the P-gp drug transporter in a dose- and time-responsive manner. Conversely, exposure to the epidermal growth factor (EGF), an endogenous growth factor receptor ligand, resulted in a decrease in P-gp expression. Despite the lapatinib-induced alteration in P-gp expression, use of accumulation, efflux and toxicity assays demonstrated that the induced alteration in P-gp expression by lapatinib had little direct impact on drug resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hetzel DJ, Wilson TO, Keeney GL, Roche PC, Cha SS, Podratz KC (1992) HER-2/neu expression: a major prognostic factor in endometrial cancer. Gynecol Oncol 47:179–185

    Article  PubMed  CAS  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  3. Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21:3798–3807

    Article  PubMed  CAS  Google Scholar 

  4. Saranath D, Panchal RG, Nair R, Mehta AR, Sanghavi VD, Deo MG (1992) Amplification and overexpression of epidermal growth factor receptor gene in human oropharyngeal cancer. Eur J Cancer B Oral Oncol 28B:139–143

    Article  PubMed  CAS  Google Scholar 

  5. Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL (2002) Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21:6255–6263

    Article  PubMed  CAS  Google Scholar 

  6. Konecny GE, Pegram MD, Venkatesan N, Finn R, Yang G, Rahmeh M, Untch M, Rusnak DW, Spehar G, Mullin RJ, Keith BR, Gilmer TM, Berger M, Podratz KC, Slamon DJ (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639

    Article  PubMed  CAS  Google Scholar 

  7. Rusnak DW, Lackey K, Affleck K, Wood ER, Alligood KJ, Rhodes N, Keith BR, Murray DM, Knight WB, Mullin RJ, Gilmer TM (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94

    PubMed  CAS  Google Scholar 

  8. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Gruszfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  PubMed  CAS  Google Scholar 

  9. Ryan Q, Ibrahim A, Cohen MH, Johnson J, Ko CW, Sridhara R, Justice R, Pazdur R (2008) FDA drug approval summary: lapatinib in combination with capecitabine for previously treated metastatic breast cancer that overexpresses HER-2. Oncologist 13:1114–1119

    Article  PubMed  CAS  Google Scholar 

  10. Clarke R, Leonessa F, Trock B (2005) Multidrug resistance/P-glycoprotein and breast cancer: review and meta-analysis. Semin Oncol 32:S9–15

    Article  PubMed  CAS  Google Scholar 

  11. Roy S, Kenny E, Kennedy S, Larkin A, Ballot J, Perez De Villarreal M, Crown J, O’Driscoll L (2007) MDR1/P-glycoprotein and MRP-1 mRNA and protein expression in non-small cell lung cancer. Anticancer Res 27:1325–1330

    PubMed  CAS  Google Scholar 

  12. Sanchez C, Mendoza P, Contreras HR, Vergara J, McCubrey JA, Huidobro C, Castellon EA (2009) Expression of multidrug resistance proteins in prostate cancer is related with cell sensitivity to chemotherapeutic drugs. Prostate 69:1448–1459

    Article  PubMed  CAS  Google Scholar 

  13. Chen X, Yeung TK, Wang Z (2000) Enhanced drug resistance in cells coexpressing ErbB2 with EGF receptor or ErbB3. Biochem Biophys Res Commun 277:757–763

    Article  PubMed  CAS  Google Scholar 

  14. Hipfner DR, Deeley RG, Cole SP (1999) Structural, mechanistic and clinical aspects of MRP1. Biochim Biophys Acta 1461:359–376

    Article  PubMed  CAS  Google Scholar 

  15. Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285:111–117

    Article  PubMed  CAS  Google Scholar 

  16. Sparreboom A, Danesi R, Ando Y, Chan J, Figg WD (2003) Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Updat 6:71–84

    Article  PubMed  CAS  Google Scholar 

  17. Baumert C, Hilgeroth A (2009) Recent advances in the development of P-gp inhibitors. Anticancer Agents Med Chem 9:415–436

    PubMed  CAS  Google Scholar 

  18. Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M, Takemura M, Yabuuchi H, Soda H, Kohno S (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343

    Article  PubMed  Google Scholar 

  19. Hegedus T, Orfi L, Seprodi A, Varadi A, Sarkadi B, Keri G (2002) Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 1587:318–325

    PubMed  CAS  Google Scholar 

  20. Medina PJ, Goodin S (2008) Lapatinib: a dual inhibitor of human epidermal growth factor receptor tyrosine kinases. Clin Ther 30:1426–1447

    Article  PubMed  CAS  Google Scholar 

  21. Shi Z, Parmar S, Peng XX, Shen T, Robey RW, Bates SE, Fu LW, Shao Y, Chen YM, Zang F, Chen ZS (2009) The epidermal growth factor tyrosine kinase inhibitor AG1478 and erlotinib reverse ABCG2-mediated drug resistance. Oncol Rep 21:483–489

    PubMed  CAS  Google Scholar 

  22. Collins DM, Crown J, O’Donovan N, Devery A, O’Sullivan F, O’Driscoll L, Clynes M, O’Connor R (2009) Tyrosine kinase inhibitors potentiate the cytotoxicity of MDR-substrate anticancer agents independent of growth factor receptor status in lung cancer cell lines. Invest New Drugs

  23. Breen L, Murphy L, Keenan J, Clynes M (2008) Development of taxane resistance in a panel of human lung cancer cell lines. Toxicol In Vitro 22:1234–1241

    Article  PubMed  CAS  Google Scholar 

  24. Clynes M, Redmond A, Moran E, Gilvarry U (1992) Multiple drug-resistance in variant of a human non-small cell lung carcinoma cell line, DLKP-A. Cytotechnology 10:75–89

    Article  PubMed  CAS  Google Scholar 

  25. Law E, Gilvarry U, Lynch V, Gregory B, Grant G, Clynes M (1992) Cytogenetic comparison of two poorly differentiated human lung squamous cell carcinoma lines. Cancer Genet Cytogenet 59:111–118

    Article  PubMed  CAS  Google Scholar 

  26. Martin A, Clynes M (1991) Acid phosphatase: endpoint for in vitro toxicity tests. In Vitro Cell Dev Biol 27A:183–184

    Article  PubMed  CAS  Google Scholar 

  27. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  PubMed  CAS  Google Scholar 

  28. Roche S, McMahon G, Clynes M, O’Connor R (2009) Development of a high-performance liquid chromatographic-mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. J Chromatogr B Analyt Technol Biomed Life Sci 877:3982–3990

    Article  PubMed  CAS  Google Scholar 

  29. Wall R, McMahon G, Crown J, Clynes M, O’Connor R (2007) Rapid and sensitive liquid chromatography-tandem mass spectrometry for the quantitation of epirubicin and identification of metabolites in biological samples. Talanta 72:145–154

    Article  PubMed  CAS  Google Scholar 

  30. Polli JW, Humphreys JE, Harmon KA, Castellino S, O’Mara MJ, Olson KL, John-Williams LS, Koch KM, Serabjit-Singh CJ (2008) The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab Dispos 36:695–701

    Article  PubMed  CAS  Google Scholar 

  31. Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318

    Article  PubMed  CAS  Google Scholar 

  32. Dai CL, Tiwari AK, Wu CP, Su XD, Wang SR, Liu DG, Ashby CR Jr, Huang Y, Robey RW, Liang YJ, Chen LM, Shi CJ, Ambudkar SV, Chen ZS, Fu LW (2008) Lapatinib (Tykerb, GW572016) reverses multidrug resistance in cancer cells by inhibiting the activity of ATP-binding cassette subfamily B member 1 and G member 2. Cancer Res 68:7905–7914

    Article  PubMed  CAS  Google Scholar 

  33. Yang CH, Huang CJ, Yang CS, Chu YC, Cheng AL, Whang-Peng J, Yang PC (2005) Gefitinib reverses chemotherapy resistance in gefitinib-insensitive multidrug resistant cancer cells expressing ATP-binding cassette family protein. Cancer Res 65:6943–6949

    Article  PubMed  CAS  Google Scholar 

  34. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, Ambudkar SV, Chen ZS (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:11012–11020

    Article  PubMed  CAS  Google Scholar 

  35. Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby CR Jr, Chen X, Chen ZS (2009) Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 78:153–161

    Article  PubMed  CAS  Google Scholar 

  36. Coley HM, Shotton CF, Ajose-Adeogun A, Modjtahedi H, Thomas H (2006) Receptor tyrosine kinase (RTK) inhibition is effective in chemosensitising EGFR-expressing drug resistant human ovarian cancer cell lines when used in combination with cytotoxic agents. Biochem Pharmacol 72:941–948

    Article  PubMed  CAS  Google Scholar 

  37. Schuetz EG, Beck WT, Schuetz JD (1996) Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol 49:311–318

    PubMed  CAS  Google Scholar 

  38. Herzog CE, Tsokos M, Bates SE, Fojo AT (1993) Increased mdr-1/P-glycoprotein expression after treatment of human colon carcinoma cells with P-glycoprotein antagonists. J Biol Chem 268:2946–2952

    PubMed  CAS  Google Scholar 

  39. Arora A, Seth K, Kalra N, Shukla Y (2005) Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol. Toxicol Appl Pharmacol 202:237–243

    Article  PubMed  CAS  Google Scholar 

  40. Zrieki A, Farinotti R, Buyse M (2008) Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal Caco-2 cell line. Pharm Res 25:1991–2001

    Article  PubMed  CAS  Google Scholar 

  41. Zatelli MC, Luchin A, Tagliati F, Leoni S, Piccin D, Bondanelli M, Rossi R, degli Uberti EC (2007) Cyclooxygenase-2 inhibitors prevent the development of chemoresistance phenotype in a breast cancer cell line by inhibiting glycoprotein p-170 expression. Endocr Relat Cancer 14:1029–1038

    Article  PubMed  CAS  Google Scholar 

  42. Katayama K, Yoshioka S, Tsukahara S, Mitsuhashi J, Sugimoto Y (2007) Inhibition of the mitogen-activated protein kinase pathway results in the down-regulation of P-glycoprotein. Mol Cancer Ther 6:2092–2102

    Article  PubMed  CAS  Google Scholar 

  43. Wartenberg M, Ling FC, Schallenberg M, Baumer AT, Petrat K, Hescheler J, Sauer H (2001) Down-regulation of intrinsic P-glycoprotein expression in multicellular prostate tumor spheroids by reactive oxygen species. J Biol Chem 276:17420–17428

    Article  PubMed  CAS  Google Scholar 

  44. Yang JM, Sullivan GF, Hait WN (1997) Regulation of the function of P-glycoprotein by epidermal growth factor through phospholipase C. Biochem Pharmacol 53:1597–1604

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Ireland’s Higher Educational Authority Program for Research in Third Level Institutions (PRTLI) Cycle 4 and the Science Foundation Ireland Strategic Research Cluster award to Molecular Therapeutics for Cancer Ireland (award 08/SRC/B1410)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Breen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, G., Breen, L., Collins, D.M. et al. Modulation of P-gp expression by lapatinib. Invest New Drugs 29, 1284–1293 (2011). https://doi.org/10.1007/s10637-010-9482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-010-9482-7

Keywords

Navigation