Skip to main content
Log in

OPA Interacting Protein 5 Antisense RNA 1 Expedites Cell Migration and Invasion Through FOXM1/ Wnt/β-Catenin Pathway in Pancreatic Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Pancreatic cancer (PC) is a digestive tract malignancy with poor prognosis. Long noncoding RNA (lncRNA) OPA interacting protein 5 antisense RNA 1 (OIP5-AS1) was regarded to be correlated with human malignancy, working as tumor suppressor or promoter on the basis of tumor types. However, the function of OIP5-AS1 in PC remained unclear.

Aims

The study focused on the function and regulatory mechanism of OIP5-AS1 in PC.

Methods

OIP5-AS1 expression was assessed by the quantitative reverse transcription PCR (RT-qPCR) in tumor tissues and PC cell lines. 5-ethynyl-2′-deoxyuridine (EdU) incorporation and cell counting kit-8 (CCK-8) assays were applied to detect cell proliferation ability. Through wound healing and transwell assays, cell migration and invasion capacities were estimated. Flow cytometry analysis was performed to examine apoptosis capability of PC cells.

Results

OIP5-AS1 downregulating inhibited cell proliferation, migration, and invasion capacities, while promoting cell apoptosis rates. As a competing endogenous RNA (ceRNA), OIP5-AS1 competed with Forkhead Box M1 (FOXM1) for the binding sites on microRNA-320b (miR-320b). OIP5-AS1 was able to upregulate FOXM1 expression via silencing miR-320b. Furthermore, FOXM1 served as an activator of Wnt/β-catenin pathway and mediated the effect of OIP5-AS1 on Wnt/β-catenin pathway.

Conclusion

OIP5-AS1 expedites the proliferative, migrated, and invasive capability of PC cells, while repressing cell apoptosis through regulating miRNA-320b/FOXM1 axis and FOXM1/Wnt/β-catenin pathway in PC. OIP5-AS1 regulation on FOXM1/Wnt/β-catenin pathway may offer novel efficient markers for PC treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morrison AH, Byrne KT, Vonderheide RH. Immunotherapy and prevention of pancreatic cancer. Trends Cancer. 2018;4:418–428

    Article  CAS  Google Scholar 

  2. Rhim AD, Mirek ET, Aiello NM et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–361

    Article  CAS  Google Scholar 

  3. Vincent A, Herman J, Schulick R, Hruban RH, Goggins M. Pancreatic cancer. Lancet (London, England). 2011;378:607–620

    Article  Google Scholar 

  4. Siegel RL, Miller KD, Jemal A. Cancer statistics 2017 CA. Cancer J Clin. 2017;67:7–30

    Article  Google Scholar 

  5. Ren B, Cui M, Yang G et al. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer. 2018;17:108

    Article  Google Scholar 

  6. Fogel EL, Shahda S, Sandrasegaran K et al. A multidisciplinary approach to pancreas cancer in 2016: a review. Am J Gastroenterol. 2017;112:537–554

    Article  Google Scholar 

  7. Coveler AL, Herman JM, Simeone DM, Chiorean EG. Localized pancreatic cancer: multidisciplinary management. Am Soc Clin Oncol Edu Book Am Soc Clin Oncol Ann Meet. 2016;35:e217-226

    Article  Google Scholar 

  8. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155–159

    Article  CAS  Google Scholar 

  9. Lin C, Yang L. Long Noncoding RNA in cancer: wiring signaling circuitry. Trends Cell Biol. 2018;28:287–301

    Article  CAS  Google Scholar 

  10. Iyer MK, Niknafs YS, Malik R et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47:199–208

    Article  CAS  Google Scholar 

  11. Kim J, Abdelmohsen K, Yang X et al. LncRNA OIP5-AS1/cyrano sponges RNA-binding protein HuR. Nucl Acids Res. 2016;44:2378–2392

    Article  CAS  Google Scholar 

  12. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011;147:1537–1550

    Article  CAS  Google Scholar 

  13. Smith KN, Starmer J, Miller SC, Sethupathy P, Magnuson T. Long noncoding RNA moderates microRNA activity to maintain self-renewal in embryonic stem cells. Stem Cell Rep. 2017;9:108–121

    Article  CAS  Google Scholar 

  14. Yang N, Chen J, Zhang H et al. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis. 2017;8:e2975

    Article  CAS  Google Scholar 

  15. Deng J, Deng H, Liu C, Liang Y, Wang S. Long non-coding RNA OIP5-AS1 functions as an oncogene in lung adenocarcinoma through targeting miR-448/Bcl-2. Biomed Pharmacother. 2018;98:102–110

    Article  CAS  Google Scholar 

  16. Chang L, Guo R, Yuan Z, Shi H, Zhang D. LncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;49:1289–1303

    Article  CAS  Google Scholar 

  17. Zhang X, Wu N, Wang J, Li Z. LncRNA MEG3 inhibits cell proliferation and induces apoptosis in laryngeal cancer via miR-23a/APAF-1 axis. J Cell Mol Med. 2019.

  18. Ma X, Qi S, Duan Z, et al. . Long non-coding RNA LOC554202 modulates chordoma cell proliferation and invasion by recruiting EZH2 and regulating miR-31 expression. Cell Prolif. 2017.

  19. Razek A, Elfar E, Abubacker S. Interobserver agreement of computed tomography reporting standards for chronic pancreatitis. Abdom Radiol N Y. 2019;44:2459–2465

    Article  Google Scholar 

  20. Abdel Razek AAK, El-Serougy LG, Saleh GA, Abd El-Wahab R, Shabana W. Interobserver agreement of magnetic resonance imaging of liver imaging reporting and data system version 2018. J Comput Assist Tomogr. 2020;44:118–123

    Article  Google Scholar 

  21. Abdel Razek AAK, El-Serougy LG, Saleh GA, Shabana W, Abd El-Wahab R. Liver imaging reporting and data system version 2018: what radiologists need to know. J Comput Assist Tomogr. 2020;44:168–177

    Article  Google Scholar 

  22. Nandi D, Cheema PS, Jaiswal N, Nag A. FoxM1: Repurposing an oncogene as a biomarker. Semin Cancer Biol. 2018;52:74–84

    Article  CAS  Google Scholar 

  23. Huang C, Du J, Xie K. FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim et Biophys Acta. 2014;1845:104–116

    CAS  Google Scholar 

  24. Cui J, Shi M, Xie D et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res Offic J Am Assoc Cancer Res. 2014;20:2595–2606

    Article  CAS  Google Scholar 

  25. Huynh DL, Zhang JJ, Chandimali N et al. SALL4 suppresses reactive oxygen species in pancreatic ductal adenocarcinoma phenotype via FoxM1/Prx III axis. Biochem Biophys Res Commun. 2018;503:2248–2254

    Article  CAS  Google Scholar 

  26. Li XY, Wu HY, Mao XF, Jiang LX, Wang YX. USP5 promotes tumorigenesis and progression of pancreatic cancer by stabilizing FoxM1 protein. Biochem Biophys Res Commun. 2017;492:48–54

    Article  CAS  Google Scholar 

  27. Chen Y, Li Y, Xue J et al. Wnt-induced deubiquitination FoxM1 ensures nucleus β-catenin transactivation. EMBO J. 2016;35:668–684

    Article  CAS  Google Scholar 

  28. Pratheeshkumar P, Divya SP, Parvathareddy SK et al. FoxM1 and β-catenin predicts aggressiveness in Middle Eastern ovarian cancer and their co-targeting impairs the growth of ovarian cancer cells. Oncotarget. 2018;9:3590–3604

    Article  Google Scholar 

  29. Kelleher FC, O’Sullivan H. FOXM1 in sarcoma: role in cell cycle, pluripotency genes and stem cell pathways. Oncotarget. 2016;7:42792–42804

    Article  Google Scholar 

  30. Batistela MS, Josviak ND, Sulzbach CD, de Souza RL. An overview of circulating cell-free microRNAs as putative biomarkers in Alzheimer’s and Parkinson’s Diseases. Int J Neurosci. 2017;127:547–558

    Article  CAS  Google Scholar 

  31. Hsu YC, Chang PJ, Ho C et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/beta-catenin signaling. Sci Rep. 2016;6:30575

    Article  CAS  Google Scholar 

  32. Keller A, Ludwig N, Fehlmann T, et al. Low miR-150–5p and miR-320b expression predicts reduced survival of COPD patients. Cells. 2019;8.

  33. Lv QL, Du H, Liu YL et al. Low expression of microRNA-320b correlates with tumorigenesis and unfavorable prognosis in glioma. Oncol Rep. 2017;38:959–966

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We appreciate all our experimenters.

Funding

This study was funded by National Science Foundation of China (No.81301860, 81402443, 81600482, and 81502633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyi Qin.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Zhang, H., Wang, M. et al. OPA Interacting Protein 5 Antisense RNA 1 Expedites Cell Migration and Invasion Through FOXM1/ Wnt/β-Catenin Pathway in Pancreatic Cancer. Dig Dis Sci 67, 915–924 (2022). https://doi.org/10.1007/s10620-021-06919-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06919-1

Keywords

Navigation