Skip to main content

Advertisement

Log in

Diet-Induced Nonalcoholic Fatty Liver Disease Is Associated with Sarcopenia and Decreased Serum Insulin-Like Growth Factor-1

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Decreased muscle mass or sarcopenia has been associated with nonalcoholic fatty liver disease (NAFLD). However, the functional consequences of this association and its pathogenesis remain ill-defined.

Aims

To evaluate muscle mass and function in a diet-induced NAFLD mouse model and explore its association with changes in serum insulin-like growth factor-1 (IGF-1).

Methods

Weight gain, visceral fat, serum biochemical parameters, liver histology, and hepatic triglyceride content (HTC) were assessed in C57/Bl6 mice fed a westernized diet during 16 weeks. In addition, we determined muscle fiber size and strength of limb skeletal muscle, myosin heavy chain (MHC) protein levels, and IGF-1 serum levels.

Results

Westernized diet feeding was associated with weight gain, increased visceral fat mass (epididymal pad weight: 0.76 g ± 0.13 vs. 0.33 ± 0.27 g; p = 0.0023), hepatic steatosis (HTC: 118.2 ± 6.88 mg/g liver vs. 43.26 ± 5.63 mg/g<, p < 0.05), and necroinflammation (histological scores: 1.29 ± 0.42 vs. 4.00 ± 0.53<, p < 0.05). Also, mice fed the experimental diet had an increased proportion of low-diameter muscle fibers (0–30 μm) and a decreased proportion of high-diameter muscle fibers (60–90 μm), which correlated with decreased MHC protein levels, consistent with significant muscle atrophy. Functional studies showed that mice fed a westernized diet had reduced muscle strength and lower serum levels of IGF-1 (284.2 ± 20.04 pg/ml) compared with chow-fed mice (366.0 ± 12.42 pg/ml, p < 0.05).

Conclusion

Experimental NAFLD is associated with sarcopenia, decreased muscle strength, and reduced IGF-1 serum levels. IGF-1 reduction may be involved in pathogenesis of NAFLD-associated sarcopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

IGF-1:

Insulin-like growth factor 1

HTC:

Hepatic triglyceride content

MHC:

Myosin heavy chain

NASH:

Nonalcoholic steatohepatitis

KNHANES:

Korea National Health and Nutrition Examination Survey

ALIOS:

American lifestyle-induced obesity syndrome

NAS:

NAFLD activity score system

TA:

Tibialis anterior

Lo:

Optimum muscle length

Po:

Maximum isometric tetanic force

CSA:

Cross-sectional area

WGA:

Wheat germ agglutinin

ALT:

Alanine aminotransferase

IL1β:

Interleukin-1 beta

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IL-10:

Interleukin-10

IL-12:

Interleukin-12

NAS:

NAFLD activity score

References

  1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global Epidemiology of non-alcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence and outcomes. Hepatology. 2016;64:73–84.

    Article  PubMed  Google Scholar 

  2. Satapathy SK, Sanyal AJ. Epidemiology and natural history of nonalcoholic fatty liver disease. Semin Liver Dis. 2015;35:221–235.

    Article  PubMed  Google Scholar 

  3. Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology. 2011;141:1249–1253.

    Article  PubMed  Google Scholar 

  4. Hong HC, Hwang SY, Choi HY, et al. Relationship between sarcopenia and nonalcoholic fatty liver disease: the Korean Sarcopenic Obesity Study. Hepatology. 2014;59:1772–1778.

    Article  CAS  PubMed  Google Scholar 

  5. Issa D, Alkhouri N, Tsien C, et al. Presence of sarcopenia (muscle wasting) in patients with nonalcoholic steatohepatitis. Hepatology. 2014;60:428–429.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee YH, Kim SU, Song K, et al. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008–2011). Hepatology. 2016;63:776–786.

    Article  CAS  PubMed  Google Scholar 

  7. Merli M, Dasarathy S. Sarcopenia in non-alcoholic fatty liver disease: targeting the real culprit? J Hepatol. 2015;63:309–311.

    Article  PubMed  Google Scholar 

  8. Carnagarin R, Dharmarajan AM, Dass CR. Molecular aspects of glucose homeostasis in skeletal muscle—a focus on the molecular mechanisms of insulin resistance. Mol Cell Endocrinol. 2015;417:52–62.

    Article  CAS  PubMed  Google Scholar 

  9. Dongiovanni P, Rametta R, Meroni M, Valenti L. The role of insulin resistance in nonalcoholic steatohepatitis and liver disease development—a potential therapeutic target? Expert Rev Gastroenterol Hepatol. 2016;10:229–242.

    Article  CAS  PubMed  Google Scholar 

  10. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. Plos One. 2010;5:e10805.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Poggiogalle E, Lubrano C, Gnessi L, Mariani S, Lenzi A, Donini LM. Fatty liver index associates with relative sarcopenia and GH/IGF-1 status in obese subjects. PloS One. 2016;11:e0145811.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol. 2008;295:G987–G995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ibanez P, Solis N, Pizarro M, et al. Effect of losartan on early liver fibrosis development in a rat model of nonalcoholic steatohepatitis. J Gastroenterol Hepatol. 2007;22:846–851.

    Article  CAS  PubMed  Google Scholar 

  14. Morales MG, Olguin H, Di Capua G, Brandan E, Simon F, Cabello-Verrugio C. Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism. Clin Sci. 2015;129:461–476.

    Article  CAS  PubMed  Google Scholar 

  15. Morales MG, Abrigo J, Acuna MJ, et al. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy via the Mas receptor. Dis Models Mech. 2016;9:441–449.

    Article  Google Scholar 

  16. Gregorevic P, Plant DR, Leeding KS, Bach LA, Lynch GS. Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin-like growth factor-I administration. Am J Pathol. 2002;161:2263–2272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barton ER, Morris L, Kawana M, Bish LT, Toursel T. Systemic administration of l-arginine benefits mdx skeletal muscle function. Muscle Nerve. 2005;32:751–760.

    Article  CAS  PubMed  Google Scholar 

  18. Bogdanovich S, McNally EM, Khurana TS. Myostatin blockade improves function but not histopathology in a murine model of limb-girdle muscular dystrophy 2C. Muscle Nerve. 2008;37:308–316.

    Article  CAS  PubMed  Google Scholar 

  19. Morales MG, Cabello-Verrugio C, Santander C, Cabrera D, Goldschmeding R, Brandan E. CTGF/CCN-2 over-expression can directly induce features of skeletal muscle dystrophy. J Pathol. 2011;225:490–501.

    Article  CAS  PubMed  Google Scholar 

  20. Morales MG, Gutierrez J, Cabello-Verrugio C, et al. Reducing CTGF/CCN2 slows down mdx muscle dystrophy and improves cell therapy. Human Mol Genet. 2013;22:4938–4951.

    Article  CAS  Google Scholar 

  21. Briguet A, Courdier-Fruh I, Foster M, Meier T, Magyar JP. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromusc Disord NMD. 2004;14:675–682.

    Article  PubMed  Google Scholar 

  22. Carr TP, Andresen CJ, Rudel LL. Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin Biochem. 1993;26:39–42.

    Article  CAS  PubMed  Google Scholar 

  23. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321.

    Article  PubMed  Google Scholar 

  24. Morales MG, Abrigo J, Acuna MJ, et al. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor. Mas Dis Models Mech. 2016;9:441–449.

    Article  Google Scholar 

  25. Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016;32:159–165.

    CAS  PubMed  Google Scholar 

  26. Sakuma K, Yamaguchi A. Sarcopenic obesity and endocrinal adaptation with age. Int J Endocrinol. 2013;2013:204164.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cuthbertson DJ, Bell JA, Ng SY, Kemp GJ, Kivimaki M, Hamer M. Dynapenic obesity and the risk of incident Type 2 diabetes: the English Longitudinal Study of Ageing. Diabet Med. 2015;33:1052–1059.

    Article  PubMed  Google Scholar 

  28. Karelis AD, Tousignant B, Nantel J, et al. Association of insulin sensitivity and muscle strength in overweight and obese sedentary postmenopausal women. Appl Physiol Nutr Metab. 2007;32:297–301.

    Article  CAS  PubMed  Google Scholar 

  29. Camporez JP, Petersen MC, Abudukadier A, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci USA. 2016;113:2212–2217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dasarathy S. Is the adiponectin-AMPK-mitochondrial axis involved in progression of nonalcoholic fatty liver disease? Hepatology. 2014;60:22–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fusco A, Miele L, D’Uonnolo A, et al. Nonalcoholic fatty liver disease is associated with increased GHBP and reduced GH/IGF-I levels. Clin Endocrinol. 2012;77:531–536.

    Article  CAS  Google Scholar 

  32. Mallea-Gil MS, Ballarino MC, Spiraquis A, et al. IGF-1 levels in different stages of liver steatosis and its association with metabolic syndrome. Acta Gastroenterol Latinoam. 2012;42:20–26.

    PubMed  Google Scholar 

  33. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154:557–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119:526-e9.

    Article  Google Scholar 

  35. Visser M, Pahor M, Taaffe DR, et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol Ser A Biol Sci Med Sci. 2002;57:M326–M332.

    Article  Google Scholar 

  36. Dasarathy S. Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol. 2016;32:159–165.

    CAS  PubMed  Google Scholar 

  37. Wree A, Schlattjan M, Bechmann LP, et al. Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients. Metabolism. 2014;63:1542–1552.

    Article  CAS  PubMed  Google Scholar 

  38. Gill MS, Toogood AA, O’Neill PA, et al. Relationship between growth hormone (GH) status, serum leptin and body composition in healthy and GH deficient elderly subjects. Clin Endocrinol. 1997;47:161–167.

    Article  CAS  Google Scholar 

  39. Morioka T, Mori K, Motoyama K, Emoto M. Ectopic fat accumulation and glucose homeostasis: role of leptin in glucose and lipid metabolism and mass maintenance in skeletal muscle. In: Inaba M, ed. Musculoskeletal Disease Associated with Diabetes Mellitus. New York: Springer; 2016:201–215.

    Chapter  Google Scholar 

  40. Casanueva FF, Dieguez C. Interaction between body composition, leptin and growth hormone status. Bailliere’s Clin Endocrinol Metab. 1998;12:297–314.

    Article  CAS  Google Scholar 

  41. Dieguez C, Carro E, Seoane LM, et al. Regulation of somatotroph cell function by the adipose tissue. Int J Obes Relat Metab Disord. 2000;24:S100–S103.

    Article  CAS  PubMed  Google Scholar 

  42. Antonione R, Caliandro E, Zorat F, Guarnieri G, Heer M, Biolo G. Whey protein ingestion enhances postprandial anabolism during short-term bed rest in young men. J Nutr. 2008;138:2212–2216.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the Fondo Nacional de Desarrollo Cientıfico y Tecnologico (FONDECYT 1150327 to M.A., 1161646 to C.C.V., 1150311 to F.B. and PD3140396 to D.C.) and the Comision Nacional de Investigacion Cientıfica y Tecnologica (Grant CONICYT PIA/Basal PFB12, Basal Centre for Excellence in Science and Technology to M.A.) both from the Government of Chile. Association-Francaise Contre Les Myopathies AFM 16670 (C.C.V.), Millennium Institute on Immunology and Immunotherapy, P09-016-F (C.C.V.), UNAB DI-741-15/N (C.C.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Arrese.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Daniel Cabrera and Alex Ruiz have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Serum inflammatory cytokines profile in the American Lifestyle-Induced Obesity Syndrome [ALIOS]-diet mouse model of NAFLD. Serum was isolated from 16-weeks ALIOS diet-fed mice to evaluate the levels of IL-12, IL-10, IL-6, IL-1b, and IL-8 through a cytometric bead array (CBA) (JPEG 480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, D., Ruiz, A., Cabello-Verrugio, C. et al. Diet-Induced Nonalcoholic Fatty Liver Disease Is Associated with Sarcopenia and Decreased Serum Insulin-Like Growth Factor-1. Dig Dis Sci 61, 3190–3198 (2016). https://doi.org/10.1007/s10620-016-4285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4285-0

Keywords

Navigation