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Abstract Modeling reactive transport in porous media, using a lobahaical equilibrium assumption, leads to

a system of advection-diffusion PDE’s coupled with alg@besuations. When solving this coupled system, the
algebraic equations have to be solved at each grid pointdoln ehemical species and at each time step. This
leads to a coupled non-linear system. In this paper a glaiatisn approach that enables to keep the software
codes for transport and chemistry distinct is proposed.ithod applies the Newton-Krylov framework to the
formulation for reactive transport used in operator dplitt The method is formulated in terms of total mobile
and total fixed concentrations and uses the chemical sodvartdack box, as it only requires that on be able to
solve chemical equilibrium problems (and compute denessti, without having to know the solution method. An
additional advantage of the Newton-Krylov method is thatihcobian is only needed as an operator in a Jacobian
matrix times vector product. The proposed method is testeati® MoMasS reactive transport benchmark.

Keywords Geochemistry transport in porous mediaNewton-Krylov methods advection—diffusion-reaction
equations
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1 Introduction

The simulation of multi-species reacting systems in poroeslia is of importance in several different fields: for
computing the near field in nuclear waste simulations, intteatment of bio-remediation, in CO2 sequestration
simulations and in the evaluation of underground waterityual

This work deals with numerical methods for solving coupl@hsport and chemistry problems. The transport
of solutes in porous media is described by partial difféedeiguations of advection—diffusion type, wheres multi-
species chemistry involves the solution of ordinary déferal equations (if the reactions are kinetic) or nonlmea
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algebraic equations (if local equilibrium is assumed).eAftliscretization, one is led to a system of nonlinear
equations, coupled the unknowns for all chemical speciaB gtid points.

After the influential paper by Yeh and Tripat|ﬂ47], operaplitting methods, where transport and chemistry
are solved for separately at each time step (possibly iiberad convergence), became the methods of choice.
Some representative papers where operator splitting metre used aré _[39], [38]) [4]. [21], [29], [41]. Operator
splitting methods are easy to implement, and the splittingre can be controlled by carefully restricting the time
step. On the other hand, the time-step restriction can bed¢hair main drawback, as it can be difficult to get the
fixed point iteration to converge for more difficult problems

More recently, global methods have become popular, duectinttrease in computing power now available.
In this approach, the full non-linear system is solved in steg, usually by some form of Newton’s method. Most
papers use the Direct Substitution Approach (s@ [Eﬂ,){]/uﬂ\ere onesubstitutes the chemical equations in
the transport equations. On the other hand, the problemIsarba put in the form of a Differential Algebraic
Equations (DAE), enabling the use of powerful software @Q&). Finally, the chemical equations can be elim-
inated locally, and a system involving transport equatievith a source term coming from the reactions has to
be solved. This approach is taken |E|[, 26], where additlgra reduction method leads to a smaller system.
Most of the papers quoted above employ a Newton method femgpthe nonlinear system at each time step,
with the difficulty that the Jacobian matrix has to be comgugtored and factored. This can become problematic
for large problems, and Hammond et [17] have used thebiatd-ree Newton—Krylov method, where the
Newton correction is solved for by an iterative method. Taeobian is only needed through the computation of a
directional derivative. The method keeps the fast convergef Newton’s method, while only requiring Jacobian
matrix—vector products, and these can be approximated iy differences.

The method presented in this paper is a global method wherehamical equations are eliminated locally,
leading to a nonlinear system where the transport and clrrsisbsystems remain separated. Thus the residual
can be evaluated by calling separately written transpattcdmemistry modules. The system is then solved by a
Newton-Krylov method, and it will be shown how the Jacobiaatmn—vector product can also be computed by the
same module. Thus the main contribution of this paper is dwshat a global method can be implemented while
still keeping transport and chemistry modules separatbis froperty will be referred to as using “black—box
solvers”. As the chemical equilibrium equations are notssitited in the transport equations, the transport and
chemistry parts of the nonlinear residual are easily idiedti and can each be computed by calling on standard
solution modules.

An outline of the paper is as follows. In sectigh 2 the chos@dehis explained, and the methods used for
solving the (non-reactive) transport part, and the cheaigailibrium system are detailed. Section]2.3 shows how
we obtain the coupled model. Couple formulations and cagmigorithms are the subject of sectidn 3, beginning
with a review of existing methods, while our approach is préed in section 312. Numerical results, in particular
experience with the MoMaS benchmark, are shown in sektion 4.

2 Reactive transport equations
In this work, the transport of several reacting species ingls phase flow through a porous medium is considered.

The species can react both between themselves and withithiespmatrix. In this section the numerical methods
used to solve the individual subsystems of the coupled problill be described.

2.1 Transport model

The transport of a single species through a porous mediurart@ithQ ¢ RY, with d = 1,2 or 3), with porosity
@, in a known Darcy fieldl, subject to dispersion and molecular diffusion, follows linear advection—dispersion



equation
Jc .
(PE +L(c)=0, inQ (1)

where
L(c)=0-(uc)—0O-(Dc),

is the transport operator, ands a source term. The diffusion—dispersion teri3as given by

D = del +|ul (L E(u) +ae(l —E(u))), Eij(u)= %

whered, is the molecular diffusion coefficient, awod (resp.ay) is the longitudinal (resp. transverse) dispersivity
coefficient.
In this work, we restrict to a one dimensional problem, st tha transport equation over a bounded interval
Q =|0,L[ can be written as
oc 0 Jc
—+—|-D=—+4+u)=qg, O<x<L, O0<t<T 2
“’at+ax< 6x+) g, 0<x<L, 0<t<T, @)
where the porosity and the diffusion—dispersion coefficieDtcan both depend on space. Because the flow is
assumed compressible, the velocitis taken to be a constant.
The initial condition isc(x,0) = ¢o(x) and, in view of the applications, the boundary conditioresabDirichlet

condition (given concentratiorg(0,t) = cq(t) at the left boundaryx(= 0) and zero diffusive flu%i =0 at the
right boundary X = L). More general boundary conditions could easily be accodateal.

2.1.1 Discretization in space

We treat the space and time discretization separately, agllugse different time discretizations for the different
parts of the transport operator.

For space discretization a cell-centered finite volume mehwill be used, see for instan@[m]. The interval
[0,L] is divided intoNg intervals[><i71,xi+%] of lengthhy, wherex% =0, XNg 3 = L. Fori =1,..,Ng, denote byx;
the center and; ;1> the right end of element Finally, denote by, i = 1,..,Ng the approximate solution in cell
i

Equation[(2) is written in the form

oc d¢

o Toax & 3

where the fluxp (x,t) = —Dg—i +uc has been split as the sum of a diffusive flux= —Dg—i and an advective flux

$a=uc.
Equation[(B) is integrated over a cBlf_1 /2, %;1/2[ giving

dci .
(ﬂhid—t'+¢d,i+%+¢aﬁi+%—¢d,i,%—¢a’i,% = hiq;, i=2,...,Ng. (4)
The flux approximations required to close the system areigiedvby finite differences. The diffusive flux needs

a value for the diffusion coefficient, which is taken as thent@nic average (as done in mixed finite element

methods):
Cir1—GCi
¢d,i+% = _Di+% (%) ®)

i+1



with DD
iYi+l
Di+%:Di+7Di+l7 D%:Dl, D’\‘(:}<~>%:DNg and hi+%: 2
For the advective flux, an upwind approximation is used, ab(@ssuming > 0), ¢a‘i+% = UG
These approximations are corrected to take into accouriidhedary conditions, both at= 0 and atx = L.

The semi-discrete system can be summarized by the finitendioreal system

hi +hij1

dc
M— +Lc=0g+g9, (6)
dt
wherec € RN now represents the vector of cell concentratidng, RNeNo is the matrix form of the transport
operatorM € RNeNs s a mass matrix accounting for variable porosity and mest, gic RNo is a give source
term andg € RNs represents the effects of the boundary conditions.

2.1.2 Time discretization

Let denote byAt the time step (taken constant for simplicity) used to digpeghe time intervalO, T] and denote
by c" the (approximate) value af(nAt). The first and most straightforward alternative is to diszesequation[{(5)

by the backward Euler method, see for instari¢e [3]. This ésnitethod that is used in section 3 to keep the
description simple, but is not the recommended method,leads to an overly diffusive scheme.

Better alternatives are obtained by exploiting the stmectf the transport operator, and by using different
time discretizations for the advective and for the diffesparts. Specifically, the diffusive terms should be treated
implicitly, and the advective terms are better handledieitpl.

If this idea is applied directly to equation] (6), the resdtifully discrete scheme is only stable under a CFL
(Courant—Friedrichs—Lewy) conditiamit < max h;. As this may be too severe a restriction (some of our appli-
cations require integration over a very large time intenah alternative is to use an operator splitting scheme, as
proposed by Siegel et aﬂ43] (see alsd @ 31]). In thiskyeplitting is used only within the (linear) transport
step, but recent papers by &a et al. IEBEZ] apply splitting directly to a transportisorption model by solving
(analytically) a nonlinear advection step, followed by aligear diffusion step. This is different from operator
splitting as used in geochemical models, as the chemigtmstare solved for together with the transport terms.

The splitting scheme works by taking several small time stafpadvection, controlled by a CFL condition,
within a large time step of diffusion. The scheme has beewstto be unconditionally stable, and has a good
behavior in advection dominated situations.

More precisely, the time stefit will be used as the diffusion time step, it is divided into Mhé& steps of
advectionAt; such thatAt = MAt; where M >1, the advection time step will be controlled by CRindition.

Equation[B) will be solved over the time stip,t"+1] by first solving the advection equati(q)%—f + %(ue) =0

over M steps of sizé\t; each, and then solving the diffusion equatiqn%% + %(ng—)C() = q starting from the
value at the end of the advection step.

Advection step The interval [t",t"*] is divided intoM intervals [t™™t"™1], m = 0,...M — 1, wheret™? =
t" t"M =t™1 Denotec"™ the approximate concentration c at tit?é" andc™® = c". The advection equation is
discretized in time using the explicit Euler method to obtai

Atc

Cg,m+l _ Cg(tn,m+l)

nm+1 nm nm nm
(o —C~ cC’ —C’ .
(n('iﬂ—u('i"l) =0, i=2...Ny

hi_1/2 m=0,...,M—1 (7)



Diffusion step The diffusion part is discretized by an implicit Euler schegrstarting l‘ror‘rci""'\’I :

Di*% n+1 ) Di*% Di*% n+1 Di*% Nl o M e A
— =AM+ [ @y A A ) ¢ - =AMt = ghigT 4 gihiAt, i=2,...,Ng—1 (8)
hif% hi+% hif% hi+%

As above, 2 equations accounting for the boundary conditionst be added.

2.2 Chemical equations

The chemical model is described in this section. In thisystueé assume a local chemical equilibrium at every
point, which means that the chemical phenomena occur on fastdr scale than transport phenomena. This is a
common modeling assumption for reactive transport in pproedia, at least when the only reactions considered
are aqueous phase and sorption reactions (these are ‘aifficfast” reactions according to Rub34]). This
would not be the case if mineral dissolution was taken intwoant, as these reactions typically need kinetic
models.

Consider a set dfle chemical speciegX;)j—1.... n. linked by N, reactions

Ne
ZV”XJ' S0, i=1,...,N
=1

wherev is the stoichiometric matrix. Following MordE[BZ], we disguish betweercomponent and secondary
species by extracting a full rank matrix fromm Component species are a minimal subset of the speciestzaich t
the other secondary species can be written in terms of themn fnique way). Each secondary species gives rise
to a reaction that expresses how it is formed in terms of tmepoments, and to a mass action law that gives the
value of itsactivity in terms of the component activities. Similarly, each comg gives rise to a conservation
equation, expressing how the given total concentrationuoh  component is distributed among the component
itself and the secondary species.

Additionally, in the context of reactive transport, it iqréred to know how the species are split between
those that are in solution, and those that have been adsorb#te solid matrix (in this paper we do not take
precipitation into account). We thus introduce (with olmaty Ne = Nc + Ns+ Ny + Ny)

— mobile componentsj, j=1,...,Nc,

— fixed components;j, j=1,...,N;,

— mobile secondary specigs, i =1,...,Ny,

— fixed secondary specigs. i =1,...,Ny.
We have identified the name of the species with their conatoirs, and we assume an ideal solution (activities
and concentrations are identified). Mobile secondary sgeaan be expressed as linear combinations of mobile

components while secondary fixed species depend on botherent fixed components. Therefore the mass
action laws are written as

Ne

) Ne . Ns o
xizKXiﬂlchJ, =1 Ny, yi:Kyirllc?” I‘lsf‘”, i=1,....N, )
= 1= 1=

whereKy; andKy; are the equilibrium constants, afid, Aj; andB;j are the entries of the stoichiometric matrices
Se RNexNe A ¢ RNexNy andB € RNs<N,
Mass conservation for each component is expressed in tire for

c+S'x+ATy=T, s+BTy=W, (10)



whereT; is the total concentration of the mobile compongnaindW; is the total concentration of the fixed
componentj (T andW are vectors of siz&l. andNs respectively). In the case of ion exchange, the second mass
conservation equation is simpB’y =W, andW is the Cationic Exchange Capacity of the porous matrix (see
Appelo and Postmﬁ[Z]). As will be seen later, in the contéxionipled transport and chemistily,is given by the
transport model an@ is constant. In a closed chemical systd@imwould be part of the data (total concentration
of the components).

Due to the wildly different orders of magnitude of the cortcations that are commonly encountered, the
chemical problem is reformulated by using as main unknoweddgarithms of the concentrations. This has the
added advantage that concentrations are automaticallfivepsand has become the standard way to solve the
problem ]. An additional advantage has been pointed gpu@dmper et alml]: by taking the logarithms of
the concentrations as unknowns, the Jacobian of the nanlgystem is symmetric, and with a proper choice of
the component species, it can be shown to be diagonally @oiand thus nonsingular. The symmetry can also
be seen on equatioh {|16) below. Let lobe the vector with entries lag, whereu; are the entries of vectar.
Equations[(P) can then be rewritten as a linear system

logx = logKy + Slogc 11
logy = logKy +Alogc+Blogs (1)
The nonlinear system of equatiohs](10) dnd (11) forms whidbeicalled thechemical problem. In the sequel,
it will be assumed that this problem always has a (positieé)ten (c,s), for all feasible values of the dafa
andW. This is true in our simplified settings because the chendgallibrium problem is a consequence of the
minimization of the Gibbs free energy, which can be showret@dnvex in the absence of minerals ( [42]).
To solve the chemical problem, a variant of Newton’s mettsodsied. As is well known, Newton’s method is
not always convergent, unless the initial point is suffidieolose to the solution. However, and this is especially
true in the context of a coupled code where the chemical probkill be solved repeatedly, it is essential to
ensure that the solver “never” fails. We have found thatgisirglobalized version of Newton’s method (using
a line search, cflﬂS]) was effective in making the algaritbonverge from an arbitrary initial guess. In order
to get a smaller system, the secondary concentrations iarm&led, and the system to be solved involves only
lc=logc € RN andls= logs € R™s. Define the functiord : RNetNs s RNetNs py

H (Ic) - (exp(lc)+ST exp(logKy +9c) + AT exp(logKy +Alc+ Bls))

Is) exp(ls) + BT exp(logKy + Alc+BIs), (12)

where the notation exp) for a vectorv means the vector with elements éxp, then equationg (10) and{11) are

equivalent to:
Ic T

This is the nonlinear system that to be solved wandls, givenT andW. The secondary concentrations can then
be computed from equation (11).

When solving the coupled problem, the distribution of thecsps between their mobile form and their fixed
form will be needed. The individual concentrations must lsé solved for, but they are intermediate quantities.
Once the component concentrations have been computedaibddsn the previous paragraph, one can compute
for each species its mobile palt and its fixed park; by

C=c+S'x, F=ATy (14)

Note that, by definition, the relationship= C+ F holds.



In the formulation to be presented below, it will be convanit represent the mapping from the vector of
total concentrations to the vector of fixed concentratidités mapping, denoted BY, is defined by first solving
the chemical problenf_.(13), then computiRdpy (I4). More precisely

Pp: RNCRNe

T g(T) = ATy, (19)

where equatior{13) is first solved farandls, theny is computed by[(11).
It is important to keep in mind that computitg(T) means solving the chemical system (plus some simple
computations), as this will be the most expensive part whatuating the residual of the coupled system (see

eq.[26) in sectioh 3]2).

As this will be useful later on, the computation of the JaaalnfW is outlined here. Assumé(T) itself has
been computed, so that the nonlinear sysfemh (13) has beesdsélirst, the Jacobian matrix &f should also
be computed as part of the solution process. This is almostick needed for solving the chemical problem, if
Newton’s method is used. Differentiating equatibnl (12)iketo:

H’ (:Z) - (diag(egp(lc)) diag(e?(p(ls))) + (S(; QI) (diag(X) dia(g)(y)) (i g) ’ (o

where diagv) is the diagonal matrix with vector along the diagonal. Then, by an application of the implicit
function theorem (see for instan¢el[35]), and by differatiniy equation{11), there comes

W/(T) = AT diagly) (A B) (H’ ('lg))l (g) 17)

It should be stressed that the Jacobiahla§ needed to computed the Jacobiaidinverting it is straightfor-
ward, as this will usually be a small matrix). This may provelpematic in practice for several reasons. First, the
chemical solver may not give access to the Jacobian, eveis iised internally. This is a limitation to the “black-
box” approach. Second, for more realistic chemical mode@uding non-ideal chemistry, and taking minerals
into account, computing the Jacobian may be much more dtffican the fairly simple computation outlined
above. As a last resort, one could compute the Jacobian Iy @lifferences, but it will be argued in sectionl3.2
that, for this particular problem, the analytical compigtais more efficient.

2.3 Coupled transport and chemistry

The starting point for the coupled model is the following seéquations for the total, mobile and fixed concen-
trations of each component

(PF+(PF+L(C1)*O i=1...,Ne )
oW
T_Oa J_17 7NS

These equations can be derived from the individual conservaequations by standard algebraic manipula-
tions, see for instance Yeh and Tripaﬂ[ﬂ]. It is the folation given in the benchmark definition [6], see
also ], ]. The second equation is obvious\Y\svas taken as a constant (at each point in space).
Taking into account the relatiofy = C; + Fj, j = 1,...,N; noted above, the first equation of the system is
equivalent to
T

(pE—Q—L(Cj):O i=1.. N, (19)



whereT; is the total concentratiorC; the total mobile concentration, arkg the total fixed concentration for
component.

From now on,L will denote the discretized transport operator, as defimedquation[{6). Each unknown
concentration depends on both the grid point index, andiee@al species index. We will use a notation inspired
from Matlab. For a concentratiam;, wherei € [1,Ny] represents the spatial index apé [1,Nc] represents the
chemical index, we shall denote by

— u. j the column vector of concentrations of spediex all grid points;
— u;- the row vector of concentrations of all chemical specieid cell ;.

The unknowns will be numbered first by chemical species, biyagrid points. Thus all the unknowns for a single
grid point are numbered contiguously.

The coupled problem is obtained by putting together equdfl@) above with the definition of the chemical
solution operatot, defined in eq[{15) (the subscript T denotes transposition)

oC. oF | N .
M_at +MT+L(CJ)79J J*l,...,Nc
Tij =Cij +Fij, i=1,...,Ng, j=1,...,Ng (20)
F. =T, i=1,...Ng

This system is then discretized in time to obtain the fullscdéte coupled nonlinear system. In this work we restrict
to a simple backward Euler scheme with constant step—si#gnthat other more sophisticated, strategies are
obviously possible (in particular, an adaptive step-sizessential for efficiency). Denoting time indexes by a
superscript, the following system is obtained

crit—cn, Fhl_pn
S

L ] Ny oy L

At M At +L(C:,J ) 9. j=1...,N¢ ”

T =Citt R i=1,...Ngj=1...Ne (21)
(LI i=1,...,Ng

This is the system to be solved at each time step.

3 Formulation and coupling algorithms

The formulation of reactive transport seen above givestaselarge system of nonlinear equations. For complex
problems, its solution will require a large amount of congpuime, which makes it important to choose an
appropriate method. In this section, several formulatemd approaches that have appeared in the literature will
be reviewed.

Thanks to the relationship = C+ F, it is easy to eliminate one of the 3 variables, and this |¢adkfferent
formulations for the coupled problem, depending on whictialdes are kept in the transport equation. We keep
the system continuous in time, as it makes the notation sbigighter, but the same manipulations can obviously
be done at the discrete level too.

According to Saaltink et aI|__[_137], see also Saligr@ [40k @an derive three main formulations from the

system given in({20):
— formulation (TC) wherdT is the principal variableC the transported variable
oT;j



This is the formulation used by Erhel et al. i l[__9_| 11], asitds itself best to a DAE type algorithm. It is not
convenient for our purpose, as the transport equation thefves bothT andC, and is thus not easily used
with an existing transport solver.

— formulation (TT) whereT is the principal variable T transported variable

0T,
Ma—t’+L(T:j)+L(F:j):g:,j (23)
This seems to be the least satisfactory formulation, agémsport operates on the fixed species, and for this
reason it will not be considered further.
— formulation (CC) wher€ is the principal variableC transported variable

oC;; oF;

S tMGHLC) =g, (24)
This is formulation 4 in Saaltink et aﬂS?], and is the foration chosen below. It has been reported that this
formulation is the least suitable for use in an operatott sjgjorithm, becaus€ andF are used at different
time levels (to compute the data for the chemical problenf)elthis formulation is used in a global method
this should not matter as much, as the iterations are rami@ogence, and both values should eventually get
close to their limits.

M

Formulation (CC) will be used in the rest of the paper, beedtisakes the form of a standard transport
operator, with a source term coming from the chemical perstructure is closely related to the system describing
single species transport with sorption, as seen for instarmcfﬁ], or m], with the main differences that the
unknown is a vector of concentration, and mostly that whaypthe role of the sorption isotherm is the implicitly
defined functior¥ introduced in[(1b).

3.1 Review of former approaches

At each time step, the system given byl(21) (one transpowdtequfor each component and one chemical system
for each grid point) forms a large nonlinear system, whozge & the number of components times the number
of grid points. This system has traditionally been solvedtsequential two-steps approach, as reviewed below
(cf. m]). However, this method suffers from several déefedt may severely restrict the step size to ensure
convergence, and if used non-iteratively it is only firstearoh time, which may introduce additional errors (Ei‘. [40).
Due to its quadratic convergence rate, Newton’s method dvbalan ideal candidate for solving the system. On
the other hand, a practical difficulty has to be reckoned :viNtewton’s method requires the solution of a linear
system with the Jacobian matrix at each iteration step.dlisté situations, it will not be possible to store, much
less factor, the Jacobian matrix. As will be seen in se¢fi@htBis difficulty can be overcome by resorting to an
iterative method for solving the linear system.

3.1.1 Sequential approach

The sequential approach consists of separately solvinghmical equations and the transport equations. The
method has been used in numerous papers: see for instafjcarfd7lsol[21],[[29],[[37],[[4] or[[30]<. At each
iteration, a transport equation for each component is sdivet, with a source term given by the (change in) fixed
concentration at the previous iteration. This total mobdacentrations will be added to a total fixed concentration
computed in the previous iteration, to obtain the total usedata for solving a chemical problem at each grid
point. These steps are then iterated until convergence.

In the geochemical literature, this is known as an operatiitting approach (usually called Standard lterative
Approach, or SIA), but it is more properly a block Gauss-8kidethods on the coupled system, as each subsystem
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is solved alternatively. The method is quite appealingt &seasy to implement starting from separate transport
and chemistry codes, and can provide good accuracy if imgaésa carefully, as shown in the references above).
As will be seen below, theses advantages can be retained Mewton—Krylov framework.

The Standard Non-lterative Approach (SNIA) is the case wihuly one iteration of the method is carried
out at each time step. In that case, splitting errors canrbedmportant, and the method is not really suitable for
difficult problems.

The SIA approach does not suffer from splitting errors if thierance is small enough, but it may require a
small time step to obtain convergence in the case of stifflpras. The main drawback of the method is thus that
the size of the time step is used to control convergence, andased on the physical character of the solution.

3.1.2 Direct Substitution Approach

As computing power increased, it was recognized that theatpesplitting methods of the previous sections
could not satisfactorily handle difficult problems, and mtightly coupled method came to more widespread use.

The Direct Substitution Approach method consists in sghfior the individual concentrations of the com-
ponents, that isubstituting equations[(Z0)E(A1) in equationl (1) (this can be done eflpli@s in Hammond et
al. [17], or implicitly, as in Krautle et al[ [25, 26], or Saiak et al. [37]). It is also possible to reformulate the
problem as a differential algebraic system (DAE), and te @ttvantage of the high quality software available for
such problems, as in Erhel et AD[liﬂ[lO] br [8] . A high merhance parallel implementation is described by
Hammond et aIlI;Il?], using a Jacobian—Free Newton—Krylothot(see sectidn 3.2).

The main advantages of this approach are to avoid the eramsed by the separation of operators, and to
allow fast convergence independently of the time step,tbygrincipal drawback is the need to form and to store
the Jacobian matrix especially for a large problem. More@m@metimes it may be difficult to calculate the exact
derivatives for geochemical processes especially whemtation phenomena or kinetic reactions are taken into
account.

The size of the system can be made smaller by means of a realuagithod, cf Krautle et al, [25,26], and [18].
The reduction method makes a change of variables in the chaésystem, so that a set of decoupled transport
equation is first solved, leaving a smaller nonlinear systhat is still solved with Newton’s method.

3.2 A Newton—Krylov based fully coupled method

As was already mentioned in the previous section, Hammoad @] have used a Newton—Krylov method for
solving the system obtained from the DSA approach. Suliisiifthe chemical equations in the transport operator
is the most straightforward way of formulating the coupledijbem, but leads to a system where chemistry and
transport terms are mixed, and makes it virtually imposstbl separate the transport and chemistry modules.
However, this separation is seen as one of the importanhéatyas of the operator splitting approaches.

By coupling the formulation given in sectign P.3 with the Nem~Krylov framework, a strongly coupled
method that can be implemented by keeping transport andistrgrseparate is obtained. Thus, the chemical
equations are not directly substituted in the transporatign, but the function introduced previously if(15)
is used to represent the effect of chemistry. Different fdations could be adopted depending on the choice of
unknowns (refer back to sectibh 3). In this work, both thaltotobile and fixed concentrations, and also the total
concentrations (though they could easily be eliminateecapsen as main unknowns.

Even though this method may be more expensive than the nmetiased on DSA, its main advantage is to
make it possible to treat chemistry as a black—box, evereitNéwton—Krylov context. This may be important, as
chemical simulators are becoming increasingly sophitttta
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Recall (equatior(21)) that the nonlinear system to be sicezach time step is

(M+AtLCH 4 MEN L —BY =0, j=1,...,N

-|—n+1 _ Cn+1 _ Fn+1 =0, (25)

]
Ry (T —0, =1\,

whereb?; = MC!; + At g/ * + MAtF"] is known.

Denoting byG : R3eNg —, R3cNg the function

. N,
c ((M+atL)C,j+MF — b)) .
G(T]-= T-C-F (26)
F

(F:—w(m)")

i€[1,Ng]
cn+l
the nonlinear problem to be solved at each time st&(® = 0, whereZ denotes the vectof T™1 |
En+1

Recall that at each step of the “pure” form of Newton’s metfwdsolvingG(Z) = 0, one should compute the
Jacobian matrid = G'(Z¥), solve the linear system (usually by Gaussian elimination)

JOZ = —G(Z¥) (27)

and then seZ**1 = Zk 1 5Z. In practice, one should use some form of globalization gdoce in order to ensure
convergence from an arbitrary starting point. If a line shas used, the last step should be replaced@'ly: =
dZ +\ZX, where is determined by the line search procedure.

The main drawback of the method for large scale problemsasatye need to form, and then factor, the
Jacobian matrix. For coupled problem such as the one stinithdls paper, there is the additional difficulty of
simply computing the Jacobian: the numerical methods forgport and chemistry are quite different, and it is
even possible that the simulation codes have been writtatifieyent groups.

The Newton—Krylov method (seE[23D24] a@[l?], to whiclr avork is closely related), is a variant of
Newton’s method where the linear system that arises at dapho§ Newton’s method is solved by @erative
method (of Krylov type). The main advantage of this type othmod is that the full Jacobian is not needed, one
just needs to be able to compute the product of the Jacobihrawiector. As this is a directional derivative, this
leads to the Jacobian free methods, where this product i@éipgated by finite differences. However, for some
problems, it may be possible to compute the needed diredtatarivative exactly. As will be seen below, this is
the case for our coupled problem, provided the Jacobianeothiemical problem can be computed. This is both
cheaper and more accurate.

The main contribution of this paper is to show that the fortioh given above lends itself to an implemen-
tation of Newton’s method that allows to keep the two codgasse. This is in keeping with thte philosophy set
forth in the review paper by Keyes and Knaoll [24] that a Newkarylov solver can often be made by wrapping a
classical split-step solver. This is what is being done fesé¢he formulation to which the Newton-Krylov method
is applied is the one used for operator splitting. Additibné will be shown below that the Jacobian may even be
formed in block form, provided the individual codes provitieir Jacobians (this is obviously easier for transport
than for chemistry), and this obviously carries over to theobian—vector product.

At this point, it is appropriate to add a few comments on tlze sif the problems envisioned. The examples
used in this work are small scale, one dimensional, prohl@&imsy can hardly be called large. On the other hand,
we believe they are representative of the problems thabei#éncountered in more realistic applications. For such
problems, in 2 or 3 space dimensions, involving tens or heofelof thousands of grid points and several tens of
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chemical species, the nonlinear system will indeed be \&nel and a method like that of Hammond etlall [17],
or like the method presented in this section will be necgssar

A Krylov subspace method (see for instarlce [23]) is used prayimately solve the linear system in equa-
tion (27). The linear iterates are drawn from the Krylov udre K; = spar{ro,Jro,J%ro,...,31"rg}. In the
GMRES method (se& [B6)), the iterates are defined to minithzeesidua||J6Z; 4 G(Z) ||, overKj. Other meth-
ods, such as Bi-CGSTAﬂhS] or QMﬂlS] could be used as well.

As the linear system is not solved exactly, the convergdmeeary for Newron’s method does not apply directly.
However, the theory has been extended by Dembo éfal. [7Etoldss of Inexact Newton methods, of which the
Newton—Krylov methods are representatives. The main cuesees of this analysis are summarized below.

An important issue in such methods is the stopping critefgotthe inner linear iteration. A stopping criterion
of the form

1982 + G(Z¥)]| < nklIG(ZY)l| (28)

in this context, as the initial iterate is usually 0. The ceodf theforcing termny should strike a balance between
two conflicting goals:

— Keep the (local) convergence of Newton’s methods;
— Avoid over-solving, that is taking too many linear iteraisowhen still far away from the nonlinear solution.

The first goal will tend to require a small value figg, while the second one obviously tends to makdarger.

It has been shown (see theorem 6.1.4in [23]) that proviglets bounded away from 1, the inexact Newton’s
method will converge, and that superlinear convergencaimif n, goes to zero faster thaiG(Z¥)||. Based on
this result, the strategy proposed by KelleylE [23] (aftes thoice inll_1|2]) computagg as

Nk = YIIG(Z)1/1G(Zk-1) |, (29)

wherey € [0, 1] is a parameter (the value suggestem [23]4s0.9). Safeguards are added to this choice in order
to preventny to become too close to 1, or too small. It is also necessarlptmtize the algorithm, and this can be
done using a line search, just as in the “classical” Newtoréshod.

The other main practical advantage of the Newton—Krylovhoés is that they do not require forming the
Jacobian matrix. All that is needed is the ability to compihie product of the Jacobian matrix by an arbitrary
vector, in order to enlarge the Krylov subspace. This mauéxtor product can be interpreted as a directional
derivative. This means that, for complex functioBst may not be necessary to compute the Jacobian, at the
cost of one extra evaluation of the function itself. It tu#, however, that in our case, this trade-off is not
advantageous. Indeed, it is well known that the most expergrt of the evaluation d& is the solution of the
chemical problem at each grid point. On the other hand, itst@svn above that computing the Jacobiampd$
actually cheaper than computingitself (oncey has already been computed), as it only involves the solation
a linear system (see equatiénl(17)), whereas computiitgelf requires the solution of a nonlinear system.

It will now be shown how the method can be implemented, givedules for transport and chemistry.
The firstingredient needed is the computation of the resithat is evaluating the functio@ defined in[(26).
Given a vectoZ = ( ¥ , Z is first split into its three components, and each sub-vastoggarded as blg x Nc

matrix, as in sectioh 213. TheB(Z) is computed by block:

— For the transport block, the transport operator is appliedéch specie€. j, with a source term given by
F.j—F"
ML for i=1,...,N; (F" denotes at the previous time step);
— The second block is the trivial computatidn-C — F;
— The third block is the solution of the chemical problem ategidd point:F.; —W(T;.), fori=1,...,Ng.
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This shows that the first block will only need transport rethtjuantities, whereas the third block will only call
chemistry related ones. Actually, these are the same catipos that would be needed for implementing a oper-
ator splitting method.

As far as the Jacobian matrix—vector product is concernmetiyaing the computation in sectioni2.2, the action

of the Jacobian on a vector= (g‘i) (that is the directional derivative @ in the direction of the vector) can be

computed as
((M +AtL)ve. j + MVF;_’J-) JE[LNG]

Ve
Jivr | = —Vc +Vr —VF : (30)
VF (V|:i_,; *VTi.:(qJ/(TiI))T)ie[l.nx]

Even though it is not used as such in this work, it is valuablexamine the structure of the Jacobian. As
the previous computation shows, the Jacobian also has eahbtack structure. Recall that the unknowns are
numbered by species at each point in space. Then the blodsponding to the action af can be written using
the Kronecker product (see for instance [19]pas (M + AtL) ®1. Then the Jacobian matrix is

A 0 M
J=| -l | -1, (31)
0 —g/(TT) 1|

wherey/(T) = diag(y/(Ty"), ..., W/(T{, ) is the Jacobian of, and for eacti = 1,...,Ng, ¢/(T!) is a smallNe
by N¢ block. The structure of the Jacobian is illustrated on fidflréor the caséNg = 10, N¢ =3.ltisa3x3

"0"0"0 .
%e %t .
" % P .
e %y %y "
*a te ") "
Ne N
¢ Ngf:- o o
. * s
" . .
*, *, *,
", ", ",
s *a *
* *a, .
*a S *e
2 Nc Ng 3 .,
ss;m ",
",
3
,
]
ks )
3 Nc Ng =
Nc Ng 2 Nc Ng 3 NcNg

Fig. 1: The block structure of the Jacobian matrix

block matrix, each bock being of sidg x N.. We can clearly see the different parts of the Jacobianrémsport
part in the upper left corner has 3 diagonals correspondiriget Kronecker product structure (remember thist
tridiagonal), and the chemistry part at the bottom has £@B3®locks.

It would in principle possible to compute and store the Jagomatrix according to equation (31) as a sparse
matrix, and to compute the matrix—vector product using agarpurpose routine. The advantage of the method
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given in equation(30) is that the structure of the Jacoksdully exploited, which leads to a much more econom-
ical computation.

4 Numerical results
4.1 lon exchange

The following example of advective transport in the pregeofcation exchanger is adopted as a first test case
comparison of both approaches. The example is used in therdodation of PHREEQC-ﬂBS] as Example 11.
The one-dimensional simulation problem describes a colexperiment where the chemical composition of
the effluent from a column containing a cation exchangernaukited. Initially, the column contains a sodium-
potassium-nitrate solution in equilibrium with the catiexchanger. The column is then flushed with three pore
volumes of calcium chloride solution, so that an equilibristate with calcium and chloride is reached. Calcium,
potassium, and sodium react to equilibrium with the exckarg all times. The flow and transport parameters
used for this example are presented in Téble 1, and theliaitehinjected concentrations are listed in Table 2. The
Cationic Exchange Capacity for the exchanger.isnimol/I.

Darcy velocity 27810°%m/s Component | Ginit Cinflow
Diffusion coefficient 5.56107° m?/s 3
Length of column 0.08m Ca 0 0‘6103
Mesh size 0.0002 m cl 0 4 12100
Duration of experiment| 1 day K 2.010° 0
Time step 720s Na 1.010°% | 0
Table 1: Physical parameters Table 2: Initial and injected concentrations

The chemical reactions for this example are:

Na™ + X~ = NaX
KT+ X~ = KX
1 ., o 1
Eca? +X _ECaxz

with NaX, KX and CaX are (sorbed) complexes, aiKdndicates exchange site with charge -1

4.1.1 Comparison with Phreeqc

Figure[2 shows elution curves, that is the evolution of theceotration of the various species at the end of
the column, as a function of time. The sorbed potassium adiisoions are successively replaced by calcium.
Because potassium exchanges more strongly than sodiumdfeated by a larger value of log K in the exchange
reaction), sodium is released first, followed by potassigimally when all of concentration has been released, the
concentration of calcium increases to its steady-stateey#the potassium is displaced from the exchanger and the
concentration in solution increases to balance thed@hcentration.

Both the sequential method and the global method describseldtior 3.2 have been applied to the test case
described in sectidn4.1. Both the computational demandstenaccuracy of the solutions will be compared.

As can be seen on figuié 2, the results obtained are closege ttwnputed by PhreeqC. One can still see
differences both in the location and amplitude of the pegdoitassium concnetration, and in the region where the
three curves cross. These results are also comparables® ¢htained by Xu et al:L|46].
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Fig. 2: Elution curves (concentrations at the end of therooluversus time, for the problem of sectfonl4.1. Left:
global method, right: PhreeqC reference.

4.1.2 Performance of the method

The CPU times for the iterative splitting, non iterativeijplg and global approaches are compared on figlire 3.
The CPU time required for each method is plotted versus thebeu of the nodes of the grid. As expected, it can
be seen that the non-iterative method requires much lesstiGfelthan the iterative methods. On the other hand,
the global approach described in the paper requires lessttiam the iterative splitting, at least for the simple
chemical system considered here.

Comparaison of CPU time

1200
-+ Global approach

—e— Splitting appraoch

—4— Iterative Splitting appraoch

1000

800

600|

CPU time (second)

400 o

200 -

10 20 30 40 50 60 70 80
number of nodes

Fig. 3: Computing time for 3 methods applied to the ion excgfeaof section 4]1

For a single time step, the iterative splitting approachuires between 20 and 27 iterations on the average.
The number of fixed point iterations increase with the nundfehe nodes in the grid. On the other hand, the
number of Newton iterations for the Newton—Krylov methoéeiss than 6, independently of the number of nodes.
The number of Krylov iteration for each Newton step, howgedees increase with the number of nodes. We go
back to this issue in subsection 412.1.
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4.2 The 1D “easy” MoMaS Benchmark

The global and the splitting approaches will now be applétthié 1D easy GDR Momas Benchmark, as described
in the introductory paper to this special issbie [6], see #isooriginal description ir[[S]. Let us just recall that
the model is a one-dimensional column, made of 2 differerdianghe part in the middle is less conductive but
more reactive than the surrounding medium. The chemic&sykas 5 components (4 mobile components and a
fixed component), and 7 secondary species. The equilibramstants vary over 50 orders of magnitude, and the
stoichiometric coefficients can be as large as 4, making ithiglgm highly non-linear.

First, results showing the evolution of the component seat various times, and using several spatial and
temporal resolutions are shown on figlirg 4a. The left figuad iBnet = 10, the right one at= 50. As expected,
the concentrations remain almost constant in the middkc(re) region. Meshes with 220, 440, 660 and 880
points have been used, and in each case the time step is @dw6ehtimes the limit fixed by the CFL condition.
For these early times, the dependence on the mesh is nottveng sElution curves (concentrations at the end of

Global approach with NKM Global approach with NKM
15 . . . - -

x1-220|
x2-220|
x3-220|
x4-220|
11| - - x1-a40]
~ - x2-440
— = x3-440|
|| - - xa-a40
- — x1-660|
— — — X2-660)
- - — x3-660|
4 |- - — xa-660|
x1-880|

=10

0.75-

xi concentrations at t:
xi concentrations at t=50

05-

x2-880|
x3-880|
x4-880)|

Space

(a@t=10 (b)t =50

Fig. 4: Concentration of all components at tinhes 10 andt = 50, for various mesh resolutions

the column as functions of time) are shown on figdre 5, first fpsing from 0 to 400 (figure$a), then fogoing
from 4900 to 5300 (figurEBb). The elution curves show thatctireect limiting behavior is reached before the
leaching phase begins.

The output results required in the benchmark definition actuded. Most were obtained with a 220 points
mesh, which may not be sufficient, as will be seen below. Itfeayet been possible to obtain results with a finer
mesh resolution for significantly longer times.

FiguresBh, figurds &b ahdl6c (elution curve for the totalodli®sl concentration of component X3,a nd species
C1) show an oscillations pattern that has been observedhgy gtoups working on the benchmark. These os-
cillations have been convincingly explained by V. Lagn@l] [as being due to the interaction of the very rapid
chemistry and the discrete nature of the grid. They are aatigation artifact, but appear independently of the
method. They can be reduced by using a more refined grid.

Figured7h and Tb show the influence on the mesh, by showingptieentration over a small spatial region,
for time t = 10 . The concentrations are computed with 4 meshes of ifogeassolution. The peaks in the
solution are not resolved satisfactorily for the coarsesmevith 220 points, but 660 (and better 880) points give
the correct location and amplitude. Even if the method as d@uirrently implemented cannot yet be considered
as robust, its ability to locate these solution features weasonably coarse meshes was seen as one of its strong



17

Global approach with NKM Global approach with NKM

14 7
x1 x1
x2 —x2
1.21 x3 6 —x3[]
x4 x4
3 ] 5 st ]
] n
x x
® ®
2 1 P ]
L L
s g
H ] KD ]
Q Q
c c
8 8
= - % 2+ 4
] 1 ]
0 . . . . .
0 50 100 150 200 250 300 350 400 4900 4950 5000 5050 5100 5150 5200 5250 5300
Time Time
(@)t =0tot = 400 (b)t = 4900 tot = 5300

Fig. 5: Concentration of the components X1 and X4 at the erideo€olumn x = 2.1) as a function of time
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Fig. 6: Elution curve (concentrationst 2.1 as as function of time)

points. Unfortunately, this may still not be enough to etiate the oscillations shown on figde 6. This issue is
currently being worked on, part of the difficulty being thatieasing the mesh resolution may not be sufficient. As
the nonlinear problem becomes more difficult, it may be nesgsto increase the maximum number of iterations
allowed to make sure the Newton—Krylov method has converged

4.2.1 Performance of the method

The benchmark was intended to be a difficult test for numerizathods, and this is indeed the case. On the
average, more than 20 Newton iterations are required atteaelstep, and between 15 and 40 conjugate gradient
steps are needed at each nonlinear iterations.

Figure[8 shows a typical time step: the solid curve shows tineutative number of conjugate gradient (alter-
natively, the number of matrix vector products), and thesdepresent the nonlinear iterations.

Statistics for a single time step are gathered in table 3hiwe different mesh resolutions (220, 440 and 660
points). They give the number of non-linear iterations (Nf§f a (typical) time step, and the total number of linear
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Fig. 7: Concentration profiles

iterations (NLI) accummulated over the whole Newton iterat The number of nonlinear iterations depends only
weakly on the mesh resolution, whereas the number if liteeations increases with the mesh resolution.

Mesh 220 Mesh 440 Mesh 660
NNI NLI NNI NLI NNI NLI
25 494 18 551 25 636

Table 3: Statistics on Newton and GNRES iterations, for éme step (NNI= Number of NonLinear Iterations,
NLI= Number of Linear Iterations).

Table[3 shows that the solver spends a large proportion ¢ifties in the linear solver, despite the adaptive
choice of the forcing parameter (equatibnl(29)). Moreother,number of linear iterations for each nonlinear iter-
ation also increases with the mesh resolution. Actuallg, ithexpected, as the solution of the linearized problem
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includes the solution of the transport operator, wich hagléptic-like structure, so that its condition number

grows like the square of the number of grid points. This pgobtould be alleviated by using a suitable precon-
ditioner that would make the number of iterations indepanhdé the mesh resolution (a domain decomposition
preconditioner could be used aslih [1]). As noticed by Haniretral. E’V], designed a matrix-free preconditioner
(so as to be compatible with the Newton-Krylov frameworkpishallenge. Natural choices would exploit the
block structure of the Jacobian, the simpler ones beingdbasélock-Jacobi, or block Gauss-Seidel. Operator-
splitting as a preconditioner has also been proposeEn [MM@se possibilities are currently being explored,
exploiting the block structure of the Jacobian, and theltesuill be reported in a forthcoming papE[44].

5 Conclusions— Perspectives

In this paper, it was shown that a global method for coupliaggport with chemistry based on the Newton-Krylov
technology can be implemented while keeping the transpattchiemical solvers separated. The results shown
are promising: it is possible to solve efficiently geocheahfroblems using the method, although there remains
several issues that need to be addressed.

— The firstis to run test cases on more demanding configuratidmsre the method can be expected to show its
full potential. This includes the other MoMas test caseghaimore complex chemistry model, and also an
implementation of the method in 2 and 3 dimensions.

— It will then certainly be necessary to explore the questibinow to precondition the Jacobian, in order to re-
duce the number of Krylov iterations. An natural avenue igtese the operator splitting methods, as proposed
by ]. A similar study is being carried out for a relatedt bimpler model, see [44].

— The results reported above used a fixed time step, which veaslglinsufficient for the large interval of
integration. To successfully solve difficult problems like benchmark above, it will clearly be necessary to
use adaptive time stepping.

— A more difficult problem will be to take into account precgiibn—dissolution phenomena in the chemical
model. As the models are non-differentiable, this makesitendifficult to employ Newton’s method.

As was apparent from the numerical experiments, the metlsodshows some limitations. The most serious
is its high cost, as each evaluation of the residual involliessolution of a chemical problem at each grid point.

107°r

10

Residuals

10+

0 50 100 150 200 250 300
Iterations

Fig. 8: Iterations
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The fact that the method has two levels of nonlinear itenstimeans that it may not be as robust as other global
methods based on a single level of iterations. Finding a gwedonditioner may not be a limitation, but most
strategies will involve solving more transport problemsjat will also incur a high cost.

Acknowledgments

The first author would like to express her sincere thanks ASITA Consultants, France for providing the nec-
essary Ph.D fellowship to carry out this research in INRI&eBuencourt, France. The second author’'s work was
supported by Groupement MoMaS CNRS-2439. We gratefullynaskedge sponsorship of GDR MoMAS by
ANDRA, BRGM, CEA, EDF and IRSN. Both authors thank the reésréor their detailed comments, which led
to significant improvements in the contents of the paper.

References

1.

10.

11.

12.

13.

14.

15.

16.

Achdou Y, Tallec PL, Nataf F, Vidrascu M (2000) A domain deposition preconditioner for an advection-
diffusion problem. Computer Methods in Applied Mechanicsl &ngineering 184(2-4):145 — 170, DOI
DOI:10.1016/S0045-7825(99)00227-3

. Appelo CAJ, Postma D (2005) Geochemistry, GroundwatérRailution, 2nd edn. CRC Press
. Ascher UM (2008) Numerical Methods for Evolutionary Biféntial Equations. Society for Industrial &

Applied Mathematics

. Carrayrou J, Mosé R, Behra P (2004) Operator-splittimgguures for reactive transport and comparison of

mass balance errors. Journal of Contaminant Hydrology-83¢39—268

. Carrayrou J, Dimier A, Kern M, Knabner P, Leterrier N (2D@DR MoMaS benchmark — reactive transport.

published electronically atttp: //www.gdrmomas.org/ex_qualifications.html

. Carrayrou J, Kern M, Knabner P (2009) Presentation of tbM&®S reactive transport benchmark. Computa-

tional Geosciences This issue

. Dembo RS, Eisenstat SC, Steihaug T (1982) Inexact new&thads. SIAM Journal on Numerical Analysis

19(2):400-408, DOI 10.1137/0719025, URttp://1ink.aip.orqg/link/?SNA/19/400/1

. de Dieuleveult C (2008) Un modéle numérique global etquerant pour le couplage géochimie-transport.

These de doctorat, Université de Rennes 1

. de Dieuleveult C, Erhel J (2007) A numerical model for dmgpchemistry and transport. In: International

Conference on SClentific Computation And Differential Eipras, SCiCADE 2007

de Dieuleveult C, Erhel J (2009) A global approach foctiga transport: application to the benchmark easy
test case of MoMaS. Comput Geosci This issue

de Dieuleveult C, Erhel J, Kern M (2009) A global stratégysolving reactive transport equations. Journal
of Computational Physics 228(17):6395-6410, DOI doi:Q06lj.jcp.2009.05.044

Eisenstat SC, Walker HF (1996) Choosing the forcing $aman inexact Newton method. SIAM Journal on
Scientific Computing 17(1):16—32, URditeseer.ist.psu.edu/article/eisenstat94choosing.html
Eymard R, Gallouét T, Herbin R (2000) Finite volume methdn: Ciarlet PG, Lions JL (eds) Handbook of
Numerical Analysis, vol VII, North—Holland, pp 713-1020

Fahs M, Carrayrou J, Younes A, Ackerer P (2008) On theieffay of the direct substitution approach for
reactive transport problems in porous media. Water, Air,a8 Bollution pp 299-208, doi 10.1007/s11270-
008-9691-2

Freund RW, Nachtigal NM (1991) QMR: a quasi-minimal desii method for non-Hermitian linear systems.
Numerische Mathematik 60:315-339

FrolkovE P, K&ur J (2006) Semi-analytica solution of a contaminant partsequation with nonlinear sorp-
tion in 1D. Compuational Geosciences 10(3):279-290, DOLAW7/s10596-006-9023-9


http://link.aip.org/link/?SNA/19/400/1
citeseer.ist.psu.edu/article/eisenstat94choosing.html

21

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.
36.

37.

38.

Hammond GE, Valocchi A, Lichtner P (2005) ApplicationJafcobian-free Newton—Krylov with physics-
based preconditioning to biogeochemical transport. Adearin Water Resources 28:359-376

Hoffmann J, Krautle S, Knabner P (2009) A parallel glabgblicit 2-D solver for reactive transport problems
in porous media based on a reduction scheme and its applidatthe MoMaS benchmark problem. Comput
Geosci This issue

Horn RA, Johnson CR (1990) Matrix Analysis. Cambridgéversity Press

Hoteit H, Ackerer P, Mosé R (2004) Nuclear waste dispesallations: Couplex test cases: Simulation
of transport around a nuclear waste disposal site: The C@XPtest cases (editors: Alain Bourgeat and
Michel Kern). Computational Geosciences 8:99-124, DOI1doi023/B:COMG.0000035074.37722.71,
URLhttp://www.ingentaconnect.com/content/klu/comg/2004/00000008/00000002/05379190
Kanney JF, Miller CT, Kelley CT (2003) Convergence ofaté/e split operator approaches for approximating
nonlinear reactive transport problems. Advances in WagsoRrces 26(247-261)

Ketur J, Malengier B, RemeSikova M (2005) Solution of contaamintransport with equilibrium and non-
equilibrium adsorption. Comput Methods Appl Mech Engrg :498-489, DOI http://dx.doi.org/10.1016/j.
cma.2004.05.017

Kelley CT (1995) Iterative methods for linear and noedin equations, Frontiers in Applied Mathematics,
vol 16. Society for Industrial and Applied Mathematics (MA Philadelphia, PA, with separately available
software

Knoll DA, Keyes DE (2004) Jacobian-free Newton-Kryloettmods: a survey of approaches and applications.
J Comput Phys 193(2):357-397, DOI http://dx.doi.org/0Q8lj.jcp.2003.08.010

Kraeutle S, Knabner P (2005) A new numerical reductionese for fully coupled multicomponent
transport-reaction problems in porous media. Water RessuResearch 41(W09414), DOI doi:10.1029/
2004WR003624

Kraeutle S, Knabner P (2007) A reduction scheme for ealpiulticomponent transport-reaction problems
in porous media: Generalization to problems with hetereges equilibrium reactions. Water Resources
Research 43(W03429), DOI doi:10.1029/2005WR004465

Lagneau V, van der Lee J (2009) HYTEC results of the MoMastive transport benchmark. Comput Geosci
This issue

van der Lee J (1993) CHESS, another speciation and sudamplexation computer code. Tech. Rep.
LHM/RD/93/39, CIG Ecole des Mines de Paris, Fontainebleau

Lucille PL, Burnol A, Ollar P (2000) Chemtrap: a hydrogeemical model for reactive transport in porous
media. Hydrological processes 14:2261-2277

Mayer K, MacQuarrie K (2009) Formulation of the multigpoment reactive transport code MIN3P and
implementation of MoMaS benchmark problems. Comput Geblsis issue

Mazzia A, Bergamaschi L, Putti M (2000) A time-splittitegchnique for the advection-dispersion equation in
groundwater. J Comput Phys 157(1):181-198, DOI httpdiixorg/10.1006/jcph.1999.6370

Morel FMM, Hering JG (1993) Principles and ApplicatiazfsAquatic Chemistry. Wiley, New-York
Parkhurst DL, Appelo C (1999) User’s guide to PHREEQGSjea 2)- A computer program for speciation,
batch-reaction, one-dimensional transport, and inveeselgemical calculations. Tech. Rep. 99-4259, USGS
Rubin J (1983) Transport of reacting solutes in poroudian&elation between mathematical nature of prob-
lem formulation and chemical nature of reactions. WateroRees Research 19:1231-1252

Rudin W (1976) Principles of mathematical analysis,&1d. McGraw-Hill, New York :

Saad Y, Schultz MH (1986) GMRES: a generalized minimsidieal algorithm for solving honsymmetric
linear systems. SIAM J Sci Statist Comput 7(3):856—869

Saaltink M, Ayora C, JCarrera (1998) A mathematical fadation for reactive transport that eliminates min-
eral concentrations. Water Resources Research 34(7):1686

Saaltink M, Carrera J, Ayora C (2000) A comparison of tywpraaches for reactive transport modelling.
Journal of Geochemical Exploration 69-70:97-101


http://www.ingentaconnect.com/content/klu/comg/2004/00000008/00000002/05379190

22

39.

40.

41.

42.

43.

44,

45,

46.

47.

Saaltink M, Carrera J, Ayora C (2001) On the behavior piragches to simulate reactive transport. Journal
of Contaminant Hydrology 48:213-235

Salignac AL (1998) Transport multi-espéces et réastg@ochimiques en aquifére : développement et vali-
dation du modéle couplé HYTEC 2D. PhD thesis, Ecole des MileeBaris

Samper J, Xu T, Yang C (2009) A sequential partly iteeatdpproach for multicomponent reactive
transport with CORE2D. Computational Geosciences 13:308-DOI 10.1007/s10596-008-9119-5, URL
http://dx.doi.org/10.1007/s10596-008-9119-5

Shapiro NZ, Shapley LS (1965) Mass action laws and thésGiiee energy function. J SOC Indust Appl
Math 13(2):353-375

Siegel P, Mosé R, Ackerer P, Jaffré J (1997) Solutioneétivection-dispersion equation using a combination
of discontinuous and mixed finite elements. Journal for NuraéMethods in Fluids 24:595-613

Taakili A, Kern M (2009) Linear and nonlinear precongfiing for a model of transport in porous media with
sorption, in preparation

van der Vorst HA (1992) Bi-CGSTAB: A fast and smoothly werying variant of Bi-CG for the solution of
nonsymmetric linear systems. SIAM Journal Sci Stat Comp(2)1631-644

Xu T, Samper J, Ayora C, Manzano M, Custodio E (1999) Madebf non-isothermal multi-component
reactive transport in field scale porous media flow systemgnal of Hydrology 214:144-164

Yeh GT, Tripathi VS (1989) A critical evaluation of retetevelopments in hydrogeochemical transport
models of reactive multichemical components. Water RessuResearch 25:93-108


http://dx.doi.org/10.1007/s10596-008-9119-5

	Introduction
	Reactive transport equations
	Formulation and coupling algorithms
	Numerical results
	Conclusions– Perspectives

