Skip to main content
Log in

Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Yellowfin tuna (Thunnus albacares) is an epipelagic, oceanic species of family Scombridae found in tropical and subtropical region of Pacific, Indian and Atlantic Ocean. It is commercially important fish and accounts for 19 % of total tuna catches in Indian waters. In present study, population structure of yellowfin tuna was examined using sequence analysis of mitochondrial DNA from seven geographically distinct locations along the Indian coast. A 500 bp segment of D-loop region was sequenced and analysed for 321 yellowfin samples. Hierarchical analysis of molecular variance showed significant genetic differentiation among three groups (VE); (AG); (KO, TU, PO, VI, PB) analyzed (Φ ST  = 0.03844, P ≤ 0.001). In addition, spatial analysis of molecular variance identified three genetically heterogeneous groups of yellowfin tuna in Indian waters. Results were further corroborated by significant value of nearest neighbour statistic (S nn = 0.261, P ≤ 0.001). Thus finding of this study rejects the null hypothesis of single panmictic population of yellowfin tuna in Indian waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarado Bremer JR, Mejuto J, Baker AJ (1995) Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius L.) populations in the Atlantic Ocean. Can J Fish Aquat Sci 52:1720–1732

    Article  Google Scholar 

  • Alvarado Bremer JR, Mejuto J, Greig TW, Ely B (1996) Global population structure of the swordfish (Xiphias gladius L.) as revealed by analysis of the mitochondrial DNA control region. J Exp Mar Biol Ecol 197:295–310

    Article  Google Scholar 

  • Alvarado Bremer JR, Naseri I, Ely B (1997) Orthodox and un-orthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial control region. J Fish Biol 50:540–554

    Google Scholar 

  • Alvarado Bremer JR, Stequert B, Robertson NW, Ely B (1998) Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus) populations. Mar Biol 132:547–557

    Article  Google Scholar 

  • Alvarado Bremer JR, Vinas J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylo Evol 36:169–187

    Article  CAS  Google Scholar 

  • Anganuzzi AA, Stobberup KA, Webb NJ (1996) Proceedings of the Expert Consultation on Indian Ocean Tunas 6th Session. Indo-Pacific Tuna Development and Management Programme, Colombo, p. 373

  • Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci 62:727–730

    Google Scholar 

  • Avise J (1998) Phylogeography. Havard University Press, Cambridge

    Google Scholar 

  • Boustany AM, Reeb CA, Block BA (2008) Mitochondrial DNA and electronic tracking reveal population structure of Atlantic bluefin tuna (Thunnus thynnus). Mar Biol 156:13–24

    Article  CAS  Google Scholar 

  • Claereboudt MR, Mcllwain JL, Al-Oufi HS, Ambu-Ali AA (2005) Patterns of reproduction and spawning of the kingfish (Scomberomorus commerson, Lacépède) in the coastal waters of the sultanate of Oman. Fish Res 73(3):273–282

    Article  Google Scholar 

  • Collete BB, Nauen CE (1983) FAO species catalogue, vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. FAO Fish Synop 125:1–137

    Google Scholar 

  • Dammannagoda ST, Hurwood DA, Peter BM (2008) Evidence for fine geographical scale heterogeneity in gene frequencies in yellowfin tuna (Thunnus albacares) from the north Indian Ocean around Sri Lanka. Fish Res 90:147–157

    Article  Google Scholar 

  • Dammannagoda ST, Hurwood DA, Peter BM (2011) Genetic analysis reveals two stocks of skipjack tuna (Katsuwonus pelamis) in the north western Indian Ocean. Can J Fish Aqua Sci 68(2):210–223

    Article  CAS  Google Scholar 

  • Deshmukhe G, Ramamoorthy K, Sen Gupta R (2000) On the coral reefs of the Gulf of Kachchh. Curr Sci 79(2):160–162

    Google Scholar 

  • Donaldson KA, Wilson RR (1999) Amphi-panamaic geminates of snook (Percoidei: Centropomidae) provide a calibration of the divergence rates in the mitochondrial DNA control region of fishes. Mol Phylogenet Evol 13:208–213

    Article  PubMed  CAS  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11(12):2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Ely B, Jordi V, Jaime R, Bremer A, Donna B, Luciano L, Kelly C, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19. doi:10.1186/1471-2148-5-19

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.11: an integrated software package for population genetics data analysis. Evol Bioinfo 1:47–50

    CAS  Google Scholar 

  • FAO (2012) The state of world fisheries and aquaculture. FAO Fisheries and Aquaculture Department, Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Fujino K (1996) Genetically distinct skipjack tuna subpopulations appeared in the Central and Western Pacific Ocean. Fish Sci 62:189–195

    Google Scholar 

  • Graves JE, Ferris SD, Dizon AE (1984) Close genetic similarity of Atlantic and Pacific skipjack tuna (Katsuwonus pelamis) demonstrated with restriction endonuclease analysis of mitochondrial DNA. Mar Biol 79:315–319

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harpending RC (1994) Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    PubMed  CAS  Google Scholar 

  • Hoolihan JP, Premanandh J, D’Aloia-Palmieri MA, Benzie JAH (2004) Intraspecific phylogeographic isolation of Arabian Gulf sailfish Istiophorus platypterus inferred from mitochondrial DNA. Mar Biol 145:465–475

    Article  CAS  Google Scholar 

  • Hudson RR (2000) A new statistic of detecting genetic differentiation. Genetics 155:2001–2014

    Google Scholar 

  • IOTC (2006) Report of the ninth session of the scientific committee, Victoria, 6–10 November 2006, pp 1–120

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  • Kumar G, Kunal SP, Menezes MR, Meena RM (2012) Single genetic stock of kawakawa Euthynnus affinis (Cantor, 1849) along the Indian coast inferred from sequence analyses of mitochondrial DNA D-loop region. Conserv Genet 13:1119–1131

    Article  Google Scholar 

  • Martínez P, González EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416

    Article  PubMed  Google Scholar 

  • Menezes MR, Ikeda M, Taniguchi N (2006) Genetic variation in skipjack tuna Katsuwonus pelamis (L.) using PCR-RFLP analysis of mitochondrial DNA D-loop region. J Fish Biol 68(a):156–161

    Article  CAS  Google Scholar 

  • Menezes MR, Kumar G, Kunal SP (2012) Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D-loop region. J Fish Biol 80:2198–2212

    Article  PubMed  CAS  Google Scholar 

  • Meyer A (1993) Evolution of mitochondrial DNA in fish. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fish. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Qasim SZ (1982) Oceanography of the Northern Arabian Sea. Deep Sea Res Part A. Oceanogr Res Pap 29(9):1041–1068

  • Reeb CA, Arcangeli L, Block BA (2000) Structure and migration corridors in Pacific populations of the Swordfish Xiphias gladius, as inferred through analysis of mitochondrial DNA. Mar Biol 136:1123–1131

    Article  Google Scholar 

  • Rosel PE, Block BA (1996) Mitochondrial control region variability and global population structure in the swordfish, Xiphias gladius. Mar Biol 125:11–22

    Article  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer-Rozas R (2003) DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Slatkin M, Hudson R (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    PubMed  CAS  Google Scholar 

  • Stepien C (1995) Population genetic divergence and geographic patterns from DNA sequences: examples from marine and freshwater fishes. Am Fish Soc Symp 17:263–287

    Google Scholar 

  • Su B, Fu Y, Wang Y, Jin L, Chakraborty R (2001) Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations. Mol Biol Evol 18:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A (1962) On the blood types of yellowfin and bigeye tuna. Am Nat 96:239–246

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 10:512–526

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumaran K, Varghese SP (2010) Update on the status of tuna fisheries in India. IOTC-2010-SC-Inf12

  • Ward RD, Eliot NG, Innes BH, Smolenski AJ, Grewe PM (1997) Global population structure of yellowfin tuna Thunnus albacares inferred from allozyme and mitochondrial DNA variation. Fish Bull 95:566–575

    Google Scholar 

  • Wenink PW, Baker AJ, Tilanus MGJ (1993) Hypervariable control region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina). Proc Natl Acad Sci USA 90:94–98

    Article  PubMed  CAS  Google Scholar 

  • Wyrtki K (1973) Physical oceanography of the Indian Ocean. In: Zeitschel B (ed) The biology of the Indian Ocean. Springer, Berlin, pp 18–36

    Chapter  Google Scholar 

  • Zordoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798

    Article  Google Scholar 

Download references

Acknowledgments

We take this opportunity to thank the Director, National Institute of Oceanography, Goa, India for providing necessary facilities. The financial support for the project has been provided by Department of Science and Technology (DST), New Delhi, India to M.R.M. by a grant-in-aid project “Genetic Characterization of tunas using DNA markers” and is gratefully acknowledged. Authors Swaraj Priyaranjan Kunal and Girish Kumar are grateful to DST and CSIR-NIO (Lizette D’Souza and V. Banakar) for their fellowship support. The authors also wish to thank N. Ramaiah for providing sequencing facilities. This paper forms a part of PhD studies of Swaraj Priyaranjan Kunal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaraj Priyaranjan Kunal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunal, S.P., Kumar, G., Menezes, M.R. et al. Mitochondrial DNA analysis reveals three stocks of yellowfin tuna Thunnus albacares (Bonnaterre, 1788) in Indian waters. Conserv Genet 14, 205–213 (2013). https://doi.org/10.1007/s10592-013-0445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0445-3

Keywords

Navigation