Skip to main content

Advertisement

Log in

Current chemotherapeutic regimens for brain metastases treatment

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Brain metastasis is a common complication in advanced systemic cancer, with an increasing incidence. The diagnosis of brain metastasis historically portended a dismal prognosis. The successful development of effective treatments for patients with brain metastasis is complicated by the differences among cancer subtypes, the limited understanding of the underlying pathophysiology of BM, the impact of the blood-brain barrier, and other factors. There is now renewed interest in treating this often devastating complication of cancer, and in understanding the underlying mechanisms of disease in this “sanctuary” site. Promising treatment strategies include brain-penetrant targeted therapies and immunotherapy, and strategies for enhanced delivery of therapy. This review highlights a selection of these approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayak L, Lee EQ, Wen PY (2012) Epidemiology of brain metastases. Curr Oncol Rep 14(1):48–54

    Article  PubMed  Google Scholar 

  2. Pérez-Larraya JG, Hildebrand J (2014) Brain metastases. Handb Clin Neurol 121:1143–1157

    Article  Google Scholar 

  3. Parrish KE, Sarkaria JN, Elmquist WF (2015) Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin Pharmacol Ther 97(4):336–346

    Article  CAS  PubMed  Google Scholar 

  4. Maher EA et al (2009) Brain metastasis: opportunities in basic and translational research. Cancer Res 69(15):6015–6020

    Article  CAS  PubMed  Google Scholar 

  5. Lin X, DeAngelis LM (2015) Treatment of brain metastases. J Clin Oncol 33(30):3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azim H, Azim HA Jr (2008) Targeting Her-2/neu in breast cancer: as easy as this!. Oncology 74(3–4):150–157

    Article  CAS  PubMed  Google Scholar 

  7. Leyland-Jones B (2009) Human epidermal growth factor receptor 2-positive breast cancer and central nervous system metastases. J Clin Oncol 27(31):5278–5286

    Article  PubMed  Google Scholar 

  8. Brufsky AM et al (2011) Central nervous system metastases in patients with HER2-positive metastatic breast cancer: incidence, treatment, and survival in patients from registHER. Clin Cancer Res 17(14):4834–4843

    Article  CAS  PubMed  Google Scholar 

  9. Stemmler HJ et al (2006) Characteristics of patients with brain metastases receiving trastuzumab for HER2 overexpressing metastatic breast cancer. Breast 15(2):219–225

    Article  CAS  PubMed  Google Scholar 

  10. Yau T et al (2006) Incidence, pattern and timing of brain metastases among patients with advanced breast cancer treated with trastuzumab. Acta Oncol 45(2):196–201

    Article  CAS  PubMed  Google Scholar 

  11. Pestalozzi BC, Brignoli S (2000) Trastuzumab in CSF. J Clin Oncol 18(11):2349–2351

    Article  CAS  PubMed  Google Scholar 

  12. Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13(6):1648–1655

    Article  CAS  PubMed  Google Scholar 

  13. Gelmon KA et al (2015) Lapatinib or trastuzumab plus taxane therapy for human epidermal growth factor receptor 2-positive advanced breast cancer: final results of NCIC CTG MA.31. J Clin Oncol 33(14):1574–1583

    Article  CAS  PubMed  Google Scholar 

  14. Pivot X et al (2015) CEREBEL (EGF111438): A phase III, randomized, open-label study of lapatinib plus capecitabine versus trastuzumab plus capecitabine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol 33(14):1564–1573

    Article  CAS  PubMed  Google Scholar 

  15. Lin NU et al (2008) Phase II trial of lapatinib for brain metastases in patients with human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 26(12):1993–1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin NU et al (2009) Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin Cancer Res 15(4):1452–1459

    Article  CAS  PubMed  Google Scholar 

  17. Cameron D et al (2010) Lapatinib plus capecitabine in women with HER-2-positive advanced breast cancer: final survival analysis of a phase III randomized trial. Oncologist 15(9):924–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin NU et al (2011) Randomized phase II study of lapatinib plus capecitabine or lapatinib plus topotecan for patients with HER2-positive breast cancer brain metastases. J Neurooncol 105(3):613–620

    Article  CAS  PubMed  Google Scholar 

  19. Sutherland S et al (2010) Treatment of HER2-positive metastatic breast cancer with lapatinib and capecitabine in the lapatinib expanded access programme, including efficacy in brain metastases–the UK experience. Br J Cancer 102(6):995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metro G et al (2011) Clinical outcome of patients with brain metastases from HER2-positive breast cancer treated with lapatinib and capecitabine. Ann Oncol 22(3):625–630

    Article  CAS  PubMed  Google Scholar 

  21. Bachelot T et al (2013) Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group phase 2 study. Lancet Oncol 14(1):64–71

    Article  CAS  PubMed  Google Scholar 

  22. Swain SM et al (2013) Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 14(6):461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalsi R et al (2015) Brain metastasis and response to ado-trastuzumab emtansine: a case report and literature review. Clin Breast Cancer 15(2):e163-6

    Article  PubMed  Google Scholar 

  24. Keith KC et al (2016) Activity of trastuzumab-emtansine (Tdm1) in Her2-positive breast cancer brain metastases: a case series. Cancer Treat Commun 7:43–46

    Article  PubMed  PubMed Central  Google Scholar 

  25. Krop IE et al (2015) Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann Oncol 26(1):113–119

    Article  CAS  PubMed  Google Scholar 

  26. Kawaguchi T et al (2016) Prospective analysis of oncogenic driver mutations and environmental factors: Japan Molecular Epidemiology for Lung Cancer Study. J Clin Oncol 34(19):2247–2257

    Article  CAS  PubMed  Google Scholar 

  27. Shi Y et al (2014) A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol 9(2):154–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cancer Genome Atlas Research Network (2014) Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511):543–550

    Article  Google Scholar 

  29. Eichler AF et al (2010) EGFR mutation status and survival after diagnosis of brain metastasis in nonsmall cell lung cancer. Neuro Oncol 12(11):1193–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Togashi Y et al (2012) Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol 70(3):399–405

    Article  CAS  PubMed  Google Scholar 

  31. Zhao J et al (2013) Cerebrospinal fluid concentrations of gefitinib in patients with lung adenocarcinoma. Clin Lung Cancer 14(2):188–193

    Article  CAS  PubMed  Google Scholar 

  32. Deng Y et al (2014) The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol Clin Oncol 2(1):116–120

    Article  CAS  PubMed  Google Scholar 

  33. Porta R et al (2011) Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J 37(3):624–631

    Article  CAS  PubMed  Google Scholar 

  34. Iuchi T et al (2013) Phase II trial of gefitinib alone without radiation therapy for Japanese patients with brain metastases from EGFR-mutant lung adenocarcinoma. Lung Cancer 82(2):282–287

    Article  CAS  PubMed  Google Scholar 

  35. Park SJ et al (2012) Efficacy of epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in non-small cell lung cancer patients harboring either exon 19 or 21 mutation. Lung Cancer 77(3):556–660

    Article  CAS  PubMed  Google Scholar 

  36. Kim JE et al (2009) Epidermal growth factor receptor tyrosine kinase inhibitors as a first-line therapy for never-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastasis. Lung Cancer 65(3):351–354

    Article  PubMed  Google Scholar 

  37. Ruppert AM et al (2009) EGFR-TKI and lung adenocarcinoma with CNS relapse: interest of molecular follow-up. Eur Respir J 33(2):436–440

    Article  CAS  PubMed  Google Scholar 

  38. Omuro AM et al (2005) High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer 103(11):2344–2348

    Article  CAS  PubMed  Google Scholar 

  39. Grommes C et al (2011) “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol 13(12):1364–1369

    Article  PubMed  PubMed Central  Google Scholar 

  40. Berz D et al (2017) P2.03b-016 tesevatinib in NSCLC patients with EGFR activating mutations and brain metastases (BM) or leptomeningeal metastases (LM). J Thorac Oncol. 12(1):S942–S943

    Article  Google Scholar 

  41. Heon S et al (2012) The impact of initial gefitinib or erlotinib versus chemotherapy on central nervous system progression in advanced non-small cell lung cancer with EGFR mutations. Clin Cancer Res 18(16):4406–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berger LA et al (2013) CNS metastases in non-small-cell lung cancer: current role of EGFR-TKI therapy and future perspectives. Lung Cancer 80(3):242–248

    Article  PubMed  Google Scholar 

  43. Hata A et al (2013) Rebiopsy of non-small cell lung cancer patients with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor: comparison between T790M mutation-positive and mutation-negative populations. Cancer 119(24):4325–4332

    Article  CAS  PubMed  Google Scholar 

  44. Rossi A et al (2017) Developments in pharmacotherapy for treating metastatic non-small cell lung cancer. Expert Opin Pharmacother 18(2):151–163

    Article  CAS  PubMed  Google Scholar 

  45. Ballard P et al (2016) Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin Cancer Res 22(20):5130–5140

    Article  CAS  PubMed  Google Scholar 

  46. Yang JC, Kim DW, Kim SW, Cho BC, Lee JS, Ye X, Yin X, Yang Z, Jiang H, Ahn MJ (2016) Osimertinib activity in patients (pts) with leptomeningeal (LM) disease from non-small cell lung cancer (NSCLC): updated results from BLOOM, a phase I study. J Clin Oncol. doi:10.1200/JCO.2016.34.15_suppl.9002

    Google Scholar 

  47. Yang JC-H et al (2017) Osimertinib in pretreated T790M-positive advanced non–small-cell lung cancer: AURA Study Phase II Extension Component. J Clin Oncol. doi:10.1200/JCO.2016.70.3223

    Google Scholar 

  48. Sequist LV, Soria JC, Camidge DR (2016) Update to Rociletinib Data with the RECIST Confirmed Response Rate. N Engl J Med 374(23):2296–2297

    Article  PubMed  Google Scholar 

  49. Yu HA et al (2016) Phase 1 study of twice weekly pulse dose and daily low-dose erlotinib as initial treatment for patients with EGFR-mutant lung cancers. Ann Oncol. doi:10.1093/annonc/mdw556

    Google Scholar 

  50. Clarke JL et al (2010) High dose weekly erlotinib achieves therapeutic concentrations in CSF and is effective in leptomeningeal metastases from epidermal growth factor receptor mutant lung cancer. J Neurooncol 99(2):283–286

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yi HG et al (2009) Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective for leptomeningeal metastasis from non-small cell lung cancer patients with sensitive EGFR mutation or other predictive factors of good response for EGFR TKI. Lung Cancer 65(1):80–94

    Article  PubMed  Google Scholar 

  52. Sperduto PW et al (2013) A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int J Radiat Oncol Biol Phys 85(5):1312–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Welsh JW et al (2013) Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J Clin Oncol 31(7):895–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cai L et al (2014) A comparative analysis of EGFR mutation status in association with the efficacy of TKI in combination with WBRT/SRS/surgery plus chemotherapy in brain metastasis from non-small cell lung cancer. J Neurooncol 120(2):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y et al (2016) First-line epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor alone or with whole-brain radiotherapy for brain metastases in patients with EGFR-mutated lung adenocarcinoma. Cancer Sci 107(12):1800–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Soda M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566

    Article  CAS  PubMed  Google Scholar 

  57. Shaw AT et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394

    Article  CAS  PubMed  Google Scholar 

  58. Solomon BJ et al (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177

    Article  PubMed  Google Scholar 

  59. Solomon BJ et al (2016) Intracranial efficacy of crizotinib versus chemotherapy in patients with advanced ALK-positive non-small-cell lung cancer: results from PROFILE 1014. J Clin Oncol 34(24):2858–2865

    Article  CAS  PubMed  Google Scholar 

  60. Doebele RC et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G De Castro Jr, Crinò D.S.T., L., Wu YL, Paz-Ares L, Wolf J, Geater SL, Orlov S, Cortinovis D, Yu C, Hochmair MJ, Cortot AB, Tsai C, Moro-Sibilot D, García Campelo R, Branle F, Sen P, McCulloch T, Soria J (2016) First-line ceritinib versus chemotherapy in patients with ALK-rearranged (ALK+) NSCLC: A Randomized, Phase 3 Study (ASCEND-4). In: International Association for the Study of Lung Cancer

  62. Gadgeel SM et al (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15(10):1119–1128

    Article  CAS  PubMed  Google Scholar 

  63. Ignatius Ou SH et al (2014) Next-generation sequencing reveals a Novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J Thorac Oncol 9(4):549–553

    Article  CAS  PubMed  Google Scholar 

  64. Gadgeel SM et al (2016) Pooled analysis of CNS response to alectinib in two studies of pretreated patients with ALK-positive non-small-cell lung cancer. J Clin Oncol 34(34):4079–4085

    Article  PubMed  Google Scholar 

  65. Ajithkumar T et al (2015) Evolving treatment options for melanoma brain metastases. Lancet Oncol 16(13):e486–e497

    Article  PubMed  Google Scholar 

  66. Dummer R et al (2014) Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer 50(3):611–621

    Article  CAS  PubMed  Google Scholar 

  67. Dzienis MR, Atkinson VG (2014) Response rate to vemurafenib in patients with B-RAF-positive melanoma brain metastases: a retrospective review. Melanoma Res 24(4):349–353

    Article  CAS  PubMed  Google Scholar 

  68. Harding JJ et al (2015) A Retrospective Evaluation of Vemurafenib as Treatment for BRAF-Mutant Melanoma Brain Metastases. Oncologist 20(7):789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McArthur GA et al (2016) Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multicentre study. Ann Oncol. doi:10.1093/annonc/mdw641

    PubMed  Google Scholar 

  70. Narayana A et al (2013) Vemurafenib and radiation therapy in melanoma brain metastases. J Neurooncol 113(3):411–416

    Article  CAS  PubMed  Google Scholar 

  71. Falchook GS et al (2012) Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. The Lancet 379(9829):1893–1901

    Article  CAS  Google Scholar 

  72. Long GV et al (2012) Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol 13(11):1087–1095

    Article  CAS  PubMed  Google Scholar 

  73. Flaherty KT et al (2012) Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 367(18):1694–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Long GV et al (2016) Overall survival and durable responses in patients with BRAF V600-mutant metastatic melanoma receiving dabrafenib combined with trametinib. J Clin Oncol 34(8):871–878

    Article  CAS  PubMed  Google Scholar 

  75. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heller KN et al (2011) Safety and survival analysis of ipilimumab therapy in patients with stable asymptomatic brain metastases. J Clin Oncol 29(15_suppl):8581–8581

    Article  Google Scholar 

  77. Knisely JP et al (2012) Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg 117(2):227–233

    Article  PubMed  Google Scholar 

  78. Mathew M et al (2013) Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery. Melanoma Res 23(3):191–195

    Article  CAS  PubMed  Google Scholar 

  79. Kiess AP et al (2015) Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys 92(2):368–375

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cohen-Inbar O et al (2017) The effect of timing of stereotactic radiosurgery treatment of melanoma brain metastases treated with ipilimumab. J Neurosurg. doi:10.3171/2016.9.JNS161585

    Google Scholar 

  81. Di Giacomo AM et al (2015) Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol 26(4):798–803

    Article  PubMed  Google Scholar 

  82. Di Giacomo AM, Maio M (2015) 12TiPA randomized, phase III study of fotemustine versus the combination of fotemustine and ipilimumab or the combination of ipilimumab and nivolumab in patients with melanoma with brain metastasis: the NIBIT-M2 study. Ann Oncol 26(suppl_8):viii5

    Article  Google Scholar 

  83. Kluger HM et al (2015) Safety and activity of pembrolizumab in melanoma patients with untreated brain metastases. J Clin Oncol 33(15_suppl):9009

    Google Scholar 

  84. Goldberg SB et al (2015) Activity and safety of pembrolizumab in patients with metastatic non-small cell lung cancer with untreated brain metastases. J Clin Oncol 33(15_suppl):8035

    Google Scholar 

  85. Rittmeyer A et al (2017) Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. The Lancet 389(10066):255–265

    Article  Google Scholar 

  86. Massard C et al (2016) Safety and efficacy of durvalumab (MEDI4736), an anti–programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 34(26):3119–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pardridge WM (2003) Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv 3(2):90–105, 51

    Article  CAS  PubMed  Google Scholar 

  88. Kinoshita M (2006) Targeted drug delivery to the brain using focused ultrasound. Top Magn Reson Imaging 17(3):209–215

    Article  PubMed  Google Scholar 

  89. Bobo RH et al (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA 91(6):2076–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chamberlain MC (2010) Anticancer therapies and CNS relapse: overcoming blood-brain and blood-cerebrospinal fluid barrier impermeability. Expert Rev Neurother 10(4):547–561

    Article  CAS  PubMed  Google Scholar 

  91. Deeken JF, Löscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and trojan horses. Clin Cancer Res 13(6):1663–1674

    Article  CAS  PubMed  Google Scholar 

  92. Gan CW, Feng SS (2010) Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 31(30):7748–7757

    Article  CAS  PubMed  Google Scholar 

  93. Aryal M et al (2015) Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model. Phys Med Biol 60(6):2511–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aryal M et al (2015) Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood-brain barrier disruption: a safety study. J Control Release 204:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carpentier A et al (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8(343):343re2

    Article  PubMed  Google Scholar 

  96. Wu YL et al (2013) Erlotinib as second-line treatment in patients with advanced non-small-cell lung cancer and asymptomatic brain metastases: a phase II study (CTONG-0803). Ann Oncol 24(4):993–999

    Article  PubMed  Google Scholar 

  97. Gainor JF et al (2015) Alectinib salvages CNS relapses in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J Thorac Oncol 10(2):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gibney GT et al (2015) Treatment patterns and outcomes in BRAF V600E-mutant melanoma patients with brain metastases receiving vemurafenib in the real-world setting. Cancer Med 4(8):1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara J. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J.Y., O’Brien, B.J. Current chemotherapeutic regimens for brain metastases treatment. Clin Exp Metastasis 34, 391–399 (2017). https://doi.org/10.1007/s10585-017-9861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-017-9861-y

Keywords

Navigation