Skip to main content
Log in

Influence of diet on metastasis and tumor dormancy

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor metastasis is responsible for most cancer deaths, and can occur after long periods of tumor dormancy. Information learned from experimental studies on tumor metastasis and dormancy is shedding light on mechanisms responsible and possible therapeutic approaches. ‘Seed’ (the cancer cell) and ‘soil’ (the microenvironment of the secondary organ) factors contribute to metastatic outcome. This review considers the possibility that various dietary components may affect both ‘seed’ and ‘soil’ compartments, thereby influencing the growth of metastases, and discusses an experimental study on dietary genistein that illustrates this concept. While studies on human diet are complex, the possibility that relatively non-toxic dietary intervention strategies could impact on metastasis and patient survival is attractive and worthy of further study in appropriate experimental models of metastasis and tumor dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  2. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  PubMed  CAS  Google Scholar 

  3. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  4. Sahai E (2007) Illuminating the metastatic process. Nat Rev Cancer 7:737–749

    Article  PubMed  CAS  Google Scholar 

  5. Townson JL, Chambers AF (2006) Dormancy of solitary metastatic cells. Cell Cycle 5:1744–1750

    PubMed  CAS  Google Scholar 

  6. Naumov GN, MacDonald IC, Chambers AF et al (2001) Solitary cancer cells as a possible source of tumour dormancy? Semin Cancer Biol 11:271–276

    Article  PubMed  CAS  Google Scholar 

  7. Naumov GN, Akslen LA, Folkman J (2006) Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5:1779–1787

    PubMed  CAS  Google Scholar 

  8. Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1:149–153

    Article  PubMed  CAS  Google Scholar 

  9. Alix-Panabieres C, Muller V, Pantel K (2007) Current status in human breast cancer micrometastasis. Curr Opin Oncol 19:558–563

    PubMed  Google Scholar 

  10. Meng S, Tripathy D, Frenkel EP et al (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10:8152–8162

    Article  PubMed  Google Scholar 

  11. Goss PE (2007) Letrozole in the extended adjuvant setting: MA.17. Breast Cancer Res Treat 105(1):45–53

    Article  PubMed  CAS  Google Scholar 

  12. Pritchard KI, Goss PE, Shepherd L (2006) The extended adjuvant NCIC CTG MA.17 trials: initial and rerandomization studies. Breast 15(1):S14–S20

    Article  PubMed  Google Scholar 

  13. Goss PE, Ingle JN, Martino S et al (2003) A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349:1793–1802

    Article  PubMed  CAS  Google Scholar 

  14. Briest S, Wolff AC (2007) Insights on adjuvant endocrine therapy for premenopausal and postmenopausal breast cancer. Expert Rev Anticancer Ther 7:1243–1253

    Article  PubMed  Google Scholar 

  15. Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10:191–199

    Article  PubMed  CAS  Google Scholar 

  16. Fokas E, Engenhart-Cabillic R, Daniilidis K et al (2007) Metastasis: the seed and soil theory gains identity. Cancer Metastasis Rev 26:705–715

    Article  PubMed  Google Scholar 

  17. Ribatti D, Mangialardi G, Vacca A (2006) Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clin Exp Med 6:145–149

    Article  PubMed  CAS  Google Scholar 

  18. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  19. Chambers AF, MacDonald IC, Schmidt EE et al (2000) Clinical targets for anti-metastasis therapy. Adv Cancer Res 79:91–121

    Article  PubMed  CAS  Google Scholar 

  20. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101

    PubMed  CAS  Google Scholar 

  21. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:99–101

    Google Scholar 

  22. Kang Y (2006) New tricks against an old foe: molecular dissection of metastasis tissue tropism in breast cancer. Breast Dis 26:129–138

    PubMed  CAS  Google Scholar 

  23. Reddi AH, Roodman D, Freeman C et al (2003) Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res 18:190–194

    Article  PubMed  CAS  Google Scholar 

  24. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  PubMed  CAS  Google Scholar 

  25. Minn AJ, Gupta GP, Padua D et al (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104:6740–6745

    Article  PubMed  CAS  Google Scholar 

  26. Massague J (2007) Sorting out breast-cancer gene signatures. N Engl J Med 356:294–297

    Article  PubMed  CAS  Google Scholar 

  27. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  PubMed  CAS  Google Scholar 

  28. Gupta GP, Minn AJ, Kang Y et al (2005) Identifying site-specific metastasis genes and functions. Cold Spring Harb Symp Quant Biol 70:149–158

    Article  PubMed  CAS  Google Scholar 

  29. Massague J (2003) New concepts in tissue-specific metastases. Clin Adv Hematol Oncol 1:576–577

    PubMed  Google Scholar 

  30. Buschemeyer WC 3rd, Freedland SJ (2007) Obesity and prostate cancer: epidemiology and clinical implications. Eur Urol 52:331–343

    Article  PubMed  Google Scholar 

  31. Majed B, Moreau T, Senouci K et al (2007) Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res Treat. doi:10.1007/s10549-007-9785-3

  32. McTiernan A (2005) Obesity and cancer: the risks, science, and potential management strategies. Oncology (Williston Park) 19:871–881; discussion 881–872, 885–876

    Google Scholar 

  33. Carmichael AR, Bates T (2004) Obesity and breast cancer: a review of the literature. Breast 13:85–92

    Article  PubMed  CAS  Google Scholar 

  34. Prentice RL, Willett WC, Greenwald P et al (2004) Nutrition and physical activity and chronic disease prevention: research strategies and recommendations. J Natl Cancer Inst 96:1276–1287

    PubMed  Google Scholar 

  35. Gong Z, Agalliu I, Lin DW et al (2007) Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 109:1192–1202

    Article  PubMed  Google Scholar 

  36. Carmichael AR (2006) Obesity as a risk factor for development and poor prognosis of breast cancer. BJOG 113:1160–1166

    Article  PubMed  CAS  Google Scholar 

  37. Carmichael AR (2006) Obesity and prognosis of breast cancer. Obes Rev 7:333–340

    Article  PubMed  CAS  Google Scholar 

  38. Key TJ, Appleby PN, Reeves GK et al (2003) Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst 95:1218–1226

    PubMed  CAS  Google Scholar 

  39. Wasserman L, Flatt SW, Natarajan L et al (2004) Correlates of obesity in postmenopausal women with breast cancer: comparison of genetic, demographic, disease-related, life history and dietary factors. Int J Obes Relat Metab Disord 28:49–56

    Article  PubMed  CAS  Google Scholar 

  40. Mulligan AM, O’Malley FP, Ennis M et al (2007) Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res Treat 106:39–47

    Article  PubMed  CAS  Google Scholar 

  41. DeLellis Henderson K, Rinaldi S, Kaaks R et al (2007) Lifestyle and dietary correlates of plasma insulin-like growth factor binding protein-1 (IGFBP-1), leptin, and C-peptide: the Multiethnic Cohort. Nutr Cancer 58:136–145

    PubMed  CAS  Google Scholar 

  42. Jenab M, Riboli E, Cleveland RJ et al (2007) Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition. Int J Cancer 121:368–376

    Article  PubMed  CAS  Google Scholar 

  43. Renehan AG, Frystyk J, Flyvbjerg A (2006) Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab 17:328–336

    Article  PubMed  CAS  Google Scholar 

  44. Irwin ML, McTiernan A, Bernstein L et al (2005) Relationship of obesity and physical activity with C-peptide, leptin, and insulin-like growth factors in breast cancer survivors. Cancer Epidemiol Biomarkers Prev 14:2881–2888

    Article  PubMed  CAS  Google Scholar 

  45. Goodwin PJ, Ennis M, Pritchard KI et al (2002) Insulin-like growth factor binding proteins 1 and 3 and breast cancer outcomes. Breast Cancer Res Treat 74:65–76

    Article  PubMed  CAS  Google Scholar 

  46. Pierce JP, Stefanick ML, Flatt SW et al (2007) Greater survival after breast cancer in physically active women with high vegetable-fruit intake regardless of obesity. J Clin Oncol 25:2345–2351

    Article  PubMed  Google Scholar 

  47. Cotterchio M, Boucher BA, Kreiger N et al (2008) Dietary phytoestrogen intake-lignans and isoflavones-and breast cancer risk (Canada). Cancer Causes Control 19:259–272

    Article  PubMed  Google Scholar 

  48. Chlebowski RT, Blackburn GL, Thomson CA et al (2006) Dietary fat reduction and breast cancer outcome: interim efficacy results from the Women’s Intervention Nutrition Study. J Natl Cancer Inst 98:1767–1776

    PubMed  Google Scholar 

  49. Thiebaut AC, Schatzkin A, Ballard-Barbash R et al (2006) Dietary fat and breast cancer: contributions from a survival trial. J Natl Cancer Inst 98:1753–1755

    PubMed  Google Scholar 

  50. Knoops KT, de Groot LC, Kromhout D et al (2004) Mediterranean diet, lifestyle factors, and 10-year mortality in elderly European men and women: the HALE project. Jama 292:1433–1439

    Article  PubMed  Google Scholar 

  51. Johnson IT (2007) Phytochemicals and cancer. Proc Nutr Soc 66:207–215

    Article  PubMed  CAS  Google Scholar 

  52. Fernandez E, Gallus S, La Vecchia C (2006) Nutrition and cancer risk: an overview. J Br Menopause Soc 12:139–142

    Article  PubMed  Google Scholar 

  53. Serra-Majem L, Roman B, Estruch R (2006) Scientific evidence of interventions using the Mediterranean diet: a systematic review. Nutr Rev 64:S27–S47

    Article  PubMed  Google Scholar 

  54. McCarty MF, Block KI (2006) Toward a core nutraceutical program for cancer management. Integr Cancer Ther 5:150–171

    Article  PubMed  Google Scholar 

  55. He X, Liu RH (2006) Cranberry phytochemicals: isolation, structure elucidation, and their antiproliferative and antioxidant activities. J Agric Food Chem 54:7069–7074

    Article  PubMed  CAS  Google Scholar 

  56. Suffredini IB, Varella AD, Younes RN (2006) Cytotoxic molecules from natural sources: tapping the Brazilian biodiversity. Anticancer Agents Med Chem 6:367–375

    Article  PubMed  CAS  Google Scholar 

  57. Tan G, Gyllenhaal C, Soejarto DD (2006) Biodiversity as a source of anticancer drugs. Curr Drug Targets 7:265–277

    Article  PubMed  CAS  Google Scholar 

  58. Heinrich M, Bremner P (2006) Ethnobotany and ethnopharmacy – their role for anti-cancer drug development. Curr Drug Targets 7:239–245

    Article  PubMed  CAS  Google Scholar 

  59. Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78:431–441

    Article  PubMed  CAS  Google Scholar 

  60. Duthie SJ (2007) Berry phytochemicals, genomic stability and cancer: evidence for chemoprotection at several stages in the carcinogenic process. Mol Nutr Food Res 51:665–674

    Article  PubMed  CAS  Google Scholar 

  61. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22:19–34

    Article  PubMed  CAS  Google Scholar 

  62. Dixon RA, Ferreira D (2002) Genistein. Phytochemistry 60:205–211

    Article  PubMed  CAS  Google Scholar 

  63. El Touny LH, Banerjee PP (2007) Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochem Biophys Res Commun 361:169–175

    Article  PubMed  CAS  Google Scholar 

  64. Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57:260–277

    Article  PubMed  Google Scholar 

  65. Vantyghem SA, Wilson SM, Postenka CO et al (2005) Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res 65:3396–3403

    PubMed  CAS  Google Scholar 

  66. Mukherjee AK, Basu S, Sarkar N et al (2001) Advances in cancer therapy with plant based natural products. Curr Med Chem 8:1467–1486

    PubMed  CAS  Google Scholar 

  67. So FV, Guthrie N, Chambers AF et al (1997) Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett 112:127–133

    Article  PubMed  CAS  Google Scholar 

  68. So FV, Guthrie N, Chambers AF et al (1996) Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer 26:167–181

    Article  PubMed  CAS  Google Scholar 

  69. Ferguson PJ, Kurowska EM, Freeman DJ et al (2006) In vivo inhibition of growth of human tumor lines by flavonoid fractions from cranberry extract. Nutr Cancer 56:86–94

    Article  PubMed  CAS  Google Scholar 

  70. Ferguson PJ, Kurowska E, Freeman DJ et al (2004) A flavonoid fraction from cranberry extract inhibits proliferation of human tumor cell lines. J Nutr 134:1529–1535

    PubMed  CAS  Google Scholar 

  71. Martin JH, Crotty S, Nelson PN (2007) Phytoestrogens: perpetrators or protectors? Future Oncol 3:307–318

    Article  PubMed  CAS  Google Scholar 

  72. Messina M, McCaskill-Stevens W, Lampe JW (2006) Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 98:1275–1284

    Article  PubMed  Google Scholar 

  73. Sirtori CR, Arnoldi A, Johnson SK (2005) Phytoestrogens: end of a tale? Ann Med 37:423–438

    Article  PubMed  CAS  Google Scholar 

  74. Duffy C, Cyr M (2003) Phytoestrogens: potential benefits and implications for breast cancer survivors. J Womens Health (Larchmt) 12:617–631

    Article  Google Scholar 

  75. Power KA, Thompson LU (2007) Can the combination of flaxseed and its lignans with soy and its isoflavones reduce the growth stimulatory effect of soy and its isoflavones on established breast cancer? Mol Nutr Food Res 51:845–856

    Article  PubMed  CAS  Google Scholar 

  76. Rae JM, Ramus SJ, Waltham M et al (2004) Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metastasis 21:543–552

    Article  PubMed  CAS  Google Scholar 

  77. Rae JM, Creighton CJ, Meck JM et al (2007) MDA-MB-435 cells are derived from M14 melanoma cells – a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19

    Article  PubMed  Google Scholar 

  78. Ellison G, Klinowska T, Westwood RF et al (2002) Further evidence to support the melanocytic origin of MDA-MB-435. Mol Pathol 55:294–299

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

In the interest of brevity, review articles rather than primary publications have been cited wherever possible, with apologies to the many authors whose work could not be cited directly. Dr. Chambers’ research on models of metastasis is supported by grants from the Canadian Breast Cancer Research Alliance “Special Competition in New Approaches to Metastatic Disease” with special funding support from the Canadian Breast Cancer Foundation and The Cancer Research Society (#016506), the Canadian Institutes of Health Research (#42511), and the US Department of Defense Breast Cancer Research Program (W81XWH-06-2-0033), as well as an award from the Lloyd Carr-Harris Foundation. Dr. Chambers is Canada Research Chair in Oncology, supported by the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann F. Chambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, A.F. Influence of diet on metastasis and tumor dormancy. Clin Exp Metastasis 26, 61–66 (2009). https://doi.org/10.1007/s10585-008-9164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9164-4

Keywords

Navigation