Skip to main content

Advertisement

Log in

Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

To date, cancer is still the second most prevalent cause of death after cardiovascular diseases in the industrialized word, whereby the primary cause of cancer is not attributed to primary tumor formation, but rather to the growth of metastases at distant organ sites. For several years it was considered that the well-known phenomenon of organ-specific spreading of tumor cells is mostly a mechanical process either directed passively due to size constraints (mechanical trapping theory) or due to a fertile environment provided by the organ in which tumor cells can proliferate (seed and soil hypothesis). Both mechanisms strongly depend on the adhesive properties of tumor cells either to endothelial cells and/or cancer cells, which are facilitated by a variety of cell adhesion molecules including carbohydrates and integrins. Within the past years it became evident that the organ-specific metastatic spreading of tumor cells does not only rely on heterotypic and homotypic adhesive interactions, but also on the interplay of chemokines and their appropriate receptors. Moreover, the identification of cancer stem cells in various tumor tissues has opened new questions. Cancer stem cells possess self-renewal, differentiation, and tumor-initiating capacities. Thus these cells are ideal candidates to be the seed of a secondary tumor. In the present review we will give a brief overview about the complex process of organ-specific metastasis formation depending on the interplay of adhesion molecules, chemokines, and the putative role of cancer stem cells in metastasis formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heyder C, Gloria-Maercker E, Hatzmann W et al (2005) Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 22(2):99–106

    PubMed  CAS  Google Scholar 

  2. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101

    PubMed  CAS  Google Scholar 

  3. Schluter K, Gassmann P, Enns A et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073

    PubMed  Google Scholar 

  4. Zlotnik A (2006) Involvement of chemokine receptors in organ-specific metastasis. Contrib Microbiol 13:191–199

    PubMed  CAS  Google Scholar 

  5. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572

    PubMed  CAS  Google Scholar 

  6. Fidler IJ (1987) Review: biologic heterogeneity of cancer metastases. Breast Cancer Res Treat 9(1):17–26

    PubMed  CAS  Google Scholar 

  7. Glinsky GV, Glinsky VV (1996) Apoptosis and metastasis: a superior resistance of metastatic cancer cells to programmed cell death. Cancer Lett 101(1):43–51

    PubMed  CAS  Google Scholar 

  8. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56

    PubMed  CAS  Google Scholar 

  9. Weidt C, Niggemann B, Kasenda B et al (2007) Stem cell migration: a quintessential stepping stone to successful therapy. Curr Stem Cell Res Treat 2:89–103

    CAS  Google Scholar 

  10. Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17(1):3–14

    PubMed  CAS  Google Scholar 

  11. Nicolson GL (1989) Metastatic tumor cell interactions with endothelium, basement membrane and tissue. Curr Opin Cell Biol 1(5):1009–1019

    PubMed  CAS  Google Scholar 

  12. Haier J, Korb T, Hotz B et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7(4):507–514; discussion 14–15

    Google Scholar 

  13. Heyder C, Gloria-Maercker E, Entschladen F et al (2002) Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 128(10):533–538

    PubMed  CAS  Google Scholar 

  14. Heyder C, Gloria-Maercker E, Hatzmann W et al (2006) Visualization of tumor cell extravasation. Contrib Microbiol 13:200–208

    PubMed  Google Scholar 

  15. Orr FW, Wang HH, Lafrenie RM et al (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190(3):310–329

    PubMed  CAS  Google Scholar 

  16. Heyder C, Gloria-Maercker E, Hatzmann W et al (2006) Circulating cancer cells: flow cytometry, video microscopy and confocal laser scanning microscopy. In: Hayat MA (ed) Handbook of immunohistochemistry and in situ hybridization of human carcinomas. Volume 4: molecular genetics, gastrointestinal carcinoma, and ovarian carcinoma. Elsevier Academic Press, Burlington, pp 77–88

    Google Scholar 

  17. Engers R, Gabbert HE (2000) Mechanisms of tumor metastasis: cell biological aspects and clinical implications. J Cancer Res Clin Oncol 126(12):682–692

    PubMed  CAS  Google Scholar 

  18. Ley K (1996) Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res 32(4):733–742

    PubMed  CAS  Google Scholar 

  19. Barbour A, Gotley DC (2003) Current concepts of tumour metastasis. Ann Acad Med Singapore 32(2):176–184

    PubMed  CAS  Google Scholar 

  20. Honn KV, Tang DG (1992) Adhesion molecules and tumor cell interaction with endothelium and subendothelial matrix. Cancer Metastasis Rev 11(3–4):353–375

    PubMed  CAS  Google Scholar 

  21. Tang DG, Chen YQ, Newman PJ et al (1993) Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J Biol Chem 268(30):22883–22894

    PubMed  CAS  Google Scholar 

  22. Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14(5):577–584

    PubMed  CAS  Google Scholar 

  23. Pilch J, Habermann R, Felding-Habermann B (2002) Unique ability of integrin alpha(v)beta 3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem 277(24):21930–21938

    PubMed  CAS  Google Scholar 

  24. Tang DG, Honn KV (1994) Adhesion molecules and tumor metastasis: an update. Invasion Metastasis 14(1–6):109–122

    PubMed  CAS  Google Scholar 

  25. Witz IP (2006) Tumor-microenvironment interactions: the selectin-selectin ligand axis in tumor-endothelium cross talk. Cancer Treat Res 130:125–140

    PubMed  CAS  Google Scholar 

  26. Witz IP (2006) The involvement of selectins and their ligands in tumor-progression. Immunol Lett 104(1–2):89–93

    PubMed  CAS  Google Scholar 

  27. Chapman PT, Haskard DO (1995) Leukocyte adhesion molecules. Br Med Bull 51(2):296–311

    PubMed  CAS  Google Scholar 

  28. Elangbam CS, Qualls CW Jr, Dahlgren RR (1997) Cell adhesion molecules – update. Vet Pathol 34(1):61–73

    Article  PubMed  CAS  Google Scholar 

  29. Ugorski M, Laskowska A (2002) Sialyl Lewis(a): a tumor-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol 49(2):303–311

    PubMed  CAS  Google Scholar 

  30. Schindelmann S, Windisch J, Grundmann R et al (2002) Expression profiling of mammary carcinoma cell lines: correlation of in vitro invasiveness with expression of CD24. Tumour Biol 23(3):139–145

    PubMed  CAS  Google Scholar 

  31. Aigner S, Ramos CL, Hafezi-Moghadam A et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12(12):1241–1251

    PubMed  CAS  Google Scholar 

  32. Weichert W, Denkert C, Burkhardt M et al (2005) Cytoplasmic CD24 expression in colorectal cancer independently correlates with shortened patient survival. Clin Cancer Res 11(18):6574–6581

    PubMed  CAS  Google Scholar 

  33. McCarty OJ, Mousa SA, Bray PF et al (2000) Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 96(5):1789–1797

    PubMed  CAS  Google Scholar 

  34. Goetz DJ, Ding H, Atkinson WJ et al (1996) A human colon carcinoma cell line exhibits adhesive interactions with P-selectin under fluid flow via a PSGL-1-independent mechanism. Am J Pathol 149(5):1661–1673

    PubMed  CAS  Google Scholar 

  35. Kristiansen G, Schluns K, Yongwei Y et al (2003) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88(2):231–236

    PubMed  CAS  Google Scholar 

  36. Senner V, Sturm A, Baur I et al (1999) CD24 promotes invasion of glioma cells in vivo. J Neuropathol Exp Neurol 58(8):795–802

    PubMed  CAS  Google Scholar 

  37. Karahan N, Guney M, Oral B et al (2006) CD24 expression is a poor prognostic marker in endometrial carcinoma. Eur J Gynaecol Oncol 27(5):500–504

    PubMed  CAS  Google Scholar 

  38. Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65(23):10783–10793

    PubMed  CAS  Google Scholar 

  39. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988

    PubMed  CAS  Google Scholar 

  40. Kannagi R, Izawa M, Koike T et al (2004) Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci 95(5):377–384

    PubMed  CAS  Google Scholar 

  41. Matsui T, Kojima H, Suzuki H et al (2004) Sialyl Lewisa expression as a predictor of the prognosis of colon carcinoma patients in a prospective randomized clinical trial. Jpn J Clin Oncol 34(10):588–593

    PubMed  Google Scholar 

  42. Akamine S, Nakagoe T, Sawai T et al (2004) Differences in prognosis of colorectal cancer patients based on the expression of sialyl Lewisa, sialyl Lewisx and sialyl Tn antigens in serum and tumor tissue. Anticancer Res 24(4):2541–2546

    PubMed  CAS  Google Scholar 

  43. Paganuzzi M, Bobbio B, Marroni P et al (2003) Prognostic role of serum sialyl Lewisx (CD15s) in colorectal cancer. Oncology 65(1):52–59

    PubMed  CAS  Google Scholar 

  44. Konno A, Hoshino Y, Terashima S et al (2002) Carbohydrate expression profile of colorectal cancer cells is relevant to metastatic pattern and prognosis. Clin Exp Metastasis 19(1):61–70

    PubMed  CAS  Google Scholar 

  45. Nakagoe T, Sawai T, Tsuji T et al (2001) Preoperative serum levels of sialyl Lewis(a), sialyl Lewis(x), and sialyl Tn antigens as prognostic markers after curative resection for colorectal cancer. Cancer Detect Prev 25(3):299–308

    PubMed  CAS  Google Scholar 

  46. Nakagoe T, Sawai T, Tsuji T et al (2001) Increased serum level of sialyl Lewis(x) antigen in blood from the tumor drainage vein in patients with non-polypoid growth type of colorectal cancer. J Exp Clin Cancer Res 20(1):85–90

    PubMed  CAS  Google Scholar 

  47. Hanski C, Hanski ML, Zimmer T et al (1995) Characterization of the major sialyl-Lex-positive mucins present in colon, colon carcinoma, and sera of patients with colorectal cancer. Cancer Res 55(4):928–933

    PubMed  CAS  Google Scholar 

  48. Mizuguchi S, Inoue K, Iwata T et al (2006) High serum concentrations of Sialyl Lewisx predict multilevel N2 disease in non-small-cell lung cancer. Ann Surg Oncol 13(7):1010–1018

    PubMed  Google Scholar 

  49. Tsumatori G, Ozeki Y, Takagi K et al (1999) Relation between the serum E-selectin level and the survival rate of patients with resected non-small cell lung cancers. Jpn J Cancer Res 90(3):301–307

    PubMed  CAS  Google Scholar 

  50. Ogawa J, Sano A, Inoue H et al (1995) Expression of Lewis-related antigen and prognosis in stage I non-small cell lung cancer. Ann Thorac Surg 59(2):412–415

    PubMed  CAS  Google Scholar 

  51. Ogawa J, Sano A, Koide S et al (1994) Relation between recurrence and expression of proliferating cell nuclear antigen, sialyl LewisX, and sialyl Lewis(a) in lung cancer. J Thorac Cardiovasc Surg 108(2):329–336

    PubMed  CAS  Google Scholar 

  52. Ashizawa T, Aoki T, Yamazaki T et al (2003) The clinical significance of sialyl Lewis antigen expression in the spread of gastric cancer. Flow cytometric DNA analysis. J Exp Clin Cancer Res 22(1):91–98

    PubMed  CAS  Google Scholar 

  53. Ura H, Denno R, Hirata K et al (1997) Close correlation between increased sialyl-Lewisx expression and metastasis in human gastric carcinoma. World J Surg 21(7):773–776

    PubMed  CAS  Google Scholar 

  54. Peracaula R, Tabares G, Lopez-Ferrer A et al (2005) Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconj J 22(3):135–144

    PubMed  CAS  Google Scholar 

  55. Iwai K, Ishikura H, Kaji M et al (1993) Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium. Int J Cancer 54(6):972–977

    PubMed  CAS  Google Scholar 

  56. Idikio HA (1997) Sialyl-Lewis-X, Gleason grade and stage in non-metastatic human prostate cancer. Glycoconj J 14(7):875–877

    PubMed  CAS  Google Scholar 

  57. Jorgensen T, Berner A, Kaalhus O et al (1995) Up-regulation of the oligosaccharide sialyl LewisX: a new prognostic parameter in metastatic prostate cancer. Cancer Res 55(9):1817–1819

    PubMed  CAS  Google Scholar 

  58. Steplewska-Mazur K, Gabriel A, Zajecki W et al (2000) Breast cancer progression and expression of blood group-related tumor-associated antigens. Hybridoma 19(2):129–133

    PubMed  CAS  Google Scholar 

  59. Bevilacqua MP, Stengelin S, Gimbrone MA Jr et al (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243(4895):1160–1165

    PubMed  CAS  Google Scholar 

  60. Montgomery KF, Osborn L, Hession C et al (1991) Activation of endothelial-leukocyte adhesion molecule 1 (ELAM-1) gene transcription. Proc Natl Acad Sci USA 88(15):6523–6527

    PubMed  CAS  Google Scholar 

  61. ten Kate M, Hofland LJ, van Koetsveld PM et al (2006) Pro-inflammatory cytokines affect pancreatic carcinoma cell. Endothelial cell interactions. JOP 7(5):454–464

    PubMed  Google Scholar 

  62. van Grevenstein WM, Hofland LJ, Jeekel J et al (2006) The expression of adhesion molecules and the influence of inflammatory cytokines on the adhesion of human pancreatic carcinoma cells to mesothelial monolayers. Pancreas 32(4):396–402

    PubMed  Google Scholar 

  63. Khatib AM, Auguste P, Fallavollita L et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167(3):749–759

    PubMed  CAS  Google Scholar 

  64. ten Kate M, Hofland LJ, van Grevenstein WM et al (2004) Influence of proinflammatory cytokines on the adhesion of human colon carcinoma cells to lung microvascular endothelium. Int J Cancer 112(6):943–950

    PubMed  CAS  Google Scholar 

  65. Dong C, Slattery MJ, Liang S et al (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2(3):145–159

    PubMed  Google Scholar 

  66. Giancotti FG (2000) Complexity and specificity of integrin signalling. Nat Cell Biol 2(1):E13–E14

    PubMed  CAS  Google Scholar 

  67. Longhurst CM, Jennings LK (1998) Integrin-mediated signal transduction. Cell Mol Life Sci 54(6):514–526

    PubMed  CAS  Google Scholar 

  68. Aplin AE, Howe A, Alahari SK et al (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197–263

    PubMed  CAS  Google Scholar 

  69. Stallmach A, von Lampe B, Matthes H et al (1992) Diminished expression of integrin adhesion molecules on human colonic epithelial cells during the benign to malign tumour transformation. Gut 33(3):342–346

    PubMed  CAS  Google Scholar 

  70. Okazaki K, Nakayama Y, Shibao K et al (1998) Enhancement of metastatic activity of colon cancer as influenced by expression of cell surface antigens. J Surg Res 78(1):78–84

    PubMed  CAS  Google Scholar 

  71. Kikkawa H, Kaihou M, Horaguchi N et al (2002) Role of integrin alpha(v)beta3 in the early phase of liver metastasis: PET and IVM analyses. Clin Exp Metastasis 19(8):717–725

    PubMed  CAS  Google Scholar 

  72. Enns A, Korb T, Schluter K et al (2005) Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer 41(7):1065–1072

    PubMed  CAS  Google Scholar 

  73. Enns A, Gassmann P, Schluter K et al (2004) Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg 8(8):1049–1059; discussion 60

    Google Scholar 

  74. Haier J, Nasralla MY, Nicolson GL (1999) Beta1-integrin-mediated dynamic adhesion of colon carcinoma cells to extracellular matrix under laminar flow. Clin Exp Metastasis 17(5):377–387

    PubMed  CAS  Google Scholar 

  75. Byzova TV, Kim W, Midura RJ et al (2000) Activation of integrin alpha(V)beta(3) regulates cell adhesion and migration to bone sialoprotein. Exp Cell Res 254(2):299–308

    PubMed  CAS  Google Scholar 

  76. Gehlsen KR, Davis GE, Sriramarao P (1992) Integrin expression in human melanoma cells with differing invasive and metastatic properties. Clin Exp Metastasis 10(2):111–120

    PubMed  CAS  Google Scholar 

  77. Felding-Habermann B, Fransvea E, O’Toole TE et al (2002) Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clin Exp Metastasis 19(5):427–436

    PubMed  CAS  Google Scholar 

  78. Hieken TJ, Ronan SG, Farolan M et al (1999) Molecular prognostic markers in intermediate-thickness cutaneous malignant melanoma. Cancer 85(2):375–382

    PubMed  CAS  Google Scholar 

  79. Hsu MY, Shih DT, Meier FE et al (1998) Adenoviral gene transfer of beta(3) integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol 153(5):1435–1442

    PubMed  CAS  Google Scholar 

  80. Vink J, Thomas L, Etoh T et al (1993) Role of beta-1 integrins in organ specific adhesion of melanoma cells in vitro. Lab Invest 68(2):192–203

    PubMed  CAS  Google Scholar 

  81. Johnson JP (1999) Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 18(3):345–357

    PubMed  CAS  Google Scholar 

  82. Klemke M, Weschenfelder T, Konstandin MH et al (2007) High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 212(2):368–374

    PubMed  CAS  Google Scholar 

  83. Langley RR, Carlisle R, Ma L et al (2001) Endothelial expression of vascular cell adhesion molecule-1 correlates with metastatic pattern in spontaneous melanoma. Microcirculation 8(5):335–345

    PubMed  CAS  Google Scholar 

  84. Modur V, Zimmerman GA, Prescott SM et al (1996) Endothelial cell inflammatory responses to tumor necrosis factor alpha. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. J Biol Chem 271(22):13094–13102

    PubMed  CAS  Google Scholar 

  85. Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386

    PubMed  CAS  Google Scholar 

  86. Hangan D, Morris VL, Boeters L et al (1997) An epitope on VLA-6 (alpha6beta1) integrin involved in migration but not adhesion is required for extravasation of murine melanoma B16F1 cells in liver. Cancer Res 57(17):3812–3817

    PubMed  CAS  Google Scholar 

  87. Pochec E, Litynska A, Amoresano A et al (2003) Glycosylation profile of integrin alpha 3 beta 1 changes with melanoma progression. Biochim Biophys Acta 1643(1–3):113–123

    PubMed  CAS  Google Scholar 

  88. Krishnan V, Bane SM, Kawle PD et al (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24

    PubMed  CAS  Google Scholar 

  89. Gomes N, Vassy J, Lebos C et al (2004) Breast adenocarcinoma cell adhesion to the vascular subendothelium in whole blood and under flow conditions: effects of alphavbeta3 and alphaIIbbeta3 antagonists. Clin Exp Metastasis 21(6):553–561

    PubMed  CAS  Google Scholar 

  90. Rolli M, Fransvea E, Pilch J et al (2003) Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells. Proc Natl Acad Sci USA 100(16):9482–9487

    PubMed  CAS  Google Scholar 

  91. Wong NC, Mueller BM, Barbas CF et al (1998) Alphav integrins mediate adhesion and migration of breast carcinoma cell lines. Clin Exp Metastasis 16(1):50–61

    PubMed  CAS  Google Scholar 

  92. Pecheur I, Peyruchaud O, Serre CM et al (2002) Integrin alpha(v)beta3 expression confers on tumor cells a greater propensity to metastasize to bone. FASEB J 16(10):1266–1268

    PubMed  CAS  Google Scholar 

  93. Sloan EK, Pouliot N, Stanley KL et al (2006) Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res 8(2):R20

    PubMed  Google Scholar 

  94. Sung V, Stubbs JT 3rd, Fisher L et al (1998) Bone sialoprotein supports breast cancer cell adhesion proliferation and migration through differential usage of the alpha(v)beta3 and alpha(v)beta5 integrins. J Cell Physiol 176(3):482–494

    PubMed  CAS  Google Scholar 

  95. Abdel-Ghany M, Cheng HC, Elble RC et al (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276(27):25438–25446

    PubMed  CAS  Google Scholar 

  96. Mukhopadhyay R, Theriault RL, Price JE (1999) Increased levels of alpha6 integrins are associated with the metastatic phenotype of human breast cancer cells. Clin Exp Metastasis 17(4):325–332

    PubMed  CAS  Google Scholar 

  97. Wewer UM, Shaw LM, Albrechtsen R et al (1997) The integrin alpha 6 beta 1 promotes the survival of metastatic human breast carcinoma cells in mice. Am J Pathol 151(5):1191–1198

    PubMed  CAS  Google Scholar 

  98. Chandrasekaran S, Guo NH, Rodrigues RG et al (1999) Pro-adhesive and chemotactic activities of thrombospondin-1 for breast carcinoma cells are mediated by alpha3beta1 integrin and regulated by insulin-like growth factor-1 and CD98. J Biol Chem 274(16):11408–11416

    PubMed  CAS  Google Scholar 

  99. Morini M, Mottolese M, Ferrari N et al (2000) The alpha(3)beta(1) integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase {B} ({MMP-9}) activity. Int J Cancer 87(3):336–342

    PubMed  CAS  Google Scholar 

  100. Dittmar T, Husemann A, Schewe Y et al (2002) Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J 16(13):1823–1825

    PubMed  CAS  Google Scholar 

  101. Brandt BH, Roetger A, Dittmar T et al (1999) c-erbB-2/ EGFR as dominant heterodimerization partners determine a motogenic phenotype in human breast cancer cells. FASEB J 13:1939–1949

    PubMed  CAS  Google Scholar 

  102. Brandt B, Heyder C, Gloria-Maercker E et al (2005) 3D-extravasation model – selection of highly motile and metastatic cancer cells. Semin Cancer Biol 15(5):387–395

    PubMed  Google Scholar 

  103. Shimizu H, Koyama N, Asada M et al (2002) Aberrant expression of integrin and erbB subunits in breast cancer cell lines. Int J Oncol 21(5):1073–1079

    PubMed  CAS  Google Scholar 

  104. Beekman KW, Colevas AD, Cooney K et al (2006) Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin Genitourin Cancer 4(4):299–302

    PubMed  CAS  Google Scholar 

  105. Cai W, Wu Y, Chen K et al (2006) In vitro and in vivo characterization of 64Cu-labeled AbegrinTM, a humanized monoclonal antibody against Integrin {alpha}v{beta}3. Cancer Res 66(19):9673–9681

    PubMed  CAS  Google Scholar 

  106. Eskens FA, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alphavbeta3 and alphavbeta5 in patients with advanced solid tumours. Eur J Cancer 39(7):917–926

    PubMed  CAS  Google Scholar 

  107. Gramoun A, Shorey S, Bashutski JD et al (2007) Effects of Vitaxin(R), a novel therapeutic in trial for metastatic bone tumors, on osteoclast functions in vitro. J Cell Biochem (in press). doi:10.1002/jcb.21296

  108. Mulgrew K, Kinneer K, Yao XT et al (2006) Direct targeting of alphavbeta3 integrin on tumor cells with a monoclonal antibody, Abegrin. Mol Cancer Ther 5(12):3122–3129

    PubMed  CAS  Google Scholar 

  109. Patel SR, Jenkins J, Papadopolous N et al (2001) Pilot study of vitaxin – an angiogenesis inhibitor-in patients with advanced leiomyosarcomas. Cancer 92(5):1347–1348

    PubMed  CAS  Google Scholar 

  110. Raguse JD, Gath HJ, Bier J et al (2004) Cilengitide (EMD 121974) arrests the growth of a heavily pretreated highly vascularised head and neck tumour. Oral Oncol 40(2):228–230

    PubMed  CAS  Google Scholar 

  111. Reinmuth N, Liu W, Ahmad SA et al (2003) Alphavbeta3 integrin antagonist S247 decreases colon cancer metastasis and angiogenesis and improves survival in mice. Cancer Res 63(9):2079–2087

    PubMed  CAS  Google Scholar 

  112. Shannon KE, Keene JL, Settle SL et al (2004) Anti-metastatic properties of RGD-peptidomimetic agents S137 and S247. Clin Exp Metastasis 21(2):129–138

    PubMed  CAS  Google Scholar 

  113. Yamada S, Bu XY, Khankaldyyan V et al (2006) Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice. Neurosurgery 59(6):1304–1312; discussion 12

    Google Scholar 

  114. Buerkle MA, Pahernik SA, Sutter A et al (2002) Inhibition of the alpha-nu integrins with a cyclic {RGD} peptide impairs angiogenesis, growth and metastasis of solid tumours in vivo. Br J Cancer 86(5):788–795

    PubMed  CAS  Google Scholar 

  115. Haier J, Goldmann U, Hotz B et al (2002) Inhibition of tumor progression and neoangiogenesis using cyclic RGD-peptides in a chemically induced colon carcinoma in rats. Clin Exp Metastasis 19(8):665–672

    PubMed  CAS  Google Scholar 

  116. Nemeth JA, Cher ML, Zhou Z et al (2003) Inhibition of alpha(v)beta3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin Exp Metastasis 20(5):413–420

    PubMed  CAS  Google Scholar 

  117. Chatterjee S, Matsumura A, Schradermeier J et al (2000) Human malignant glioma therapy using anti-alpha(v)beta(3) integrin agents. J Neurooncol 46(2):135–144

    PubMed  CAS  Google Scholar 

  118. Beer AJ, Haubner R, Goebel M et al (2005) Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med 46(8):1333–1341

    PubMed  CAS  Google Scholar 

  119. Chen X, Hou Y, Tohme M et al (2004) Pegylated Arg-Gly-Asp peptide:64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J Nucl Med 45(10):1776–1783

    PubMed  CAS  Google Scholar 

  120. Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm 3(5):472–487

    PubMed  CAS  Google Scholar 

  121. Temming K, Schiffelers RM, Molema G et al (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8(6):381–402

    PubMed  CAS  Google Scholar 

  122. Albert JM, Cao C, Geng L et al (2006) Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models. Int J Radiat Oncol Biol Phys 65(5):1536–1543

    PubMed  CAS  Google Scholar 

  123. Burke PA, DeNardo SJ, Miers LA et al (2002) Cilengitide targeting of alpha(v)beta(3) integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Res 62(15):4263–4272

    PubMed  CAS  Google Scholar 

  124. Nabors LB, Mikkelsen T, Rosenfeld SS et al (2007) Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 25(13):1651–1657

    PubMed  CAS  Google Scholar 

  125. Friess H, Langrehr JM, Oettle H et al (2006) A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer 6:285

    PubMed  Google Scholar 

  126. Goodman SL, Holzemann G, Sulyok GA et al (2002) Nanomolar small molecule inhibitors for alphav(beta)6, alphav(beta)5, and alphav(beta)3 integrins. J Med Chem 45(5):1045–1051

    PubMed  CAS  Google Scholar 

  127. Harms JF, Welch DR, Samant RS et al (2004) A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 21(2):119–128

    PubMed  CAS  Google Scholar 

  128. Gutheil JC, Campbell TN, Pierce PR et al (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 6(8):3056–3061

    PubMed  CAS  Google Scholar 

  129. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545

    PubMed  CAS  Google Scholar 

  130. Balabanian K, Lagane B, Infantino S et al (2005) The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 280(42):35760–35766

    PubMed  CAS  Google Scholar 

  131. Burns JM, Summers BC, Wang Y et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203(9):2201–2213

    PubMed  CAS  Google Scholar 

  132. Zlotnik A, Yoshie O, Nomiyama H (2006) The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol 7(12):243

    PubMed  Google Scholar 

  133. Butcher EC, Williams M, Youngman K et al (1999) Lymphocyte trafficking and regional immunity. Adv Immunol 72:209–253

    Article  PubMed  CAS  Google Scholar 

  134. Campbell JJ, Butcher EC (2000) Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr Opin Immunol 12(3):336–341

    PubMed  CAS  Google Scholar 

  135. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12(2):121–127

    PubMed  CAS  Google Scholar 

  136. Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79(4):639–651

    PubMed  CAS  Google Scholar 

  137. Conti I, Dube C, Rollins BJ (2004) Chemokine-based pathogenetic mechanisms in cancer. Novartis Found Symp 256:29–41; discussion 52, 266–269

    Google Scholar 

  138. Rollins BJ (2006) Inflammatory chemokines in cancer growth and progression. Eur J Cancer 42(6):760–767

    PubMed  CAS  Google Scholar 

  139. Kollmar O, Scheuer C, Menger MD et al (2006) Macrophage inflammatory protein-2 promotes angiogenesis, cell migration, and tumor growth in hepatic metastasis. Ann Surg Oncol 13(2):263–275

    PubMed  Google Scholar 

  140. Marchesi F, Monti P, Leone BE et al (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64(22):8420–8427

    PubMed  CAS  Google Scholar 

  141. Wang JM, Deng X, Gong W et al (1998) Chemokines and their role in tumor growth and metastasis. J Immunol Methods 220(1–2):1–17

    PubMed  CAS  Google Scholar 

  142. Bartolome RA, Galvez BG, Longo N et al (2004) Stromal cell-derived factor-1alpha promotes melanoma cell invasion across basement membranes involving stimulation of membrane-type 1 matrix metalloproteinase and Rho GTPase activities. Cancer Res 64(7):2534–2543

    PubMed  CAS  Google Scholar 

  143. Campbell AS, Albo D, Kimsey TF et al (2005) Macrophage inflammatory protein-3alpha promotes pancreatic cancer cell invasion. J Surg Res 123(1):96–101

    PubMed  CAS  Google Scholar 

  144. Jones DH, Nakashima T, Sanchez OH et al (2006) Regulation of cancer cell migration and bone metastasis by RANKL. Nature 440(7084):692–696

    PubMed  CAS  Google Scholar 

  145. Lee BC, Lee TH, Avraham S et al (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2(6):327–338

    PubMed  CAS  Google Scholar 

  146. Wright N, de Lera TL, Garcia-Moruja C et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102(6):1978–1984

    PubMed  CAS  Google Scholar 

  147. Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767

    PubMed  CAS  Google Scholar 

  148. Cabioglu N, Yazici MS, Arun B et al (2005) CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res 11(16):5686–5693

    PubMed  CAS  Google Scholar 

  149. Kang H, Watkins G, Parr C et al (2005) Stromal cell derived factor-1: its influence on invasiveness and migration of breast cancer cells in vitro, and its association with prognosis and survival in human breast cancer. Breast Cancer Res 7(4):R402–R410

    PubMed  CAS  Google Scholar 

  150. Kato M, Kitayama J, Kazama S et al (2003) Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5(5):R144–R150

    PubMed  CAS  Google Scholar 

  151. Cardones AR, Murakami T, Hwang ST (2003) CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res 63(20):6751–6757

    PubMed  CAS  Google Scholar 

  152. Kim J, Mori T, Chen SL et al (2006) Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann Surg 244(1):113–120

    PubMed  Google Scholar 

  153. Longo-Imedio MI, Longo N, Trevino I et al (2005) Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. Int J Cancer 117(5):861–865

    PubMed  CAS  Google Scholar 

  154. Murakami T, Cardones AR, Hwang ST (2004) Chemokine receptors and melanoma metastasis. J Dermatol Sci 36(2):71–78

    PubMed  CAS  Google Scholar 

  155. Murakami T, Maki W, Cardones AR et al (2002) Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res 62(24):7328–7334

    PubMed  CAS  Google Scholar 

  156. Robledo MM, Bartolome RA, Longo N et al (2001) Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem 276(48):45098–45105

    PubMed  CAS  Google Scholar 

  157. Brueckmann M, Borggrefe M (2007) Therapeutic potential of fractalkine: a novel approach to metastatic colon cancer. Gut 56(3):314–316

    PubMed  CAS  Google Scholar 

  158. Gunther K, Leier J, Henning G et al (2005) Prediction of lymph node metastasis in colorectal carcinoma by expressionof chemokine receptor CCR7. Int J Cancer 116(5):726–733

    PubMed  Google Scholar 

  159. Kim J, Takeuchi H, Lam ST et al (2005) Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 23(12):2744–2753

    PubMed  CAS  Google Scholar 

  160. Kollmar O, Junker B, Rupertus K et al (2007) Studies on MIP-2 and CXCR2 expression in a mouse model of extrahepatic colorectal metastasis. Eur J Surg Oncol (in press). doi:10.1016/j.jss.2007.02.010

  161. Ottaiano A, di Palma A, Napolitano M et al (2005) Inhibitory effects of anti-CXCR4 antibodies on human colon cancer cells. Cancer Immunol Immunother 54(8):781–791

    PubMed  CAS  Google Scholar 

  162. Schimanski CC, Schwald S, Simiantonaki N et al (2005) Effect of chemokine receptors CXCR4 and CCR7 on the metastatic behavior of human colorectal cancer. Clin Cancer Res 11(5):1743–1750

    PubMed  CAS  Google Scholar 

  163. Zeelenberg IS, Ruuls-Van Stalle L, Roos E (2003) The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 63(13):3833–3839

    PubMed  CAS  Google Scholar 

  164. Arya M, Patel HR, McGurk C et al (2004) The importance of the CXCL12-CXCR4 chemokine ligand-receptor interaction in prostate cancer metastasis. J Exp Ther Oncol 4(4):291–303

    PubMed  CAS  Google Scholar 

  165. Mochizuki H, Matsubara A, Teishima J et al (2004) Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun 320(3):656–663

    PubMed  CAS  Google Scholar 

  166. Sun YX, Schneider A, Jung Y et al (2005) Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20(2):318–329

    PubMed  CAS  Google Scholar 

  167. Vaday GG, Hua SB, Peehl DM et al (2004) CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies. Clin Cancer Res 10(16):5630–5639

    PubMed  CAS  Google Scholar 

  168. Wang J, Wang J, Sun Y et al (2005) Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 17(12):1578–1592

    PubMed  CAS  Google Scholar 

  169. Mashino K, Sadanaga N, Yamaguchi H et al (2002) Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res 62(10):2937–2941

    PubMed  CAS  Google Scholar 

  170. Yan C, Zhu ZG, Yu YY et al (2004) Expression of vascular endothelial growth factor C and chemokine receptor CCR7 in gastric carcinoma and their values in predicting lymph node metastasis. World J Gastroenterol 10(6):783–790

    PubMed  CAS  Google Scholar 

  171. Hartmann TN, Burger M, Burger JA (2004) The role of adhesion molecules and chemokine receptor CXCR4 (CD184) in small cell lung cancer. J Biol Regul Homeost Agents 18(2):126–130

    PubMed  CAS  Google Scholar 

  172. Nakamura ES, Koizumi K, Kobayashi M et al (2006) RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23(1):9–18

    PubMed  CAS  Google Scholar 

  173. Takanami I (2003) Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer 105(2):186–189

    PubMed  CAS  Google Scholar 

  174. Almofti A, Uchida D, Begum NM et al (2004) The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int J Oncol 25(1):65–71

    PubMed  CAS  Google Scholar 

  175. Ishikawa T, Nakashiro K, Hara S et al (2006) CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int J Oncol 28(1):61–66

    PubMed  CAS  Google Scholar 

  176. Uchida D, Begum NM, Almofti A et al (2003) Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Exp Cell Res 290(2):289–302

    PubMed  CAS  Google Scholar 

  177. Uchida D, Begum NM, Tomizuka Y et al (2004) Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Invest 84(12):1538–1546

    PubMed  CAS  Google Scholar 

  178. Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167(8):4747–4757

    PubMed  CAS  Google Scholar 

  179. Russell HV, Hicks J, Okcu MF et al (2004) CXCR4 expression in neuroblastoma primary tumors is associated with clinical presentation of bone and bone marrow metastases. J Pediatr Surg 39(10):1506–1511

    PubMed  Google Scholar 

  180. Zhang L, Yeger H, Das B et al (2007) Tissue microenvironment modulates CXCR4 expression and tumor metastasis in neuroblastoma. Neoplasia 9(1):36–46

    PubMed  CAS  Google Scholar 

  181. Kodama J, Hasengaowa, Kusumoto T et al (2007) Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol 18(1):70–76

  182. Zhang JP, Lu WG, Ye F et al (2007) Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer 17(2):478–483

    PubMed  Google Scholar 

  183. Ding Y, Shimada Y, Maeda M et al (2003) Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res 9(9):3406–3412

    PubMed  CAS  Google Scholar 

  184. Wang J, Xi L, Hunt JL et al (2004) Expression pattern of chemokine receptor 6 (CCR6) and CCR7 in squamous cell carcinoma of the head and neck identifies a novel metastatic phenotype. Cancer Res 64(5):1861–1866

    PubMed  CAS  Google Scholar 

  185. Liang Z, Yoon Y, Votaw J et al (2005) Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 65(3):967–971

    Article  PubMed  CAS  Google Scholar 

  186. Smith MC, Luker KE, Garbow JR et al (2004) CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64(23):8604–8412

    PubMed  CAS  Google Scholar 

  187. Liang Z, Wu T, Lou H et al (2004) Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64(12):4302–4308

    PubMed  CAS  Google Scholar 

  188. Kang H, Mansel RE, Jiang WG (2005) Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells. Int J Oncol 26(5):1429–1434

    PubMed  CAS  Google Scholar 

  189. Cabioglu N, Sahin A, Doucet M et al (2005) Chemokine receptor CXCR4 expression in breast cancer as a potential predictive marker of isolated tumor cells in bone marrow. Clin Exp Metastasis 22(1):39–46

    PubMed  CAS  Google Scholar 

  190. Dittmar T, Husemann A, Schewe Y et al (2002) Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J 16(13):1823–1825

    PubMed  CAS  Google Scholar 

  191. Li YM, Pan Y, Wei Y et al (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469

    PubMed  CAS  Google Scholar 

  192. Schabath H, Runz S, Joumaa S et al (2006) CD24 affects CXCR4 function in pre-B lymphocytes and breast carcinoma cells. J Cell Sci 119(Pt 2):314–325

    PubMed  CAS  Google Scholar 

  193. Miki J, Furusato B, Li H et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67(7):3153–3161

    PubMed  CAS  Google Scholar 

  194. Sun YX, Wang J, Shelburne CE et al (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89(3):462–473

    PubMed  CAS  Google Scholar 

  195. Darash-Yahana M, Pikarsky E, Abramovitch R et al (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18(11):1240–1242

    PubMed  CAS  Google Scholar 

  196. McCabe NP, De S, Vasanji A et al (2007) Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene (in press). doi:10.1038/sj.onc.1210249

  197. Sun YX, Fang M, Wang J et al (2007) Expression and activation of alpha(v)beta(3) integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67(1):61–73

    PubMed  CAS  Google Scholar 

  198. Kukreja P, Abdel-Mageed AB, Mondal D et al (2005) Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 65(21):9891–9898

    PubMed  CAS  Google Scholar 

  199. Engl T, Relja B, Marian D et al (2006) CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 8(4):290–301

    PubMed  CAS  Google Scholar 

  200. Takeuchi H, Fujimoto A, Tanaka M et al (2004) CCL21 chemokine regulates chemokine receptor CCR7 bearing malignant melanoma cells. Clin Cancer Res 10(7):2351–2358

    PubMed  CAS  Google Scholar 

  201. Wiley HE, Gonzalez EB, Maki W et al (2001) Expression of CC chemokine receptor-7 and regional lymph node metastasis of B16 murine melanoma. J Natl Cancer Inst 93(21):1638–1643

    Article  PubMed  CAS  Google Scholar 

  202. Murakami T, Cardones AR, Finkelstein SE et al (2003) Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med 198(9):1337–1347

    PubMed  CAS  Google Scholar 

  203. Kawada K, Sonoshita M, Sakashita H et al (2004) Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64(11):4010–4017

    PubMed  CAS  Google Scholar 

  204. Monteagudo C, Martin JM, Jorda E et al (2006) CXCR3 chemokine receptor immunoreactivity in primary cutaneous malignant melanoma: correlation with clinicopathologic prognostic factors. J Clin Pathol 60(6):596–599

    PubMed  Google Scholar 

  205. Scala S, Giuliano P, Ascierto PA et al (2006) Human melanoma metastases express functional CXCR4. Clin Cancer Res 12(8):2427–2433

    PubMed  CAS  Google Scholar 

  206. Mori T, Kim J, Yamano T et al (2005) Epigenetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 65(5):1800–1807

    PubMed  CAS  Google Scholar 

  207. Zhang T, Somasundaram R, Berencsi K et al (2005) CXC chemokine ligand 12 (stromal cell-derived factor 1 alpha) and CXCR4-dependent migration of CTLs toward melanoma cells in organotypic culture. J Immunol 174(9):5856–5863

    PubMed  CAS  Google Scholar 

  208. Vianello F, Papeta N, Chen T et al (2006) Murine B16 melanomas expressing high levels of the chemokine stromal-derived factor-1/CXCL12 induce tumor-specific T cell chemorepulsion and escape from immune control. J Immunol 176(5):2902–2914

    PubMed  CAS  Google Scholar 

  209. Ottaiano A, Franco R, Aiello Talamanca A et al (2006) Overexpression of both CXC chemokine receptor 4 and vascular endothelial growth factor proteins predicts early distant relapse in stage II-III colorectal cancer patients. Clin Cancer Res 12(9):2795–2803

    PubMed  CAS  Google Scholar 

  210. Kawada K, Hosogi H, Sonoshita M et al (2007) Chemokine receptor CXCR3 promotes colon cancer metastasis to lymph nodes. Oncogene 26(32):4679–4688

    PubMed  CAS  Google Scholar 

  211. Ghadjar P, Coupland SE, Na IK et al (2006) Chemokine receptor CCR6 expression level and liver metastases in colorectal cancer. J Clin Oncol 24(12):1910–1916

    PubMed  CAS  Google Scholar 

  212. Rubie C, Oliveira V, Kempf K et al (2006) Involvement of chemokine receptor CCR6 in colorectal cancer metastasis. Tumour Biol 27(3):166–174

    PubMed  CAS  Google Scholar 

  213. Su L, Zhang J, Xu H et al (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 11(23):8273–8280

    PubMed  CAS  Google Scholar 

  214. De Clercq E (2003) The bicyclam AMD3100 story. Nat Rev Drug Discov 2(7):581–587

    PubMed  Google Scholar 

  215. De Clercq E (2005) Potential clinical applications of the CXCR4 antagonist bicyclam AMD3100. Mini Rev Med Chem 5(9):805–824

    PubMed  Google Scholar 

  216. Rubin JB, Kung AL, Klein RS et al (2003) A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100(23):13513–13518

    PubMed  CAS  Google Scholar 

  217. Saur D, Seidler B, Schneider G et al (2005) CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129(4):1237–1250

    PubMed  CAS  Google Scholar 

  218. Scotton CJ, Wilson JL, Scott K et al (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62(20):5930–5938

    PubMed  CAS  Google Scholar 

  219. Yasumoto K, Koizumi K, Kawashima A et al (2006) Role of the CXCL12/CXCR4 axis in peritoneal carcinomatosis of gastric cancer. Cancer Res 66(4):2181–2187

    PubMed  CAS  Google Scholar 

  220. Rosenkilde MM, Gerlach LO, Hatse S et al (2007) Molecular mechanism of action of monocyclam versus bicyclam non-peptide antagonists in the CXCR4 chemokine receptor. J Biol Chem

  221. Yang L, Jackson E, Woerner BM et al (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67(2):651–658

    PubMed  CAS  Google Scholar 

  222. Burger M, Glodek A, Hartmann T et al (2003) Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 22(50):8093–8101

    PubMed  CAS  Google Scholar 

  223. Tamamura H, Fujii N (2005) The therapeutic potential of CXCR4 antagonists in the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Expert Opin Ther Targets 9(6):1267–1282

    PubMed  CAS  Google Scholar 

  224. Tamamura H, Hori A, Kanzaki N et al (2003) T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 550(1–3):79–83

    PubMed  CAS  Google Scholar 

  225. Tamamura H, Tsutsumi H, Masuno H et al (2007) Development of low molecular weight CXCR4 antagonists by exploratory structural tuning of cyclic tetra- and pentapeptide-scaffolds towards the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Curr Med Chem 14(1):93–102

    PubMed  CAS  Google Scholar 

  226. Tsutsumi H, Tanaka T, Ohashi N et al (2006) Therapeutic potential of the chemokine receptor CXCR4 antagonists as multifunctional agents. Biopolymers 88(2):279–289

    Google Scholar 

  227. Mori T, Doi R, Koizumi M et al (2004) CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol Cancer Ther 3(1):29–37

    PubMed  CAS  Google Scholar 

  228. Tucker GC (2003) Alpha v integrin inhibitors and cancer therapy. Curr Opin Investig Drugs 4(6):722–731

    PubMed  CAS  Google Scholar 

  229. Peled A, Grabovsky V, Habler L et al (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34(+) cells on vascular endothelium under shear flow. J Clin Invest 104(9):1199–1211

    PubMed  CAS  Google Scholar 

  230. Sell S (2005) Leukemia: stem cells, maturation arrest, and differentiation therapy. Stem Cell Rev 1(3):197–205

    PubMed  CAS  Google Scholar 

  231. Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  232. Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    PubMed  CAS  Google Scholar 

  233. Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823–835

    PubMed  CAS  Google Scholar 

  234. Fang D, Nguyen TK, Leishear K et al (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328–9337

    PubMed  CAS  Google Scholar 

  235. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    PubMed  CAS  Google Scholar 

  236. O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    PubMed  CAS  Google Scholar 

  237. Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104(24):10158–10163

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Westermann-Westdorp-Foundation, Essen, Germany, and the Fritz-Bender-Foundation, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmar, T., Heyder, C., Gloria-Maercker, E. et al. Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25, 11–32 (2008). https://doi.org/10.1007/s10585-007-9095-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9095-5

Keywords

Navigation