Skip to main content

Advertisement

Log in

Flavonoid Baicalein Modulates H2O2-Induced Mitogen-Activated Protein Kinases Activation and Cell Death in SK-N-MC Cells

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is believed that ROS-induced oxidative stress triggers numerous signaling pathways which are involved in neurodegenerative diseases, including Alzheimer’s disease. To find the effective drugs for neurodegenerative diseases, the deep delve into molecular mechanisms underlie these diseases is necessary. In the current study, we investigated the effects of flavonoid baicalein on H2O2-induced oxidative stress and cell death in SK-N-MC cells. Our results revealed that the treatment of SK-N-MC cells with H2O2 led to a decrease in cell viability through phosphorylation and activation of extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs) pathways followed by increase in Bax/Bcl2 ratio and initiation of caspase-dependent apoptotic pathways. In addition, our results showed that the exposure of SK-N-MC cells to H2O2 ended up in reduction of glutathione (GSH) levels of SK-N-MC cells via JNK/ERK-mediated down-regulation of γ-glutamyl-cysteine synthetase (γ-GCS) expression. Our results demonstrated that flavonoid baicalein protected against H2O2-induced cell death by inhibition of JNK/ERK pathways activation and other key molecules in apoptotic pathways, including blockage of Bax and caspase-9 activation, induction of Bcl-2 expression and prevention of cell death. Baicalein supported intracellular defense mechanisms through maintaining GSH levels in SK-N-MC cells by the removal of inhibition effects of JNK/ERK pathways from γ-GCS expression. In addition, baicalein attenuated lipid and protein peroxidation and intracellular reactive oxygen species in SK-N-MC cells. In accordance with these observations, baicalein can be a promising candidate in antioxidant therapy and designing of natural-based drug for ROS-induced neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DTNB:

Dithionitrobenzoic acid

γ-GCS:

γ-Glutamyl-cysteine synthetase

MDA:

Malondialdehyde

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide

mBCL:

Monochlorobimane

PBS:

Phosphate buffer saline

PCO:

Protein carbonyl

References

  • Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three dimensional structure of the apoptosome: implications for assembly, pro-caspase-9 binding and activation. J Mol Cell 9:423–432

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Method Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Ardestani A, Yazdanparast R, Nejad AS (2008) 2-Deoxy-d-ribose-induced oxidative stress causes apoptosis in human monocytic cells. Toxicol In Vitro 22:968–979

    Article  PubMed  CAS  Google Scholar 

  • Atmani D, Chaher N, Berboucha M, Debbache N, Boudaoud H (2009) Flavonoids in human health: from structure to biological activity. J Curr Nutr Food Sci 5:225–237

    Article  CAS  Google Scholar 

  • Barrett WC, DeGnores JP, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein tyrosine phosphatase 1B. J Biol Chem (JBC) 27:34543–34546

    Article  Google Scholar 

  • Burdo J, Schubert D, Maher P (2008) Glutathione production is regulated via distinct pathways in stressed and non-stressed cortical neurons. J Brain Res 1189:12–22

    Article  CAS  Google Scholar 

  • Chen Ch, Raung Sh, Liao S, Chen Sh (2004) Inhibition of inducible nitric oxide synthetase expression by baicalein in endotoxin/cytokine-stimulated microglia. J Biochem Pharmacol 67:957–965

    Article  CAS  Google Scholar 

  • Chen YC, Chow J, Lin C, Wu C, Shen S (2006) Baicalein inhibition of oxidative stress-induced apoptosis via modulation of ERK activation and induction of HO-1 gene expression in rat glioma cells C6. J Toxicol Appl Pharmacol 216:263–273

    Article  CAS  Google Scholar 

  • Cheng Y, He G, Mu X, Zhang T, Li X, Hu J (2008) Neuroprotective effect of baicalein against MPTP neurotoxicity: behavioral, biochemical and immunohistochemical profile. J Neurosci Lett 441:16–20

    Article  CAS  Google Scholar 

  • Chipuk JE, Green DR (2008) How do Bcl-2 proteins induce mitochondrial outer membrane permeabilization? J Trends Cell Biol 18:157–164

    Article  CAS  Google Scholar 

  • Choi JH, Choi AY, Yoon H, Choe W, Yoon K, Ha J, Yeo E, Kang I (2010) Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. J Exp Mol Med 42:811–822

    Article  CAS  Google Scholar 

  • Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Poel CV, Pieters L, Vlietinck AJ, Berghe DV (1998) Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J Nat Prod 61:71–76

    Article  PubMed  CAS  Google Scholar 

  • Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206:1115–1170

    Article  Google Scholar 

  • Cullinan SB, Diehl JA (2006) Coordination of ER and oxidative stress signaling: the PERK/Nrf2 signaling pathway. Int J Biochem Cell Biol 38:317–332

    Article  PubMed  CAS  Google Scholar 

  • Davis RJ (1999) Signal transduction by the c-Jun N-terminal kinase. J Biochem Soc Symp 64:1–12

    CAS  Google Scholar 

  • Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. J Cell 103:239–252

    Article  CAS  Google Scholar 

  • Drapper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 186:421–431

    Article  Google Scholar 

  • Earnshaw WC, Kaufmann M (1999) Mammalian caspases: structure, activation, substrate and functions during apoptosis. J Annu Rev Biochem 68:383–424

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. J Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Gao D, Tawa R, Masaki H, Okano Y, Sakurai H (1998) Protective effects of baicalein against cell damage by reactive oxygen species. J Chem Pharm Bull 46:1383–1387

    Article  CAS  Google Scholar 

  • Hodnick WF, Kung FF, Roettger WJ, Bohmont CW, Pardini RS (1986) Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids: a structure-activity study. J Biochem Pharmacol 35:2345–2357

    Article  CAS  Google Scholar 

  • Hodnick WF, Milosavlijevic EB, Nelson JH, Pardini RS (1998) Electrochemistry of flavonoids: relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. J Biochem Pharmacol 37:2607–2611

    Article  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. J Free Radic Biol Med 30:433–446

    Article  CAS  Google Scholar 

  • Jensen K (2003) Oxidative stress and free radicals. J Mol Struct 666:387–392

    Google Scholar 

  • Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. J Biochim Biophys Acta (BBA) 1802:396–405

    CAS  Google Scholar 

  • LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescein as an indicator of reactive oxygen species formation and oxidative stress. J Chem Res Toxicol 5:227–231

    Article  CAS  Google Scholar 

  • Lin H, Juan Sh, Shen Sh, Hsu F, Chen Y (2003) Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. J Biochem Pharmacol 66:1821–1832

    Article  CAS  Google Scholar 

  • Lin H, Shen Sh, Lin Ch, Yang L, Chen Y (2007) Baicalein inhibition of hydrogen peroxide-induced apoptosis via ROS-dependent heme oxygenase 1 gene expression. J Biochim Biophys Acta (BBA) 1773:1073–1086

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Markovic ZS, Markovic JM, Milenkovic D, Filipovic N (2011) Structural and electronic features of baicalein and its radicals. J Monatsh Chem 142:145–152

    Article  CAS  Google Scholar 

  • Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  PubMed  CAS  Google Scholar 

  • Michaelis ML (2003) Drug targeting Alzheimer’s disease: some things old and some things new. J Pharmacol Exp Ther 304:897–904

    Article  PubMed  CAS  Google Scholar 

  • Mielke K, Herdegen T (2000) JNK and p38 stress kinases-degenerative effectors of signal transduction-cascades in the nervous system. J Prog Neurobiol 61:45–60

    Article  CAS  Google Scholar 

  • Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S (1998) Active oxygens generation by flavonoids. J Biol Pharm Bull 21:93–96

    Article  CAS  Google Scholar 

  • Mohammadi M, Yazdanparast R (2010) Modulation of H2O2-induced mitogen-activated protein kinases activation and cell death in SK-N-MC cells by EUK134, a salen derivative. J Basic Clin Pharmacol Toxicol 108:378–384

    Article  Google Scholar 

  • Osburn WO, Kensler W (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. J Mut Res 659:31–39

    Article  CAS  Google Scholar 

  • Park HS, Park E, Kim MS, Ahn K, Kim IY, Choi EJ (2000) Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem (JBC) 275:2527–2531

    Article  CAS  Google Scholar 

  • Pratico D (2008) Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy. J Ann NY Acad Sci 1147:70–78

    Article  CAS  Google Scholar 

  • Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Method Enzymol 233:357–363

    Article  CAS  Google Scholar 

  • Rossi L, Mazzitelli S, Arciello M, Capo CR, Rotilio G (2008) Benefits from dietary polyphenols for brain aging and Alzheimer’s disease. J Neurochem Res 33:2390–2400

    Article  CAS  Google Scholar 

  • Schroeter H, Boyd C, Spencer JPE, Williams RJ, Cadenas E, Rise-Evans C (2002) MAPK signaling in neurodegeneration: influences of flavonoids and of nitric oxide. J Neurobiol Aging 23:861–880

    Article  CAS  Google Scholar 

  • Schuler M, Green DR (2001) Mechanism of p53-dependent apoptosis. J Biochem Soc Trans 29:684–688

    Article  CAS  Google Scholar 

  • Shen HM, Liu Z (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. J Free Radical Biol Med 40:928–939

    Article  CAS  Google Scholar 

  • Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Learner V, Birrer MJ, Rana A, Tzivion G (2003) Crosstalk between JNK/SAPK and ERK/MAPK pathway. J Biol Chem (JBC) 278:26715–26721

    Article  CAS  Google Scholar 

  • Shen G, Hebber V, Nair S, Xu C, Li W, Lin W, Keum YS, Han J, Gallo MA, Kong AN (2004) Regulation of Nrf2 transactivation domain activity. The differential effects of mitogen-activated protein kinase cascades and synergistic stimulatory effect of Raf and CREB-binding protein. J Biol Chem (JBC) 279:23052–23060

    Article  CAS  Google Scholar 

  • Sorg O (2004) Oxidative stress: a theoretical model or a biological reality? C R Biol 327:649–662

    Article  PubMed  CAS  Google Scholar 

  • Spencer JPE (2007) The interactions of flavonoids within neuronal signaling pathways. J Genes Nutr 2:257–273

    Article  CAS  Google Scholar 

  • Spencer JPE (2008) Flavonoids: modulators of brain function? Br J Nutr 99:ES60–ES77

    PubMed  Google Scholar 

  • Suk K, Lee H, Kang SS, Cho GJ, Choi WS (2003) Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther 305:638–646

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Erb H, Murphy TH (2005) Coordinate regulation of glutathione metabolism in astrocytes by Nrf2. J Biochem Res Commun 236:371–377

    Article  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. J Biomed Pharm 57:145–155

    Article  CAS  Google Scholar 

  • Zhang Sh, Ye J, Dong G (2010) Neuroprotective effect of baicalein on hydrogen peroxide mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci 40:311–320

    Article  PubMed  Google Scholar 

  • Zhu X, Raina AK, Lee H, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signaling in Alzheimer’s disease. J Brain Res 1000:32–39

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author appreciates the financial support of this investigation by the Research Council of University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Yazdanparast.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moslehi, M., Meshkini, A. & Yazdanparast, R. Flavonoid Baicalein Modulates H2O2-Induced Mitogen-Activated Protein Kinases Activation and Cell Death in SK-N-MC Cells. Cell Mol Neurobiol 32, 549–560 (2012). https://doi.org/10.1007/s10571-011-9795-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9795-x

Keywords

Navigation