Skip to main content
Log in

Potential military cotton textiles composed of carbon quantum dots clustered from 4–(2,4–dichlorophenyl)–6–oxo–2–thioxohexahydropyrimidine–5–carbonitrile

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This approach was applied to demonstrate a unique technique for manufacturing potential military textiles (fluorescent/UV-protective cotton fabrics with microbicide activity) through the immobilization of Carbon quantum dots (CQDs) within a textile matrix. Herein, CQDs were successfully nucleated from a pyrimidine-based heterocyclic compound, namely, 4–(2,4–dichlorophenyl)–6–oxo–2-thioxohexahydropyrimidine-5-carbonitrile, (Target molecule [TM]). Pyrimidine-based heterocyclic compounds have excellent pharmacological activities, but their photoluminescence activity has yet to be investigated. The synthesized TM and CQDs were separately immobilized within native and cationized cotton fabrics to obtain TM@cotton, CQDs@cotton, TM@Q-cotton, and CQDs@Q-cotton fabrics. The estimated yellowness index, intensity of the fluorescence peak, UV blocking, and microbicide action exhibited the following pattern: CQDs@Q–cotton > TM@Q–cotton > CQDs@cotton > TM @cotton. CQDs@Q-cotton showed quite good durability. After it was washed five times, its yellowness index decreased from 26.5–only 20.3, its fluorescence intensity decreased from 540–340 nm, and its transmission percent increased from 7–10%. Even after 10 washing cycles, microbial inhibitions (as a percent) against Escherichia coli, Staphylococcus aureus, and Candida albicans were estimated to be 63%, 68%, and 67%, respectively. The UV protection factor also decreased from 38.2 (very good)–21.5 (good). Therefore, the proposed technique was successfully used to manufacture durable fluorescent textiles that could be applied to superior military garments.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AATCC (2010) Standardization of home laundry test conditions. AATCC Technical Manual 85:401

    Google Scholar 

  • Abdelhameed RM, Kamel OM, Amr A, Jo R, Silva AM (2017) Antimosquito activity of a titanium–organic framework supported on fabrics. ACS Appl Mater Interf 9(27):22112–22120

    Article  CAS  Google Scholar 

  • Abdelhameed RM, El-Zawahry M, Emam HE (2018) Efficient removal of organophosphorus pesticides from wastewater using polyethylenimine-modified fabrics. Polymer 155:225–234

    Article  CAS  Google Scholar 

  • Abdel-Mohdy F, Fouda MM, Rehan M, Aly A (2008) Repellency of controlled-release treated cotton fabrics based on cypermethrin and prallethrin. Carbohydr Polym 73(1):92–97

    Article  CAS  Google Scholar 

  • Abuelela AM, Mohamed TA, Wilson LD, Zoghaib WM (2016) Raman and infrared spectra, normal coordinate analysis and ab initio calculations of 4-Amino-2-chloropyrimidine-5-carbonitrile. J Mol Struct 1115:85–93

    Article  CAS  Google Scholar 

  • Ahmed HB, El-Hawary NS, Emam HE (2017) Self-assembled AuNPs for ingrain pigmentation of silk fabrics with antibacterial potency. Inter J Biol Macromol 105:720–729

    Article  CAS  Google Scholar 

  • Ahmed HB, Emam HE, Mashaly HM, Rehan M (2018) Nanosilver leverage on reactive dyeing of cellulose fibers: color shading, color fastness and biocidal potentials. Carbohyd Polym 186:310–320

    Article  CAS  Google Scholar 

  • Ahmed HB, Attia MA, El-Dars FM, Emam HE (2019) Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. Inter J Biol Macromol 128:214–229

    Article  CAS  Google Scholar 

  • Ates ES, Unalan HE (2012) Zinc oxide nanowire enhanced multifunctional coatings for cotton fabrics. Thin Solid Films 520(14):4658–4661

    Article  CAS  Google Scholar 

  • Bayer A, Kirby W, Sherris J, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45(4):493–496

    Article  Google Scholar 

  • Chae A, Choi Y, Jo S, Paoprasert P, Park SY, In I (2017) Microwave-assisted synthesis of fluorescent carbon quantum dots from an A 2/B 3 monomer set. RSC Adv 7(21):12663–12669

    Article  CAS  Google Scholar 

  • Chandra S, Pathan SH, Mitra S, Modha BH, Goswami A, Pramanik P (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv 2(9):3602–3606

    Article  CAS  Google Scholar 

  • Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X (2013) Large scale synthesis of photoluminescent carbon nanodots and their application for bioimaging. Nanoscale 5(5):1967–1971

    Article  CAS  PubMed  Google Scholar 

  • CLSI (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition, Vol. 32 No. 2. M07-A9 Clinical and Laboratory Standards Institute, USA

  • Dasgupta S, Das B, Li Q, Wang D, Baby TT, Indris S, Knapp M, Ehrenberg H, Fink K, Kruk R (2016) Toward on-and-off magnetism: reversible electrochemistry to control magnetic phase transitions in spinel ferrites. Adv Func Mater 26(41):7507–7515

    Article  CAS  Google Scholar 

  • Delhaes P (2000) Polymorphism of carbon. Graphite and precursors Gordon & Breach, p 1–24

  • Dong X, Liang W, Meziani MJ, Sun Y-P, Yang L (2020) Carbon dots as potent antimicrobial agents. Theranostics 10(2):671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, He G, Gong Y, Yuan WZ, Wang S, Yu C, Liu Y, Wei C (2018) Efficient persistent room temperature phosphorescence achieved through Zn2+ doped sodium carboxymethyl cellulose composites. Compos Commun 8:106–110

    Article  Google Scholar 

  • El-Naggar ME, Hasanin M, Youssef AM, Aldalbahi A, El-Newehy MH, Abdelhameed RM (2020) Hydroxyethyl cellulose/bacterial cellulose cryogel dopped silver@ titanium oxide nanoparticles: antimicrobial activity and controlled release of Tebuconazole fungicide. Inter J Biol Macromol 165:1010–1021

    Article  CAS  Google Scholar 

  • Emam HE, Bechtold T (2015) Cotton fabrics with UV blocking properties through metal salts deposition. Appl Surf Sci 357:1878–1889

    Article  CAS  Google Scholar 

  • Emam HE, Saleh N, Nagy KS, Zahran M (2016) Instantly AgNPs deposition through facile solventless technique for poly-functional cotton fabrics. Inter J Biol Macromol 84:308–318

    Article  CAS  Google Scholar 

  • Emam HE, Abdelhameed RM (2017) Anti-UV radiation textiles designed by embracing with nano-MIL (Ti, In)–metal organic framework. ACS Appl Mater Interf 9(33):28034–28045

    Article  CAS  Google Scholar 

  • Emam HE, Zahran M, Ahmed HB (2017) Generation of biocompatible nanogold using H2O2–starch and their catalytic/antimicrobial activities. Eur Polym J 90:354–367

    Article  CAS  Google Scholar 

  • Emam HE, Abdelhamid HN, Abdelhameed RM (2018a) Self-cleaned photoluminescent viscose fabric incorporated lanthanide-organic framework (Ln-MOF). Dyes Pigm 159:491–498

    Article  CAS  Google Scholar 

  • Emam HE, Abdellatif FH, Abdelhameed RM (2018b) Cationization of celluloisc fibers in respect of liquid fuel purification. J Clean Prod 178:457–467

    Article  CAS  Google Scholar 

  • Emam HE, Ahmed HB, Gomaa E, Helal MH, Abdelhameed RM (2020a) Recyclable photocatalyst composites based on Ag 3 VO 4 and Ag 2 WO 4@ MOF@ cotton for effective discoloration of dye in visible light. Cellulose 27:7139–7155

    Article  CAS  Google Scholar 

  • Emam HE, darwesh OM, Abdelhameed RM (2020b) Protective cotton textiles via amalgamation of cross-linked zeolitic imidazole framework. Ind Eng Chem Res 59(23):10931–10944

    Article  CAS  Google Scholar 

  • Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4(29):6927–6945

    Article  CAS  Google Scholar 

  • Gao J, Zhu M, Huang H, Liu Y, Kang Z (2017) Advances, challenges and promises of carbon dots. Inorg Chem Front 4(12):1963–1986

    Article  CAS  Google Scholar 

  • Hasanin MS, Moustafa GO (2020) New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. Inter J Biol Macromol 144:441–448

    Article  CAS  Google Scholar 

  • Hewson M (1994) Formaldehyde in textiles. J Soc Dyers Colour 110(4):140–142

    Article  CAS  Google Scholar 

  • Ipe BI, Lehnig M, Niemeyer CM (2005) On the generation of free radical species from quantum dots. Small 1(7):706–709

    Article  CAS  PubMed  Google Scholar 

  • Khan MZ, Ashraf M, Hussain T, Rehman A, Malik MM, Raza ZA, Nawab Y, Zia Q (2015) In situ deposition of TiO 2 nanoparticles on polyester fabric and study of its functional properties. Fibers Polym 16(5):1092–1097

    Article  CAS  Google Scholar 

  • Kien Nguyen T, Park K-H, Kwon PY (2016) Experimental results on lamellar-type solid lubricants in enhancing minimum quantity lubrication machining. J. Manuf. Sci. Eng. 138 (10)

  • Kim C, Ji T, Eom JB (2018) Determination of organic compounds in water using ultraviolet LED. Meas. Sci. Technol. 29 (4):045802

  • Kim YJ, Guo P, Schaller RD (2019) Aqueous carbon quantum dot-embedded PC60-PC61BM nanospheres for ecological fluorescent printing: contrasting fluorescence resonance energy-transfer signals between watermelon-like and random morphologies. J Phys Chem Lett 10(21):6525–6535

    Article  CAS  PubMed  Google Scholar 

  • Kováčová M, Špitalská E, Markovic Z, Špitálský Z (2020) Carbon quantum dots as antibacterial photosensitizers and their polymer nanocomposite applications. Part Part Syst Charact 37(1):1900348

    Article  CAS  Google Scholar 

  • Li H, Ming H, Liu Y, Yu H, He X, Huang H, Pan K, Kang Z, Lee S-T (2011a) Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New J Chem 35(11):2666–2670

    Article  CAS  Google Scholar 

  • Li X, Ye J, Lin Y, Fan L, Pang H, Gong W, Ning G (2011b) Facile synthesis and flame retardant performance of NaAl (OH) 2CO3 whiskers. Powder Tech 206(3):358–361

    Article  CAS  Google Scholar 

  • Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, Lin CH, Huang CC (2016) Synthesis of self-assembled spermidine-carbon quantum dots effective against multidrug-resistant bacteria. Adv Healthcare Mater 5(19):2545–2554

    Article  CAS  Google Scholar 

  • Li M, Yu C, Hu C, Yang W, Zhao C, Wang S, Zhang M, Zhao J, Wang X, Qiu J (2017) Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chem Eng J 320:570–575

    Article  CAS  Google Scholar 

  • Li H, Huang J, Song Y, Zhang M, Wang H, Lu F, Huang H, Liu Y, Dai X, Gu Z (2018) Degradable carbon dots with broad-spectrum antibacterial activity. ACS Appl Mater Interf 10(32):26936–26946

    Article  CAS  Google Scholar 

  • Liu X, Pang J, Xu F, Zhang X (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Yang J-x, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3(8):2367–2375

    Article  CAS  PubMed  Google Scholar 

  • Luo Z, Lu Y, Somers LA, Johnson AC (2009) High yield preparation of macroscopic graphene oxide membranes. J Am Chem Soc 131(3):898–899

    Article  CAS  PubMed  Google Scholar 

  • Kováčová Mr, Markovic ZM, Humpolíček P, Mičušík M, Švajdlenková H, Kleinová A, Danko M, KubátVajďákCapakova PJZ (2018) Carbon quantum dots modified polyurethane nanocomposite as effective photocatalytic and antibacterial agents. ACS Biomater Sci Eng 4(12):3983–3993

    Article  PubMed  CAS  Google Scholar 

  • Nazari A, Montazer M, Mirjalili M, Nazari S (2013) Polyester with durable UV protection properties through using nano TiO2 and polysiloxane softener optimized by RSM. J Text Inst 104(5):511–520

    Article  CAS  Google Scholar 

  • Perego P, Moltani A, Andreoni G (2012) Sport monitoring with smart wearable system. Stud Health Technol Infrom 177:224–228

    Google Scholar 

  • Phung Hai TA, Sugimoto R (2017) Photoluminescence control of cellulose via surface functionalization using oxidative polymerization. Biomacromol 18(12):4011–4021

    Article  CAS  Google Scholar 

  • Pierson H (1993) Handbook of Carbon, Graphite, Diamond, and Fullerenes: Properties, Processing and Applications, Noyes, Park Ridge

  • Pires NR, Santos CM, Sousa RR, Paula R, Cunha PL, Feitosa J (2015) Novel and fast microwave-assisted synthesis of carbon quantum dots from raw cashew gum. J Braz Chem Soc 26(6):1274–1282

    CAS  Google Scholar 

  • Rehan M, Hartwig A, Ott M, Gätjen L, Wilken R (2013) Enhancement of photocatalytic self-cleaning activity and antimicrobial properties of poly (ethylene terephthalate) fabrics. Surf Coat Tech 219:50–58

    Article  CAS  Google Scholar 

  • Ristic BZ, Milenkovic MM, Dakic IR, Todorovic-Markovic BM, Milosavljevic MS, Budimir MD, Paunovic VG, Dramicanin MD, Markovic ZM, Trajkovic VS (2014) Photodynamic antibacterial effect of graphene quantum dots. Biomater 35(15):4428–4435

    Article  CAS  Google Scholar 

  • Sahin O, Kayacan O, Bulgun EY (2005) Smart textiles for soldier of the future. Def Sci J 55(2):195

    Article  Google Scholar 

  • Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N (1996) Reaction model of cellulose decomposition in near-critical water and fermentation of products. Biores Tech 58(2):197–202

    Article  CAS  Google Scholar 

  • Sakthivel M, Drillet J-F (2018) An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B Environ 231:62–72

    Article  CAS  Google Scholar 

  • Salama A, Hasanin M, Hesemann P (2020) Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 241:16363

    Article  CAS  Google Scholar 

  • Shao X, Wu W, Wang R, Zhang J, Li Z, Wang Y, Zheng J, Xia W, Wu M (2016) Engineering surface structure of petroleum-coke-derived carbon dots to enhance electron transfer for photooxidation. J Catal 344:236–241

    Article  CAS  Google Scholar 

  • Song J, Zhao L, Wang Y, Xue Y, Deng Y, Zhao X, Li Q (2018) Carbon quantum dots prepared with chitosan for synthesis of CQDs/AuNPs for iodine ions detection. Nanomater 8(12):1043

    Article  CAS  Google Scholar 

  • Stankovic NK, Bodik M, Šiffalovič P, Kotlar M, Mičušik M, Špitalsky Z, Danko M, Milivojevic DaD, Kleinova A, Kubat P (2018) Antibacterial and antibiofouling properties of light triggered fluorescent hydrophobic carbon quantum dots Langmuir-Blodgett thin films. ACS Sus Chem Eng 6(3):4154–4163

    Article  CAS  Google Scholar 

  • Tao X, Koncar V, Huang T-H, Shen C-L, Ko Y-C, Jou G-T (2017) How to make reliable, washable, and wearable textronic devices. Sensors 17(4):673

    Article  PubMed Central  Google Scholar 

  • Welch CM (1988) Tetracarboxylic acids as formaldehyde-free durable press finishing agents: part I: catalyst, additive, and durability studies. Text Res J 58(8):480–486

    Article  CAS  Google Scholar 

  • Wissler M (2006) Graphite and carbon powders for electrochemical applications. J Power Sour 156(2):142–150

    Article  CAS  Google Scholar 

  • Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ (2014) A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale 6(7):3868–3874

    Article  CAS  PubMed  Google Scholar 

  • Yang CQ, Xu L, Li S, Jiang Y (1998) Nonformaldehyde durable press finishing of cotton fabrics by combining citric acid with polymers of maleic acid. Text Res J 68(6):457–464

    Article  CAS  Google Scholar 

  • Yang CQ, Chen D, Guan J, He Q (2010) Cross-linking cotton cellulose by the combination of maleic acid and sodium hypophosphite 1 fabric wrinkle resistance. Indust Eng Chem Res 49(18):8325–8332

    Article  CAS  Google Scholar 

  • Zhang H, Wang H, Chen G (2006) A new kind of conducting filler-graphite nano sheets. Plastics 35(4):42–50

    Google Scholar 

  • Zhang P, Lan J, Wang Y, Huang CZ (2015) Luminescent golden silk and fabric through in situ chemically coating pristine-silk with gold nanoclusters. Biomater 36:26–32

    Article  CAS  Google Scholar 

  • Zhang J, Bao L, Lou H, Deng J, Chen A, Hu Y, Zhang Z, Sun X, Peng H (2017a) Flexible and stretchable mechanoluminescent fiber and fabric. J Mater Chem C 5(32):8027–8032

    Article  CAS  Google Scholar 

  • Zhang Z, Shi X, Lou H, Xu Y, Zhang J, Li Y, Cheng X, Peng H (2017b) A stretchable and sensitive light-emitting fabric. J Mater Chem C 5(17):4139–4144

    Article  CAS  Google Scholar 

  • Zuo J, Jiang T, Zhao X, Xiong X, Xiao S, Zhu Z (2015) Preparation and application of fluorescent carbon dots. J Nanomater. https://doi.org/10.1155/2015/787862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hossam E. Emam or Hanan B. Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 177 kb)

Supplementary file3 (DOCX 713 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emam, H.E., El-Shahat, M., Hasanin, M.S. et al. Potential military cotton textiles composed of carbon quantum dots clustered from 4–(2,4–dichlorophenyl)–6–oxo–2–thioxohexahydropyrimidine–5–carbonitrile. Cellulose 28, 9991–10011 (2021). https://doi.org/10.1007/s10570-021-04147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04147-4

Keywords

Navigation