Skip to main content
Log in

MWCNT enabled smart textiles based flexible and wearable sensor for human motion and humidity monitoring

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the study, we present a simple MWCNT enhanced textile based wearable device which can measure the change in human body motion as well as humidity of the environment for practical applications. Multiwalled carbon nanotube modified textile was fabricated by spray layer by layer method. Morphology, structure, thermal and conductive properties of the MWCNT modified textiles were investigated. The resistance of MWCNT network on textile could be controlled in a wide range from 100 MOhm to 2 KOhm by varying the concentration (1 mg/mL to 5 mg/mL) and a number of spray coating of MWCNT. The fabricated MWCNT enhanced textile sensors were attached to various human body parts (such as forehead, cheek, neck, abdomen, wrist, elbow, knee, wrist) and change in resistance pertaining to human body motion was measured. The wrist movement shows a decrease in the sensor resistance and elbow movement shows an increase in the resistance depends upon forward and reverse (due to compression and expansion of MWCNT junction network) bending of MWCNT coated fabric sensor. Further, the smart fabric was applied to monitor a wide range of humidity (RH = 19–93%) at room temperature. The sensor show high response for relative humidity (RH) of 57% with quick response (4 ± 2 s) and recovery times (14 ± 2 s) at room temperature. The change in resistance of the sensor on exposure to humidity could be attributed to the interaction of water molecules with surface (COOH, and OH) functional groups on MWCNT. The present results could be interesting for the development of simple, large scale and low cost textile based wearable sensors for multifunctional sensing applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Download references

Acknowledgement

This research work is financially supported by the Defence Research and Development Organization (DRDO), New Delhi, Govt of India (grant no.DLS/86/50011/DRDO-BU center/1748/D (R&D). The author (Krishnamoorthy Rajavel) acknowledges financial support from the China National Post doctor Foundation (Grant No. 2019M653124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramasamy Thangavelu Rajendra Kumar.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest concerning the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D., Rajavel, K. & Rajendra Kumar, R.T. MWCNT enabled smart textiles based flexible and wearable sensor for human motion and humidity monitoring. Cellulose 28, 2505–2520 (2021). https://doi.org/10.1007/s10570-020-03617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03617-5

Keywords

Navigation